

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388

www.mrt-cert.com

Report No.: 2507TW0110-U2 Report Version: Issue Date: 2025-08-14

MEASUREMENT REPORT

FCC ID : 2AQVB-DN2458A

APPLICANT : Taisync Technology Inc.

Application Type : CIIPC

Product : Video&Data transmission device

Model No. : DN2458A

Brand Name : Viulinx

FCC Classification: Unlicensed National Information Infrastructure (UNII)

FCC Rule Part(s) : Part 15 Subpart E (Section 15.407)

Test Procedure(s): ANSI C63.10-2013

Received Date : July 10, 2025

Test Date : July 16, 2025~ August 5, 2025

: Kaunaz Lee **Tested By**

(Kaunaz Lee)

Paddy Chen (Paddy Chen) Reviewed By

Approved By

3261

(Chenz Ker)

The test results only relate to the tested samples.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10 Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Page Number: 1 of 60

Revision History

Report No. Version		Description	Issue Date	Note
2507TW0110-U2 1.0		Original Report	2025-08-14	

Page Number: 2 of 60

CONTENTS

De	scriptio	on	Page
1.	INTR	ODUCTION	7
	1.1.	Scope	7
	1.2.	MRT Test Location	7
2.	PROI	DUCT INFORMATION	8
	2.1.	Equipment Description	8
	2.2.	Product Specification Subjective to this Standard	
	2.3.	Operation Frequencies and Channel List	
	2.4.	Test Mode	
	2.5.	Test Configuration	12
	2.6.	Test System Details	12
	2.7.	Test Software	12
	2.8.	Duty Cycles	13
	2.9.	Test Configuration	13
	2.10.	EMI Suppression Device(s)/Modifications	13
	2.11.	Labeling Requirements	13
3.	DESC	CRIPTION OF TEST	14
	3.1.	Evaluation Procedure	14
	3.2.	AC Line Conducted Emissions	14
	3.3.	Radiated Emissions	15
4.	ANTE	ENNA REQUIREMENTS	16
5.	TEST	EQUIPMENT CALIBRATION DATE	17
6.	MEAS	SUREMENT UNCERTAINTY	18
7.	TEST	RESULT	19
	7.1.	Summary	19
	7.2.	26dB Bandwidth Measurement	20
	7.2.1.	Test Limit	20
	7.2.2.	Test Procedure used	20
	7.2.3.	Test Setting	20
	7.2.4.	Test Setup	20
	7.2.5.	Test Result	21
	7.3.	6dB Bandwidth Measurement	23
	731	Test Limit	23

8.

CONC	CLUSION	59
7.9.4.	Test Result	
7.9.3.	Test Setup	56
7.9.2.	Test Procedure	
7.9.1.	Test Limit	55
7.9.	AC Conducted Emissions Measurement	55
7.8.2.	Test Result	
7.8.1.	Test Limit	
7.8.	Radiated Restricted Band Edge Measurement	
7.7.5.	Test Result	
7.7.4.	Test Setup	
7.7.3.	Test Setting	36
7.7.2.	Test Procedure Used	36
7.7.1.	Test Limit	
7.7.	Radiated Spurious Emission Measurement	36
7.6.5.	Test Result	
7.6.4.	Test Setup	
7.6.3.	Test Setting	32
7.6.2.	Test Procedure Used	31
7.6.1.	Test Limit	
7.6.	Power Spectral Density Measurement	31
7.5.5.	Test Result	30
7.5.4.	Test Setup	29
7.5.3.	Test Setting	29
7.5.2.	Test Procedure Used	29
7.5.1.	Test Limit	29
7.5.	Transmit Power Control	29
7.4.5.	Test Result.	28
7.4.4.	Test Setup	27
7.4.3.	Test Setting	27
7.4.2.	Test Procedure Used	
7.4.1.	Test Limit	
7.4.	Output Power Measurement	
7.3.5.	Test Result	
7.3.4.	Test Setup	
7.3.3.	Test Setting	
7.3.2.	Test Procedure used	

Appendix A: Test Photograph	60
Appendix B : External Photograph	60
Appendix C : Internal Photograph	60

General Information

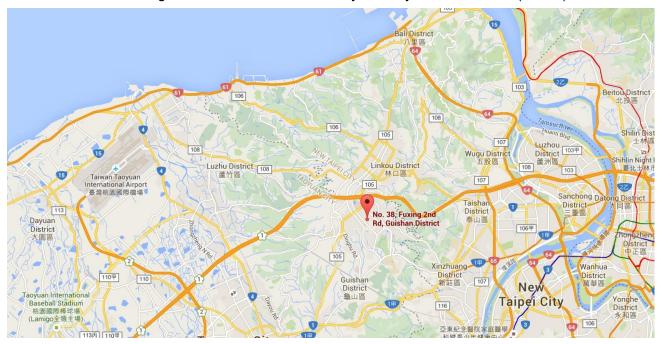
Applicant	Taisync Technology Inc.	
Applicant Address	2051 Junction Ave. Ste 115, San Jose, CA 95131	
Manufacturer	Taisync Technology Inc.	
Manufacturer Address	2051 Junction Ave. Ste 115, San Jose, CA 95131	
Test Site	MRT Technology (Taiwan) Co., Ltd	
Test Site Address	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C)	
MRT FCC Registration No.	291082	
Test Device Serial No.	#1-1 Production Pre-Production Engineering	

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Fuxing Rd., Taoyuan, Taiwan (R.O.C)

- •MRT facility is a FCC registered (Reg. No. 291082) test facility with the site description report on file and is designated by the FCC as an Accredited Test Firm.
- MRT facility is an IC registered (MRT Reg. No. 21723) test laboratory with the site description on file at Industry Canada.
- MRT Lab is accredited to ISO 17025 by the Taiwan Accreditation Foundation (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC (Designation Number: TW3261), Industry Canada, EU and TELEC Rules.

Page Number: 6 of 60


1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	Video&Data transmission device
Brand Name	Viulinx
Model No.	DN2458A
Specification	SRD 2.4GHz & 5.8GHz, 2T2R (MIMO)

Remark:

Page Number: 8 of 60

^{1.} The information of EUT was provided by the manufacturer, and the accuracy of the information shall be the responsibility of the manufacturer.

2.2. Product Specification Subjective to this Standard

Operating Frequency	5731~5782MHz
Channel Number	3
Type of modulation	OFDM
Channel Bandwidth	10MHz
Data Rate	2.08Mbps ~ 6.57Mbps
RF Port	2

Page Number: 9 of 60

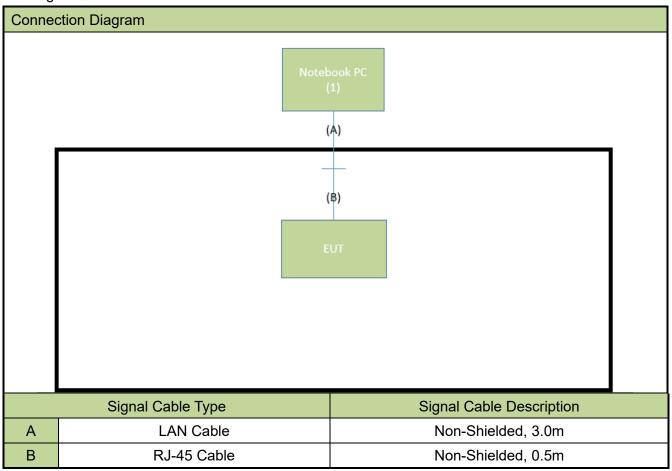
2.3. Operation Frequencies and Channel List

Channel	Frequency	Channel	Frequency	Channel	Frequency
01	5731 MHz	02	5765 MHz	03	5782 MHz

Page Number: 10 of 60

2.4. Test Mode

Test Mode	Mode 1: Transmit by 5.8GHz with Ant 1+2


Note: Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.

Page Number: 11 of 60

2.5. Test Configuration

This device was tested per the guidance of ANSI C63.10-2013. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.6. Test System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product		Product	Manufacturer	Model No.	Serial No.	Power Cord
	1	Notebook PC	Lenovo	T450	N/A	Non-shielded, 0.8m

2.7. Test Software

The test utility software used during testing was "calibration.html".

2.8. Duty Cycles

Test Mode	Duty Cycle	
5.8GHz	92%	

2.9. Test Configuration

This device was tested per the guidance of KDB 789033 D02v02r01. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.10. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.11. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

Page Number: 13 of 60

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 789033 were used in the measurement of the device.

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 9'x4'x3' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

Line conducted emissions test results are shown in Section 7.10.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the Video&Data transmission device, is permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

Antenna List

No.	Manufacturer Part No.		Antenna Type	Peak Gain
4	Be-Comfortable N12-7419-R0A Dipole		Dinolo	2.4G: 5.02dBi
I Be-Col	Be-Comfortable	N 12-74 19-RUA	Dipole	5.8G: 5.06dBi

Page Number: 16 of 60

5. TEST EQUIPMENT CALIBRATION DATE

Radiated Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	MRTTWA00002	1 year	2026/4/16
Broadband TRILOG Antenna	SCHWARZBECK	VULB 9162	MRTTWA00086	1 year	2025/11/5
Broadband Hornantenna	SCHWARZBECK	BBHA 9120D	MRTTWA00003	1 year	2026/2/11
Broadband Preamplifier	SCHWARZBECK	BBV 9718	MRTTWA00005	1 year	2026/2/11
Breitband Hornantenna	SCHWARZBECK	BBHA 9170	MRTTWA00004	1 year	2026/3/27
Broadband Amplifier	SCHWARZBECK	BBV 9721	MRTTWA00006	1 year	2026/3/20
EMI Test Receiver	R&S	ESR3	MRTTWA00009	1 year	2026/3/4
Signal Analyzer	R&S	FSV40	MRTTWA00007	1 year	2026/5/20

Conducted Test Equipment

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2025/9/24
EXA Signal Analyzer	KEYSIGHT	N9010B	MRTTWA00074	1 year	2026/7/14
USB Wideband Power Sensor	KEYSIGHT	U2021XA	MRTTWA00014	1 year	2026/4/15

Software	Manufacturer	Version No.
e3	Audix	9.160520a

Page Number: 17 of 60

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Conducted Emission- Power Line

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

0.15MHz~30MHz: ± 2.53dB

Conducted Measurement

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 1.3dB

Radiated Spurious Emission

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

9kHz~30MHz: ± 3.92dB 30MHz~1GHz: ± 4.25dB 1GHz~18GHz: ± 4.40dB 18GHz~40GHz: ± 4.45dB

Page Number: 18 of 60

7. TEST RESULT

7.1. Summary

Product Name: Video&Data transmission device

FCC Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference	
15.407(a)	26dB Bandwidth	N/A		Pass	Section 7.2	
15.407(e)	6dB Bandwidth	≥ 500kHz		Pass	Section 7.3	
15.407(a)(1)(i),	Maximum Conducted	Refer to Section 7.5		Pass	Section 7.4	
(2), (3)	Output Power	Refer to Section 7.5	Conducted	Fa55	Section 7.4	
15.407(h)(1)	Transmit Power Control	≤ 24 dBm		N/A	Section 7.5	
15.407(a)(1)(i), (2), (3), (5)	Power Spectral Density	Refer to Section 7.7		Pass	Section 7.6	
15.407(b)(1), (4)	Undesirable Emissions	≤ -27dBm/MHz EIRP ≤ -17dBm/MHz EIRP	Pass			
15.205, 15.209 15.407(b)(8), (9), (10)	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.7 & 7.8	
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.9	

Notes:

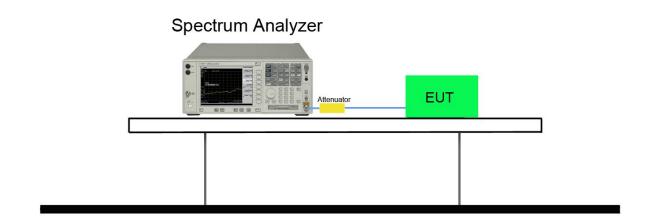
Page Number: 19 of 60

¹⁾ Determining compliance is based on the test results met the regulation limits or requirements declared by clients, and the test results don't take into account the value of measurement uncertainty.

7.2. 26dB Bandwidth Measurement

7.2.1. Test Limit

N/A

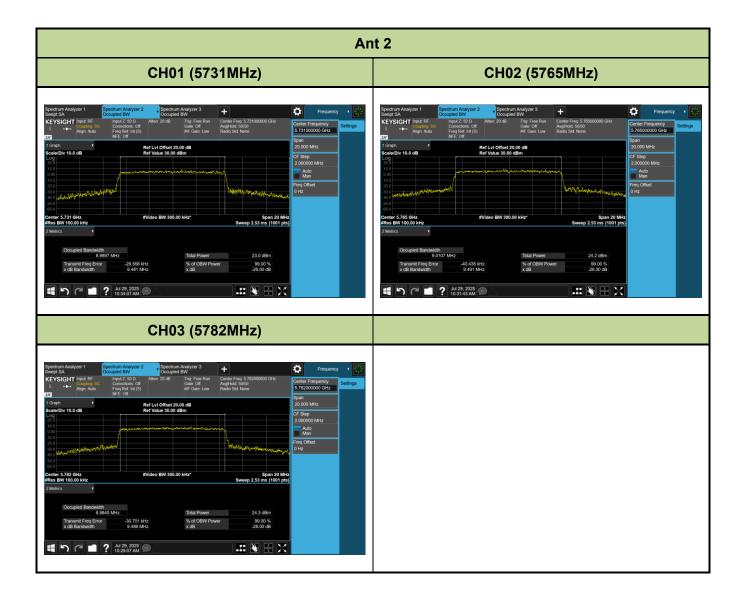

7.2.2. Test Procedure used

KDB 789033 D02v02r01 - Section C.1

7.2.3. Test Setting

- 1. The analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediated power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth.
- 3. $VBW \ge 3 \times RBW$.
- 4. Detector = Peak.
- 5. Trace mode = max hold.

7.2.4. Test Setup


7.2.5. Test Result

Product	Video&Data transmission device	Temperature	25°C
Test Engineer	Fran	Relative Humidity	54%
Test Site	SR7	Test Date	2025/7/29

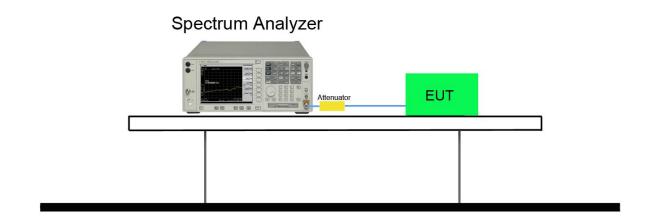
Test Mode	Channel No.	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (MHz)	Result
	CH01	5731	9.481	8.9897	N/A	Pass
5.8GHz_Ant 2	CH02	5765	9.491	9.0107	N/A	Pass
	CH03	5782	9.488	8.9845	N/A	Pass

Page Number: 21 of 60

7.3. 6dB Bandwidth Measurement

7.3.1. Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

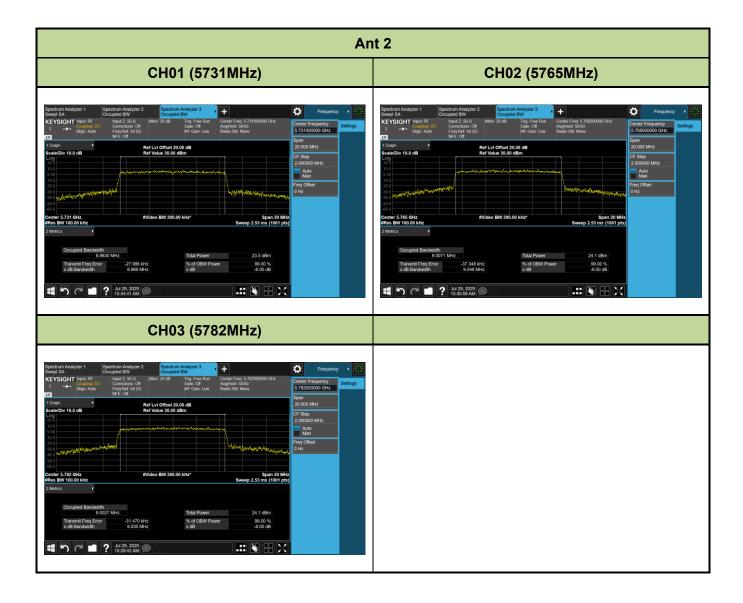

7.3.2. Test Procedure used

KDB 789033 D02v02r01 - Section C.2

7.3.3. Test Setting

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. RBW = 100 kHz.
- 3. VBW \geq 3 × RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize.
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.4. Test Setup


7.3.5. Test Result

Product	Video&Data transmission device	Temperature	25°C
Test Engineer	Fran	Relative Humidity	54%
Test Site	SR7	Test Date	2025/7/29

Test Mode	Channel No.	Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (MHz)	Result
	CH01	5731	8.968	8.9630	≥ 0.5	Pass
5.8GHz_Ant 2	CH02	5765	9.048	9.0071	≥ 0.5	Pass
	CH03	5782	9.035	9.0027	≥ 0.5	Pass

Page Number: 24 of 60

7.4. Output Power Measurement

7.4.1. Test Limit

For FCC Power Measurement Limit

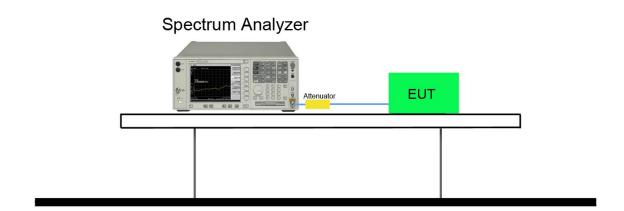
For client operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 250mW.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW (23.98dBm) or 11dBm +10 log (26dB BW).

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm).

If transmitting antennas of directional gain greater than 6dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

7.4.2. Test Procedure Used


KDB 789033 D02v02r01 - Section E) 3) b) Method PM-G

7.4.3. Test Setting

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

7.4.4. Test Setup

7.4.5. Test Result

Product	Video&Data transmission device	Temperature	25°C
Test Engineer	Fran	Relative Humidity	54%
Test Site	SR7	Test Date	2025/8/5

Test Mode	Channel No.	Frequency (MHz)	Ant 1 Average Power (dBm)	Ant 2 Average Power (dBm)	Total Average Power (dBm)	Power Limit (dBm)
	CH01	5731	18.74	21.34	23.24	< 30
5.8GHz_ Ant 1+2	CH02	5765	19.22	19.74	22.50	< 30
Ant 1+2	CH03	5782	18.94	19.76	22.38	< 30

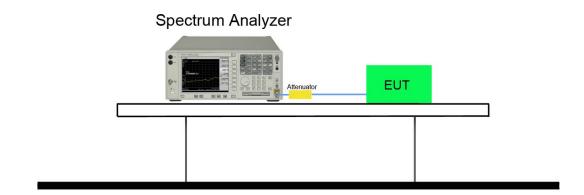
Note: Total Average Power (dBm) = 10*log {10^(Ant 1 Average Power /10) +10^(Ant 2 Average Power /10)}.

Page Number: 28 of 60

7.5. Transmit Power Control

7.5.1. Test Limit

The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm.


7.5.2. Test Procedure Used

KDB 789033 D02v02r01 - Section E) 3) b) Method PM-G

7.5.3. Test Setting

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

7.5.4. Test Setup

7.5.5. Test Result

A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

Page Number: 30 of 60

7.6. Power Spectral Density Measurement

7.6.1. Test Limit

For FCC Power Spectral Density Limit

For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

If transmitting antennas of directional gain greater than 6dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

7.6.2. Test Procedure Used

KDB 789033 D02v02r01 - Section F

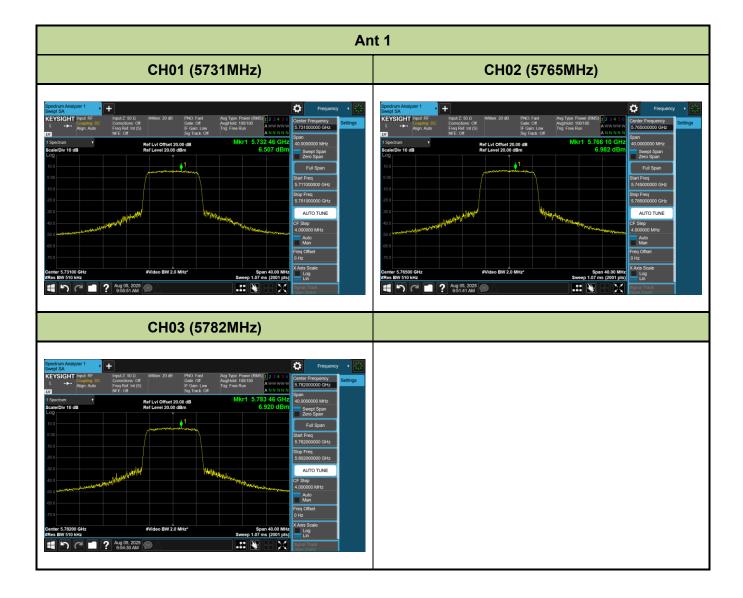

Page Number: 31 of 60

7.6.3. Test Setting

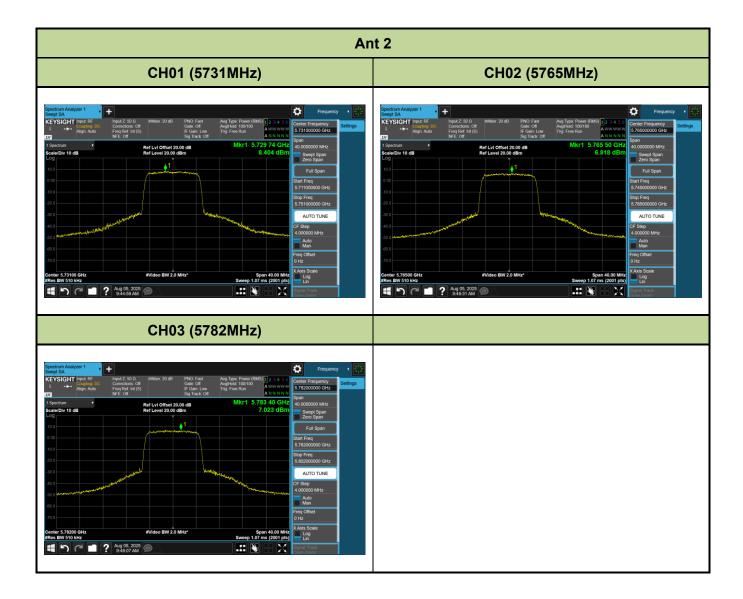
- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire 26dB EBW of the signal.
- 3. RBW = 1MHz, if measurement bandwidth of Maximum PSD is specified in 500 kHz,
- 4. RBW = 100 kHz
- 5. VBW = 3MHz
- 6. Number of sweep points ≥ 2 × (span / RBW)
- 7. Detector = power averaging (Average)
- 8. Sweep time = auto
- 9. Trigger = free run
- 10. Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- 11. Add 10*log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add 10*log(1/0.25) = 6 dB if the duty cycle is 25 percent.
- 12. When the measurement bandwidth of Maximum PSD is specified in 500 kHz, add a constant factor 10*log(500kHz/100kHz) = 7 dB to the measured result

7.6.4. Test Setup

7.6.5. Test Result


Product	Video&Data transmission device	Temperature	25°C
Test Engineer	Fran	Relative Humidity	54%
Test Site	SR7	Test Date	2025/8/5

Test Mode	Channel No.	Frequency (MHz)	Ant 1 Average PSD (dBm / 510kHz)	Ant 2 Average PSD (dBm / 510kHz)	Duty Cycle (%)	Total PSD (dBm / 510kHz)	Limit (dBm / 500kHz)	Result
	CH01	2412	6.507	8.404	92.20%	10.921	≤ 30	Pass
5.8GHz_ Ant 1+2	CH02	2444	6.982	6.818	92.20%	10.264	≤ 30	Pass
	CH03	2470	6.920	7.023	92.20%	10.335	≤ 30	Pass


Note: Total AVGPSD = $10*\log \{10^{(Ant \ 1 \ AVGPSD/10)} + 10^{(Ant \ 2 \ AVGPSD/10)}\} + 10*\log (1/Duty \ Cycle).$

Page Number: 33 of 60

7.7. Radiated Spurious Emission Measurement

7.7.1. Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209		
Frequency [MHz]	Field Strength [V/m]	Measured Distance [Meters]
0.009 - 0.490	2400/F (kHz)	300
0.490 – 1.705	24000/F (kHz)	30
1.705 - 30	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

7.7.2. Test Procedure Used

KDB 789033 D02v02r01 - Section G

7.7.3. Test Setting

Peak Measurements above 1GHz

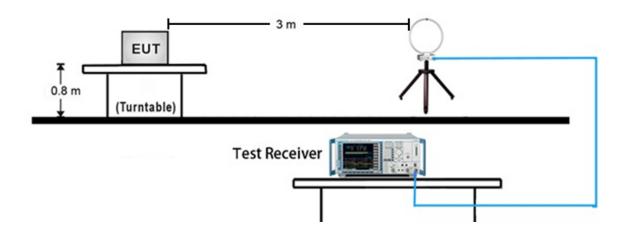
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Quasi-Peak Measurements below 1GHz

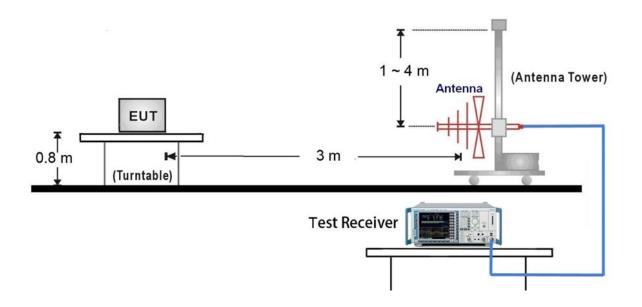
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120 kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (Average)
- 5. Number of measurement points = 1001 (Number of points must be > 2 x span/RBW)
- 6. Sweep time = auto
- 7. Trace was averaged over at 100 sweeps

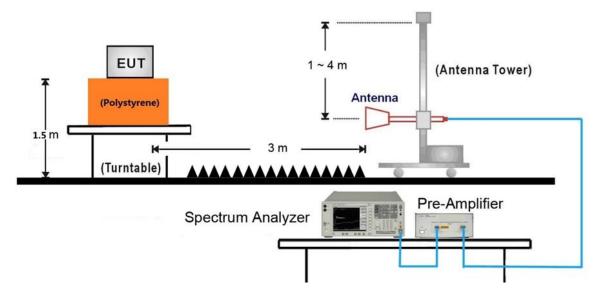

Quasi-Peak & Average Measurements below 30MHz

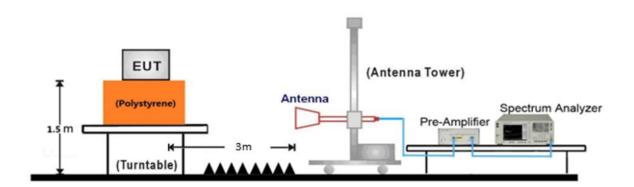
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 200Hz for 9kHz to 150kHz frequency; RBW = 9kHz for 0.15MHz to 30MHz frequency
- 4. Detector = CISPR quasi-peak or power average (Average)
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize



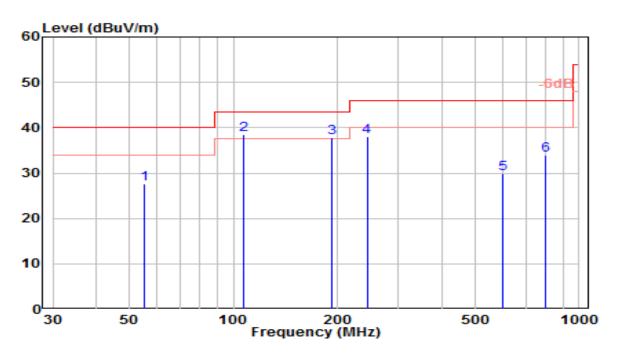
7.7.4. Test Setup

9kHz ~ 30MHz Test Setup:


30MHz ~ 1GHz Test Setup:

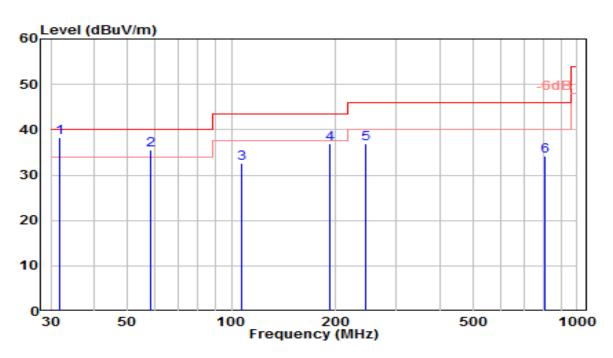

Page Number: 38 of 60

1GHz ~18GHz Test Setup:


18GHz ~40GHz Test Setup:

7.7.5. Test Result

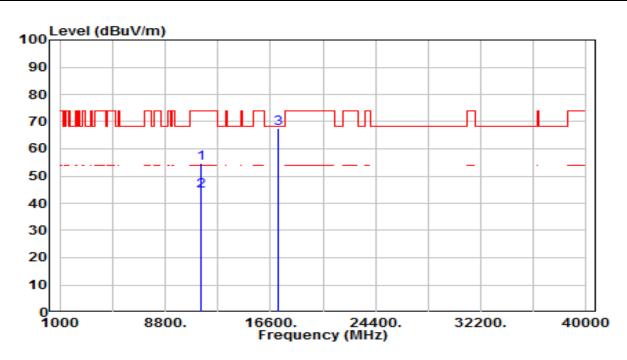
EUT	Video&Data transmission device	Date of Test	2025-07-20
Factor	VULB 9162	Temp. / Humidity	26°C /63%
Polarity	Horizontal	Site / Test Engineer	AC1 / Tim
Test Mode	SRD 5.8G_TX_5765MHz_Ant 1+2	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
No		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1		55.220	7.12	20.55	27.66	-12.34	40.00	150	210	QP
2	*	106.630	19.79	18.79	38.58	-4.92	43.50	150	35	QP
3		192.960	19.60	18.25	37.85	-5.65	43.50	100	295	QP
4		243.400	17.90	20.08	37.98	-8.02	46.00	100	245	QP
5		600.360	2.45	27.49	29.95	-16.05	46.00	150	345	QP
6		800.180	3.98	30.09	34.07	-11.93	46.00	100	20	QP

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m) + Cable Loss (dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. The amplitude of radiated emissions (frequency range from 9kHz to 30MHz) is that proximity to ambient noise, which also are attenuated more than 20dB below the permissible value. Therefore, the data is not presented in the report.

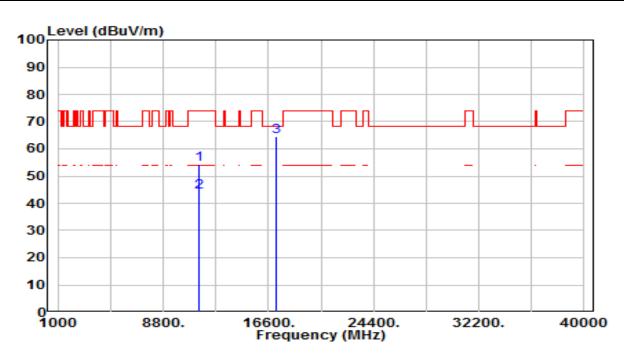
EUT	Video&Data transmission device	Date of Test	2025-07-20
Factor	VULB 9162	Temp. / Humidity	26°C /63%
Polarity	Vertical	Site / Test Engineer	AC1 / Tim
Test Mode	SRD 5.8G_TX_5765MHz_Ant 1+2	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
No		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1	*	31.940	20.40	17.76	38.16	-1.84	40.00	100	320	QP
2		58.130	15.50	20.16	35.66	-4.34	40.00	105	0	QP
3		106.630	13.84	18.79	32.63	-10.87	43.50	100	310	QP
4		192.960	18.74	18.25	36.99	-6.51	43.50	100	245	QP
5		244.370	16.81	20.13	36.94	-9.06	46.00	150	340	QP
6		809.880	3.77	30.32	34.10	-11.90	46.00	100	20	QP

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m) + Cable Loss (dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. The amplitude of radiated emissions (frequency range from 9kHz to 30MHz) is that proximity to ambient noise, which also are attenuated more than 20dB below the permissible value. Therefore, the data is not presented in the report.

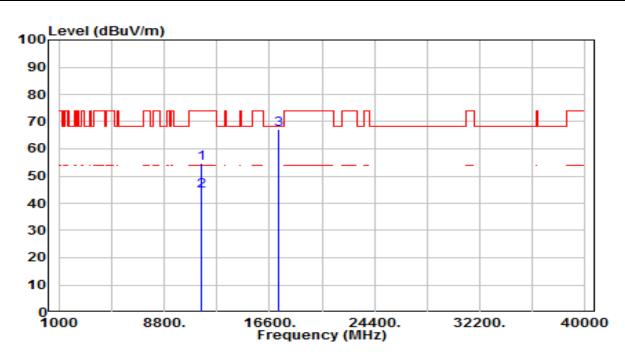
EUT	Video&Data transmission device	Date of Test	2025-08-05		
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	24°C /64%		
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd		
Test Mode	SRD 5.8G_TX_5731MHz_ANT 1+2	Test Voltage	AC 120V/60Hz		



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
No		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1		11462.000	33.41	21.42	54.83	-19.17	74.00	100	360	Peak
2	*	11462.000	23.30	21.42	44.72	-9.28	54.00	100	360	Average
3	*	17193.000	39.75	27.70	67.45	-0.75	68.20	100	133	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m) + Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

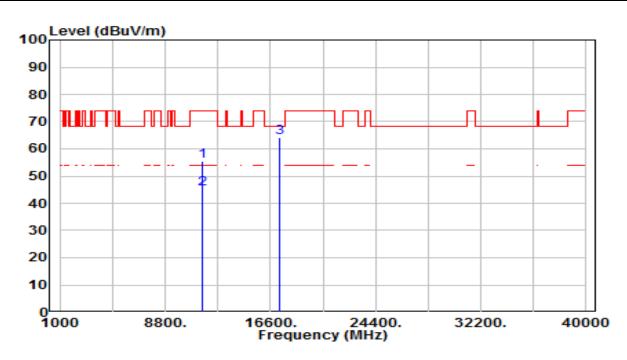
EUT	Video&Data transmission device	Date of Test	2025-08-05		
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	24°C /64%		
Polarity	Vertical	Site / Test Engineer	AC1 / Todd		
Test Mode	SRD 5.8G_TX_5731MHz_ANT 1+2	Test Voltage	AC 120V/60Hz		



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
No		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1		11462.000	32.99	21.42	54.40	-19.60	74.00	100	70	Peak
2	*	11462.000	22.80	21.42	44.22	-9.78	54.00	100	70	Average
3	*	17193.000	36.75	27.70	64.44	-3.76	68.20	100	340	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m) + Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

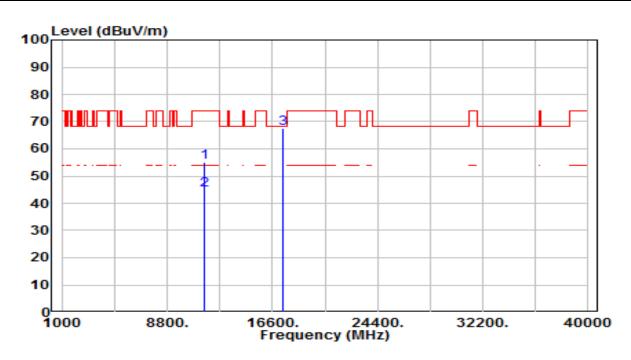
EUT	Video&Data transmission device	Date of Test	2025-08-05
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	24°C /64%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	SRD 5.8G_TX_5765MHz_ANT 1+2	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
No		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1		11530.000	33.33	21.42	54.75	-19.25	74.00	100	140	Peak
2	*	11530.000	23.20	21.42	44.62	-9.38	54.00	100	140	Average
3	*	17295.000	38.74	28.56	67.30	-0.90	68.20	100	136	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m) + Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

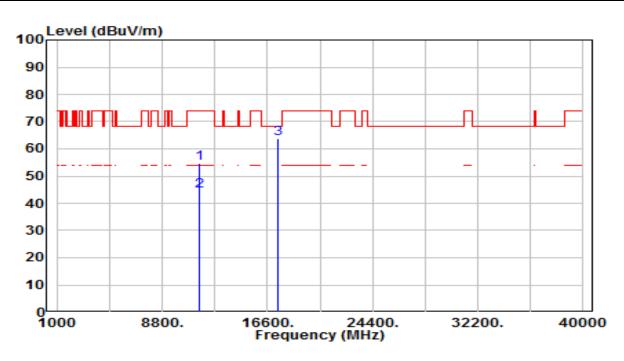
EUT	Video&Data transmission device	Date of Test	2025-08-05
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	24°C /64%
Polarity	Vertical	Site / Test Engineer	AC1 / Todd
Test Mode	SRD 5.8G_TX_5765MHz_ANT 1+2	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
No		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1		11530.000	34.11	21.42	55.53	-18.47	74.00	100	186	Peak
2	*	11530.000	23.90	21.42	45.32	-8.68	54.00	100	186	Average
3	*	17295.000	35.76	28.56	64.31	-3.89	68.20	100	123	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m) + Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

EUT	Video&Data transmission device	Date of Test	2025-08-05
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	24°C /64%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	SRD 5.8G_TX_5782MHz_ANT 1+2	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
INO		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1		11564.000	33.63	21.35	54.98	-19.02	74.00	100	130	Peak
2	*	11564.000	23.55	21.35	44.90	-9.10	54.00	100	130	Average
3	*	17346.000	38.68	28.94	67.62	-0.58	68.20	100	102	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m) + Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

EUT	Video&Data transmission device	Date of Test	2025-08-05
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	24°C /64%
Polarity	Vertical	Site / Test Engineer	AC1 / Todd
Test Mode	SRD 5.8G_TX_5782MHz_ANT 1+2	Test Voltage	AC 120V/60Hz

No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
No		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1		11564.000	33.39	21.35	54.74	-19.26	74.00	100	1	Peak
2	*	11564.000	23.12	21.35	44.47	-9.53	54.00	100	1	Average
3	*	17346.000	34.88	28.94	63.82	-4.38	68.20	100	151	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m) + Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.8. Radiated Restricted Band Edge Measurement

7.8.1. Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.25 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 – 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

Page Number: 48 of 60

For 15.407(b) requirement:

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

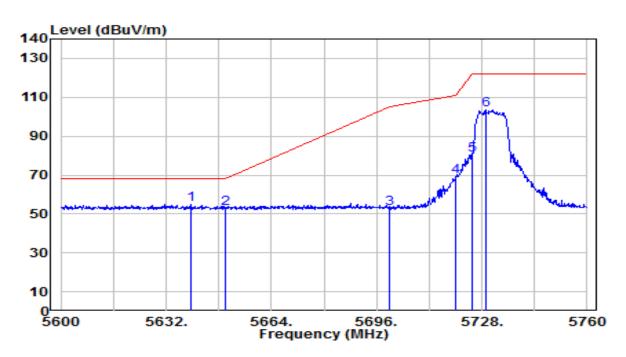
For FCC transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

For IC transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of −17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of −27 dBm/MHz.

Refer to KDB 789033 D02v02r01 G)2)c), as specified in § 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a maximum emission limit of -27 dBm/MHz (or -17 dBm/MHz as specified in § 15.407(b)(4)). However, an out-of-band emission that complies with both the peak and average limits of § 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz maximum emission limit.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

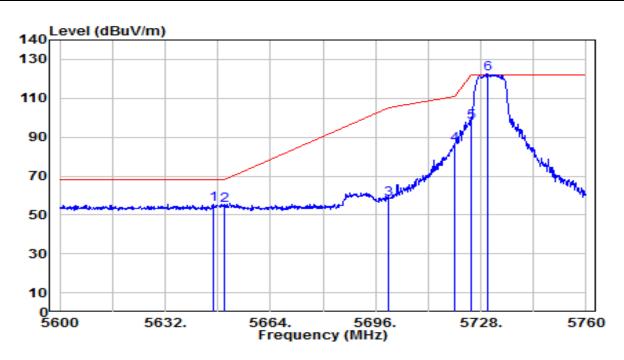
FCC-Radiated emission limits; general requirements


FC	C Part 15 Subpart C Paragraph 1	5.209
Frequency [MHz]	Field Strength [V/m]	Measured Distance [Meters]
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Page Number: 50 of 60

7.8.2. Test Result

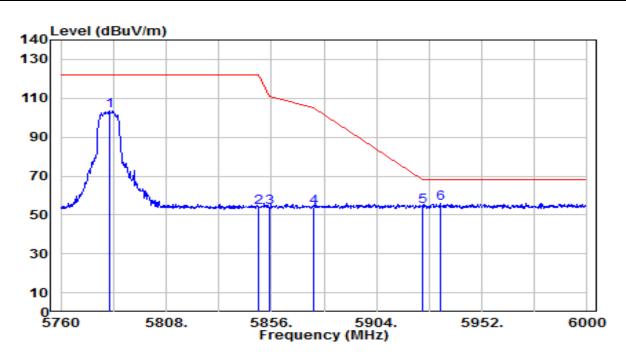
EUT	Video&Data transmission device	Date of Test	2025-08-05
Factor	BBHA 9120D	Temp. / Humidity	24°C /64%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	SRD 5.8G_TX_5731MHz_ANT 1+2	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
No		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1	*	5639.520	48.94	5.84	54.78	-13.42	68.20	125	300	Peak
2		5650.000	46.93	5.88	52.81	-15.39	68.20	125	300	Peak
3		5700.000	46.88	6.05	52.93	-52.27	105.20	125	300	Peak
4		5720.000	63.26	6.13	69.39	-41.41	110.80	125	300	Peak
5		5725.000	74.39	6.14	80.54	-41.66	122.20	125	300	Peak
6		5729.280	97.22	6.16	103.37	N/A	N/A	125	300	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m) + Cable Loss (dB) Preamplifier(dB) + 10dB Attenuation.
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

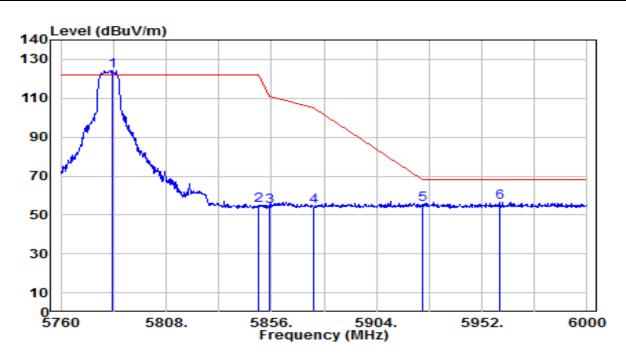
EUT	Video&Data transmission device	Date of Test	2025-08-05
Factor	BBHA 9120D	Temp. / Humidity	24°C /64%
Polarity	Vertical	Site / Test Engineer	AC1 / Todd
Test Mode	SRD 5.8G_TX_5731MHz_ANT 1+2	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
NO		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1	*	5646.880	49.66	5.87	55.53	-12.67	68.20	160	165	Peak
2		5650.000	48.92	5.88	54.80	-13.40	68.20	160	165	Peak
3		5700.000	51.97	6.05	58.03	-47.17	105.20	160	165	Peak
4		5720.000	80.14	6.13	86.27	-24.53	110.80	160	165	Peak
5		5725.000	91.56	6.14	97.71	-24.49	122.20	160	165	Peak
6		5730.080	116.44	6.16	122.61	N/A	N/A	160	165	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m) + Cable Loss (dB) Preamplifier(dB) + 10dB Attenuation.
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

EUT	Video&Data transmission device	Date of Test	2025-08-05
Factor	BBHA 9120D	Temp. / Humidity	24°C /64%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	SRD 5.8G_TX_5782MHz_ANT 1+2	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
INO		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1		5782.320	97.23	6.35	103.59	N/A	N/A	130	155	Peak
2		5850.000	47.35	6.57	53.92	-68.28	122.20	130	155	Peak
3		5855.000	47.18	6.59	53.77	-57.03	110.80	130	155	Peak
4		5875.000	47.18	6.65	53.83	-51.37	105.20	130	155	Peak
5		5925.000	47.63	6.81	54.44	-13.76	68.20	130	155	Peak
6	*	5933.040	48.94	6.84	55.78	-12.42	68.20	130	155	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m) + Cable Loss (dB) Preamplifier(dB) + 10dB Attenuation.
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

EUT	Video&Data transmission device	Date of Test	2025-08-05
Factor	BBHA 9120D	Temp. / Humidity	24°C /64%
Polarity	Vertical	Site / Test Engineer	AC1 / Todd
Test Mode	SRD 5.8G_TX_5782MHz_ANT 1+2	Test Voltage	AC 120V/60Hz

No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
NO		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1		5783.520	118.01	6.36	124.37	N/A	N/A	230	160	Peak
2		5850.000	48.32	6.57	54.90	-67.30	122.20	230	160	Peak
3		5855.000	47.89	6.59	54.48	-56.32	110.80	230	160	Peak
4		5875.000	48.01	6.65	54.65	-50.55	105.20	230	160	Peak
5		5925.000	48.75	6.81	55.56	-12.64	68.20	230	160	Peak
6	*	5959.920	49.84	6.94	56.77	-11.43	68.20	230	160	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m) + Cable Loss (dB) Preamplifier(dB) + 10dB Attenuation.
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.9. AC Conducted Emissions Measurement

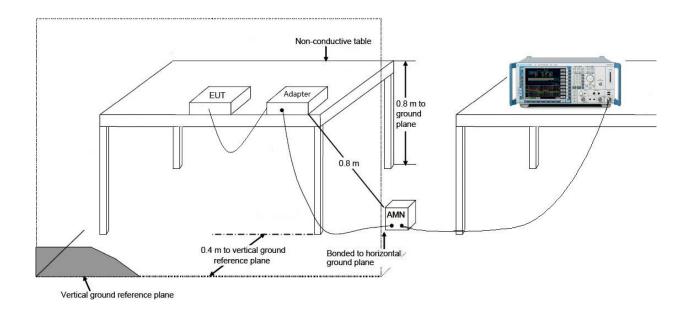
7.9.1. Test Limit

FCC Part 15.207 Limits							
Frequency	QP	AV					
(MHz)	(dBµV)	(dBµV)					
0.15 ~ 0.50	66 ~ 56	56 ~ 46					
0.50 ~ 5.0	56	46					
5.0 ~ 30	60	50					

Note 1: The lower limit shall apply at the transition frequencies.

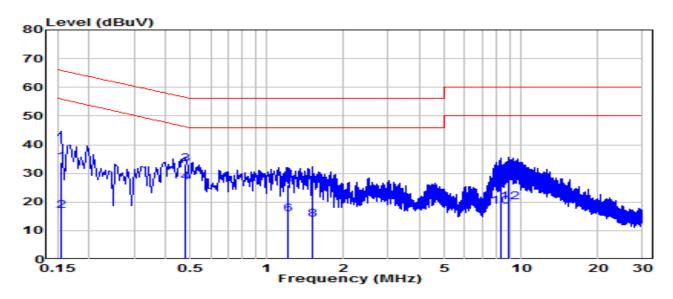
Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

7.9.2. Test Procedure


The EUT was setup according to ANSI C63.4, 2009 and tested according to KDB 789033 for compliance to FCC 47CFR 15.247 requirements. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs) Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

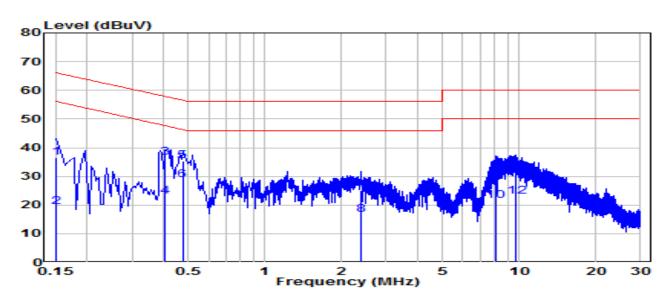
The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.


7.9.3. Test Setup

7.9.4. Test Result

EUT	Video&Data transmission device	Date of Test	2025-07-16
Factor	CE_ENV216-L1 (Filter ON)	Temp. / Humidity	26°C /58%
Polarity	Line1	Site / Test Engineer	SR2 / Ryan
Test Mode	SRD 5.8G_TX_5765MHz _Ant 1+2	Test Voltage	AC 120V/60Hz



Nia		Frequency	Reading	C.F	Measurement	Margin	Limit	Remark
No		(MHz)	(dBuV)	(dB)	(dBuV)	(dB)	(dBuV)	(QP/PK/AV)
1		0.154	24.06	9.63	33.69	-32.07	65.75	QP
2		0.154	7.35	9.63	16.98	-38.77	55.75	Average
3	*	0.478	23.47	9.64	33.11	-23.25	56.37	QP
4	*	0.478	17.19	9.64	26.83	-19.54	46.37	Average
5		1.203	16.43	9.68	26.11	-29.89	56.00	QP
6		1.203	5.93	9.68	15.61	-30.39	46.00	Average
7		1.513	14.97	9.69	24.66	-31.34	56.00	QP
8		1.513	4.11	9.69	13.80	-32.20	46.00	Average
9		8.267	17.55	9.83	27.38	-32.62	60.00	QP
10		8.267	8.55	9.83	18.37	-31.63	50.00	Average
11		8.951	18.27	9.84	28.12	-31.88	60.00	QP
12		8.951	10.18	9.84	20.03	-29.97	50.00	Average

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = LISN Factor (dB)+ Cable Loss (dB).
- 3. Measurement (dBuV) = Reading(dBuV) + C.F (Correction Factor).

EUT	Video&Data transmission device	Date of Test	2025-07-16
Factor	CE ENV216-N (Filter ON)	Temp. / Humidity	26°C /58%
Polarity	Neutral	Site / Test Engineer	SR2 / Ryan
,		<u> </u>	,
Test Mode	SRD 5.8G_TX_5765MHz _Ant 1+2	Test Voltage	AC 120

No		Frequency	Reading	C.F	Measurement	Margin	Limit	Remark
INO		(MHz)	(dBuV)	(dB)	(dBuV)	(dB)	(dBuV)	(QP/PK/AV)
1		0.150	26.92	9.63	36.55	-29.45	66.00	QP
2		0.150	9.75	9.63	19.38	-36.62	56.00	Average
3		0.406	26.75	9.63	36.39	-21.33	57.72	QP
4		0.406	13.17	9.63	22.80	-24.92	47.72	Average
5	*	0.474	25.66	9.64	35.30	-21.15	56.44	QP
6	*	0.474	18.95	9.64	28.59	-17.85	46.44	Average
7		2.377	15.40	9.71	25.11	-30.89	56.00	QP
8		2.377	6.85	9.71	16.56	-29.44	46.00	Average
9		8.047	21.49	9.82	31.31	-28.69	60.00	QP
10		8.047	11.61	9.82	21.43	-28.57	50.00	Average
11		9.689	21.82	9.86	31.69	-28.31	60.00	QP
12		9.689	13.09	9.86	22.95	-27.05	50.00	Average

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = LISN Factor (dB)+ Cable Loss (dB).
- 3. Measurement (dBuV) = Reading(dBuV) + C.F (Correction Factor).

8. CONCLUSION

The data collected relate only the item(s) tested and show that the **Video&Data transmission device,** is in compliance with Part 15E of the FCC Rules.

Page Number: 59 of 60

Appendix A : Test Photograph

Refer to "2507TW0110-UTfile.

Appendix B : External Photograph

Refer to "2507TW0110-UE file.

A	p	pen	dix	C	:	Internal	Pł	noto	gra	ph
---	---	-----	-----	---	---	----------	----	------	-----	----

Refer to "2507TW0110-UI file.		
	The End	