

TESTING LABORATORY
CERTIFICATE # 4821.01

FCC PART 90

TEST REPORT

For

CALTTA TECHNOLOGIES CO., LTD.

4/F, R&D Building 1, ZTE Industrial Park, Xili, Nanshan District, Shenzhen, Guangdong, China

FCC ID: 2AQV7PR900U1

Report Type: Original Report	Product Type: Digital Repeater, UHF DMR
Report Number: <u>RSZ190308009-00B</u>	
Report Date: <u>2019-04-04</u>	
Reviewed By: <u>Rocky Kang</u> Reviewed By: <u>RF Engineer</u>	
Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn	

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk **.

The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	4
OBJECTIVE	4
RELATED SUBMITTAL(S)/GRANT(S).....	4
TEST METHODOLOGY	4
MEASUREMENT UNCERTAINTY	5
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT EXERCISE SOFTWARE	6
SPECIAL ACCESSORIES.....	6
EQUIPMENT MODIFICATIONS	6
SUPPORT EQUIPMENT LIST AND DETAILS	6
EXTERNAL I/O CABLE.....	6
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	10
APPLICABLE STANDARD	10
RESULT	10
FCC §2.1046 & §90.205 - RF OUTPUT POWER	11
APPLICABLE STANDARD	11
TEST PROCEDURE	11
TEST DATA	11
FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC	13
APPLICABLE STANDARD	13
TEST PROCEDURE	13
TEST DATA	13
FCC §2.1049 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK	19
APPLICABLE STANDARD	19
TEST PROCEDURE	19
TEST DATA	19
FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	25
APPLICABLE STANDARD	25
TEST PROCEDURE	25
TEST DATA	25
FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS	28
APPLICABLE STANDARD	28
TEST PROCEDURE	28
TEST DATA	28
FCC §2.1055 & §90.213 - FREQUENCY STABILITY	30
APPLICABLE STANDARD	30
TEST PROCEDURE	30

TEST DATA	30
FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR.....	32
APPLICABLE STANDARD	32
TEST PROCEDURE	32
TEST DATA	33

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Digital Repeater,UHF DMR
Tested Model	PR900 U(1)
Frequency Range	400-470MHz
Transmit Power	High: 50W Low: 1W
Channel separation	12.5kHz
Modulation Technique	4FSK, FM
Antenna Specification	8.5dBi
Voltage Range	DC 13.6V / AC100-240V, 50-60Hz
Date of Test	2019-03-14~ 2019-03-16
Sample serial number	321170910101
Received date	2019-03-08
Sample/EUT Status	Good condition

Objective

This test report is prepared on behalf of *CALT TA TECHNOLOGIES CO., LTD.* in accordance with Part 2, and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

FCC Part 15B submissions with FCC ID: 2AQV7PR900U1.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 – Private Land Mobile Radio Service

Applicable Standards: TIA 603-D.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter	Uncertainty	
Occupied Channel Bandwidth	±5%	
RF Output Power with Power meter	±0.73dB	
RF conducted test with spectrum	±1.6dB	
Emissions, Radiated	Below 1GHz Above 1GHz	±4.75dB ±4.88dB
Temperature	±1°C	
Humidity	±6%	
Supply voltages	±0.4%	

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 342867, the FCC Designation No. : CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

EUT Exercise Software

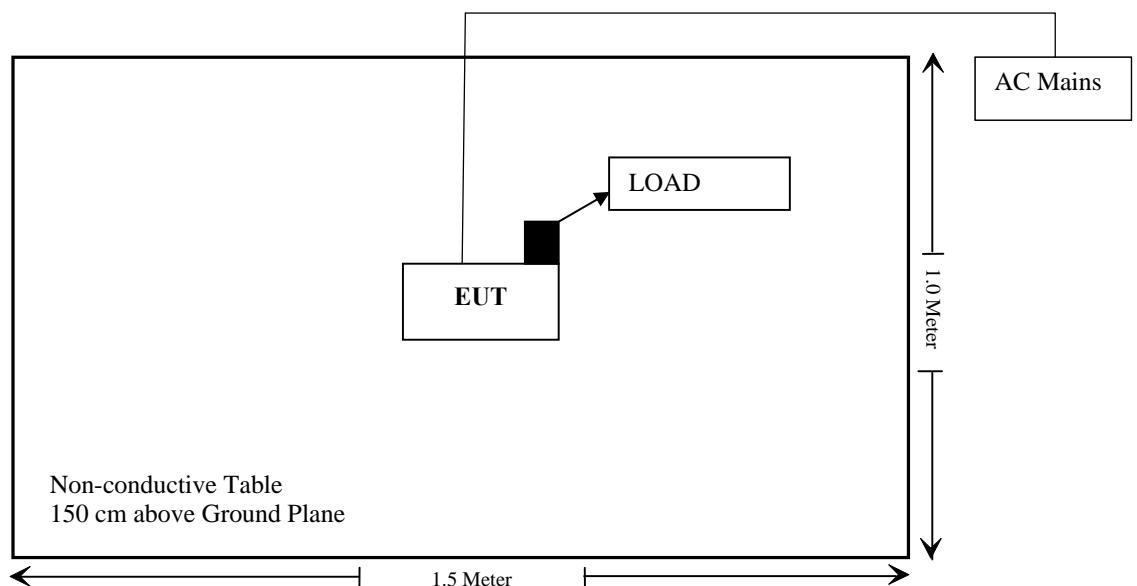
No exercise software was used.

Special Accessories

No special accessory was used.

Equipment Modifications

No modification was made to the EUT tested.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
KIKUSUI	LOAD	PE6106	N/A

External I/O Cable

Cable Description	Length (m)	From/Port	To
Shielding Detachable RF Cable	0.4	EUT	LOAD
Un-shielding Detachable DC Cable	1.5	EUT	AC Mains

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§2.1091	MaximuM Permissible exposure (MPE)	Compliance
§2.1046; §90.205	RF Output Power	Compliance
§2.1047; §90.207	Modulation Characteristic	Compliance
§2.1049; §90.210	Occupied Bandwidth & Emission Mask	Compliance
§2.1051;§90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053;§90.210	Spurious Radiated Emissions	Compliance
§2.1055;§90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Compliance

Note: Pre-scan the EUT power under DC power supply and AC power supply, the worst case is AC power supply, so chose the AC power supply for all testing.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Radiated Emission Test					
Sunol Sciences	Horn Antenna	DRH-118	A052604	2017-12-22	2020-12-21
Rohde & Schwarz	Signal Analyzer	FSV40	101473	2019-01-09	2020-01-08
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017-12-22	2020-12-21
COM-POWER	Pre-amplifier	PA-122	181919	2018-11-12	2019-11-12
Sonoma Instrument	Amplifier	310N	186238	2018-11-12	2019-11-12
Anritsu	Signal Generator	68369B	004114	2018-12-24	2019-12-24
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03-101746-zn	2018-07-11	2019-07-11
COM POWER	Dipole Antenna	AD-100	041000	NCR	NCR
A.H. System	Horn Antenna	SAS-200/571	135	2018-09-01	2021-08-31
Un-known	Band Pass Filter	Un-known	Un-known	2018-11-19	2019-05-21
Ducommun technologies	RF Cable	UFA147A-2362-100100	MFR64639 231029-003	2018-07-11	2021-07-10
Ducommun technologies	RF Cable	104PEA	218124002	2018-11-12	2019-11-12
Ducommun technologies	RF Cable	RG-214	1	2018-11-19	2019-05-21
Ducommun technologies	RF Cable	RG-214	2	2018-11-12	2019-11-12
RF Conducted Test					
ESPEC	Temperature & Humidity Chamber	EL-10KA	9107726	2018-12-21	2019-12-21
Changjiang	Contact Voltage Regulator	TDGC2-	N/A	NCR	NCR
Long Wei	DC Power Supply	TPR-6420D	398363	NCR	NCR
Fluke	Digital Multimeter	287	19000011	2018-04-12	2019-04-12
HP Agilent	RF Communication test set	8920B	3325U00859	2018-06-23	2019-06-23
Rohde & Schwarz	Spectrum Analyzer	FSU26	200120	2018-12-24	2019-12-24
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2018-12-24	2019-12-24
N/A	30dB Attenuator	53-30-43	PG633	Each Time	
Un-known	Band Pass Filter	Un-known	Un-known	2018-11-19	2019-05-21

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for Occupational/Controlled Exposure

Limits for occupational/Controlled Exposure				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)
0.3-1.34	614	1.63	*(100)	6
1.34-30	1842/f	4.89/f	*(900/f ²)	6
30-300	61.4	0.163	1.0	6
300-1500	/	/	f/300	6
1500-100,000	/	/	5.0	6

f = frequency in MHz

* = Plane-wave equivalent power density

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For worst case:

Frequency (MHz)	Antenna Gain		Max Tune Up Power (mW)	Evaluation Distance (cm)	Power Density (mW/cm ²)	MPE Limit (mW/cm ²)
	(dBi)	(numeric)				
400-470	8.5	7.08	50118.72	150	1.26	1.33

Note: Max tune-up output power is 47dBm (50118.72 mW)

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 150cm from nearby persons.

Result: Compliance

FCC §2.1046 & §90.205 - RF OUTPUT POWER

Applicable Standard

FCC §2.1046 and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer Setting:

R B/W Video B/W
100 kHz 300 kHz

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Kiki Kong on 2019-03-15.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

For AC Power Supply:

Mode	Frequency Spacing (kHz)	Frequency (MHz)	Power level	Conducted Output Power (dBm)	Conducted Output Power (W)	Remark
Analog	12.5	400.0125	High	46.72	46.99	Federal
			Low	29.95	0.99	
		453.2125	High	46.75	47.32	Part 90
			Low	29.93	0.98	
		469.9875	High	46.68	46.56	Part 90
			Low	29.97	0.99	
		400.0125	High	46.68	46.56	Federal
			Low	29.95	0.99	
Digital	12.5	453.2125	High	46.72	46.99	Part 90
			Low	29.9	0.98	
		469.9875	High	46.69	46.67	Part 90
			Low	29.96	0.99	

For DC Power Supply:

Mode	Frequency Spacing (kHz)	Frequency (MHz)	Power level	Conducted Output Power (dBm)	Conducted Output Power (W)	Remark
Analog	12.5	400.0125	High	46.46	44.26	Federal
			Low	29.69	0.93	
		453.2125	High	46.49	44.57	Part 90
			Low	29.67	0.93	
		469.9875	High	46.42	43.85	Part 90
			Low	29.71	0.94	
		400.0125	High	46.42	43.85	Federal
			Low	29.69	0.93	
Digital	12.5	453.2125	High	46.46	44.26	Part 90
			Low	29.64	0.92	
		469.9875	High	46.43	43.95	Part 90
			Low	29.7	0.93	

Note: Rated output power: High (50W); Low (1W)

FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

FCC§2.1047 and §90.207:

- (a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.
- (b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

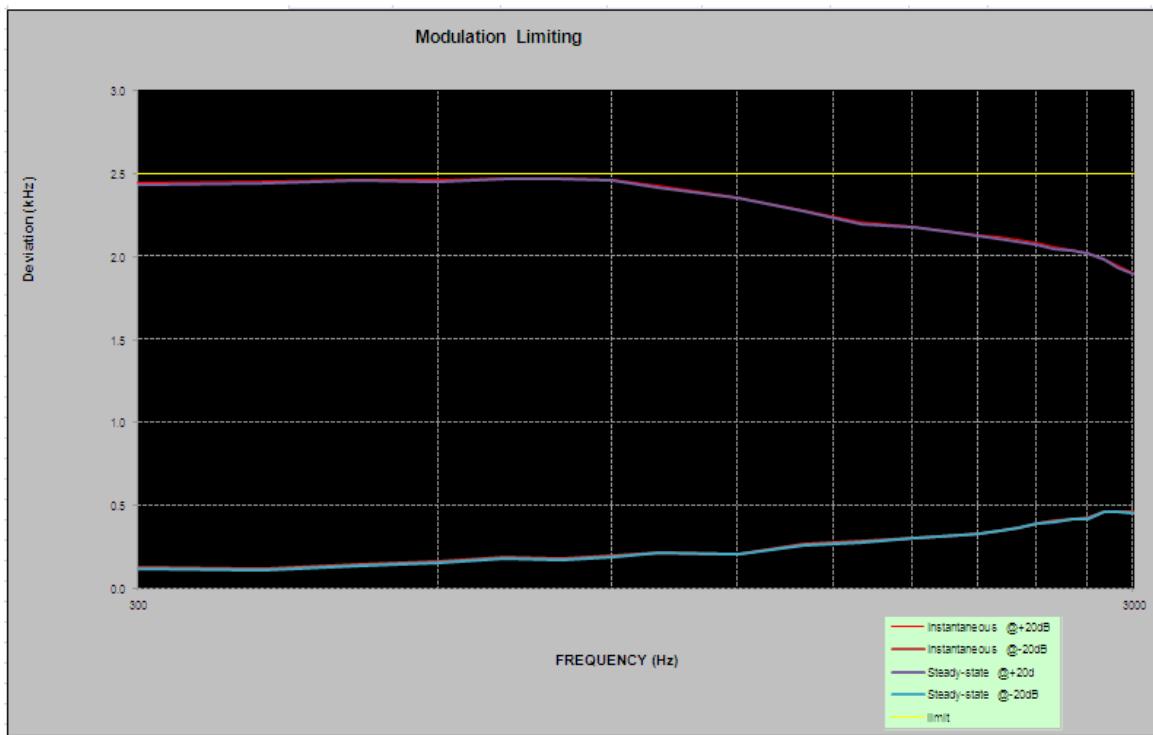
Test Procedure

Test Method: TIA/EIA-603-D

Test Data

Environmental Conditions

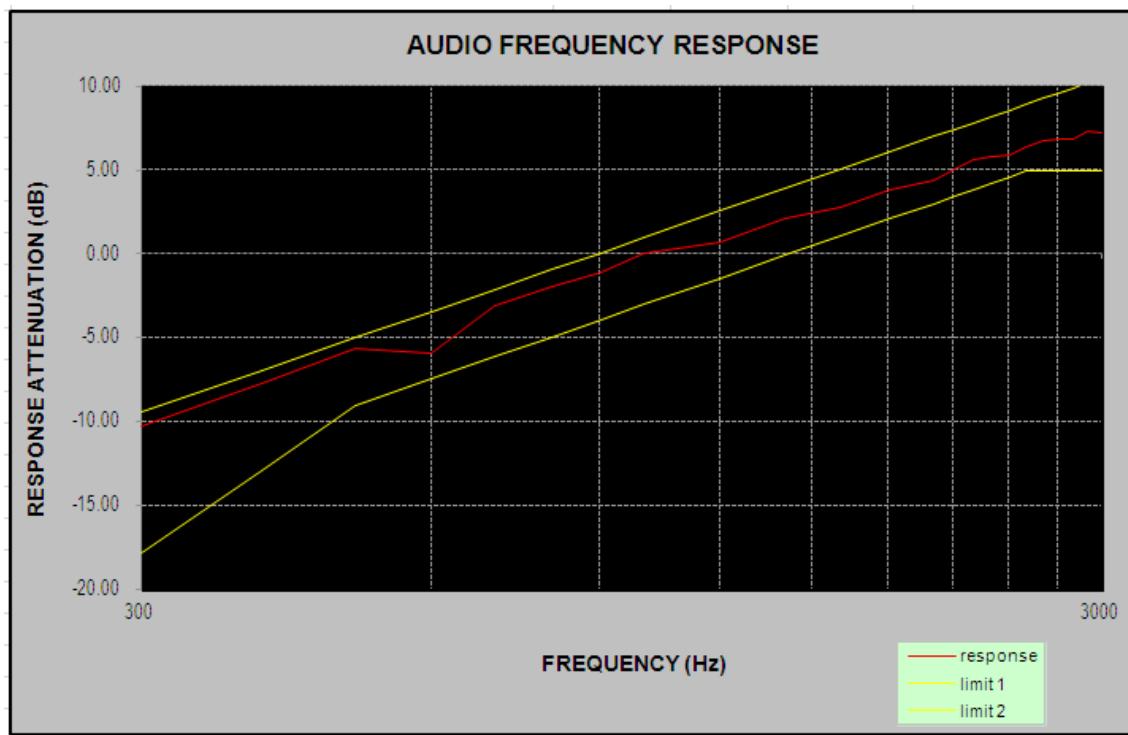
Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa


The testing was performed by Kiki Kong on 2019-03-16.

Please refer to the following tables and plots.

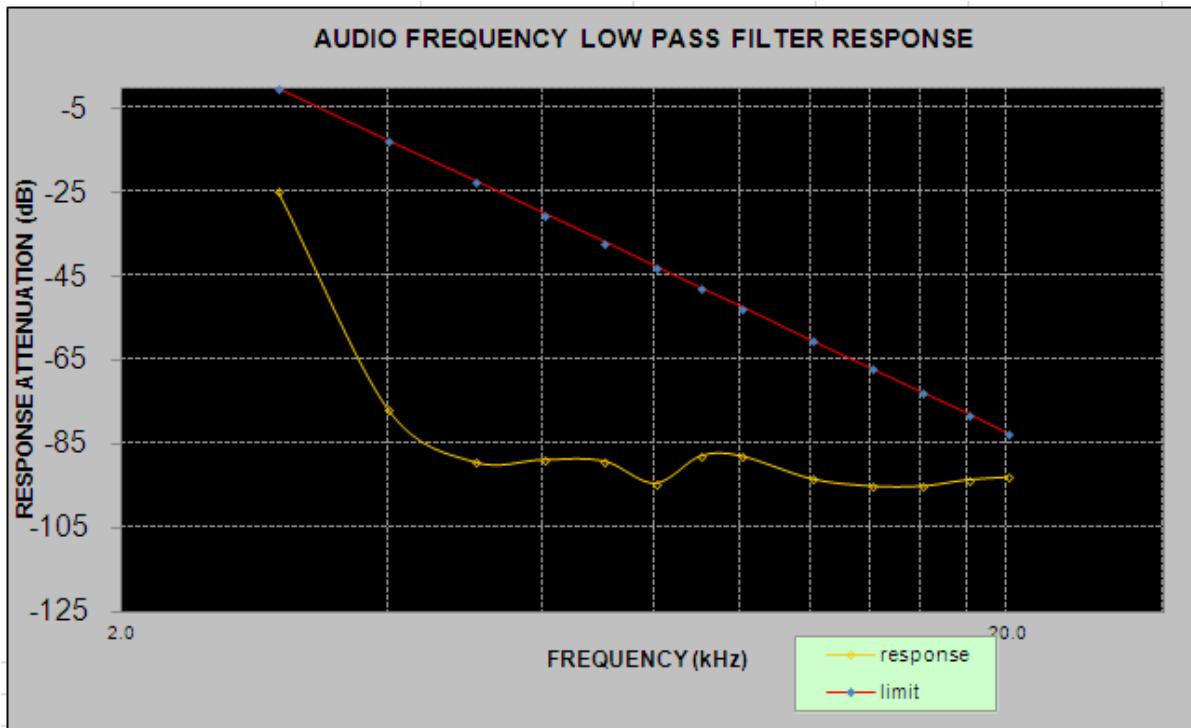
Analog Modulation:**MODULATION LIMITING**

Carrier Frequency: 453.2125 MHz, Channel Separation=12.5 kHz


Audio Frequency (Hz)	Instantaneous		Steady-state		FCC Limit [kHz]
	DEVIATION (@+20dB) [kHz]	DEVIATION (@-20dB) [kHz]	DEVIATION (@+20dB) [kHz]	DEVIATION (@-20dB) [kHz]	
300	2.448	0.122	2.435	0.118	2.500
400	2.456	0.113	2.442	0.111	2.500
500	2.465	0.142	2.457	0.136	2.500
600	2.462	0.160	2.449	0.156	2.500
700	2.471	0.184	2.470	0.179	2.500
800	2.476	0.173	2.471	0.173	2.500
900	2.465	0.195	2.459	0.188	2.500
1000	2.429	0.212	2.417	0.212	2.500
1200	2.361	0.207	2.356	0.201	2.500
1400	2.277	0.262	2.274	0.258	2.500
1600	2.211	0.286	2.199	0.278	2.500
1800	2.180	0.301	2.176	0.301	2.500
2000	2.151	0.319	2.142	0.319	2.500
2100	2.131	0.330	2.127	0.324	2.500
2200	2.119	0.348	2.105	0.344	2.500
2300	2.102	0.365	2.095	0.359	2.500
2400	2.083	0.389	2.073	0.385	2.500
2500	2.063	0.406	2.050	0.400	2.500
2600	2.044	0.418	2.037	0.413	2.500
2700	2.023	0.422	2.021	0.416	2.500
2800	1.990	0.458	1.989	0.456	2.500
2900	1.949	0.463	1.934	0.459	2.500
3000	1.902	0.456	1.896	0.452	2.500

Audio Frequency Response

Carrier Frequency: 453.2125 MHz, Channel Separation=12.5 kHz


Audio Frequency (Hz)	Response Attenuation (dB)
300	-10.29
400	-7.67
500	-5.59
600	-5.90
700	-3.09
800	-1.93
900	-1.09
1000	0.00
1200	0.75
1400	2.08
1600	2.81
1800	3.85
2000	4.42
2100	5.07
2200	5.66
2300	5.79
2400	5.91
2500	6.36
2600	6.78
2700	6.84
2800	6.85
2900	7.31
3000	7.22

Audio frequency lows pass filter response

Carrier Frequency: 453.2125 MHz, Channel Separation=12.5 kHz

Audio Frequency (kHz)	Response Attenuation (dB)	Limit (dB)
1.0	0.0	/
3.0	-24.6	0.0
4.0	-76.8	-12.5
5.0	-89.2	-22.2
6.0	-88.6	-30.1
7.0	-88.9	-36.8
8.0	-94.2	-42.6
9.0	-87.8	-47.7
10.0	-87.7	-52.3
12.0	-93.2	-60.2
14.0	-94.9	-66.9
16.0	-94.9	-72.7
18.0	-93.4	-77.8
20.0	-92.8	-82.5

FCC §2.1049 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

Applicable Standard

FCC §2.1049 and §90.210

Emission Mask D - 12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 ($f_d - 2.88$ kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least: At least $50 + 10 \log (P)$ dB or 70 dB, whichever is the lesser attenuation.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the frequency band ± 50 kHz from the carrier frequency.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Kiki Kong on 2019-03-15.

Test mode: transmitting

Modulation	Channel Separation (kHz)	Frequency (MHz)	Power Level	99% Occupied Bandwidth (kHz)	26 dB Emissions Bandwidth (kHz)
Analog	12.5	453.2125	High	9.929	10.256
	12.5		Low	9.929	10.256
Digital	12.5	453.2125	High	7.929	9.615
	12.5		Low	7.786	9.215

Note: Emission designator is base on calculation instead of measurement.

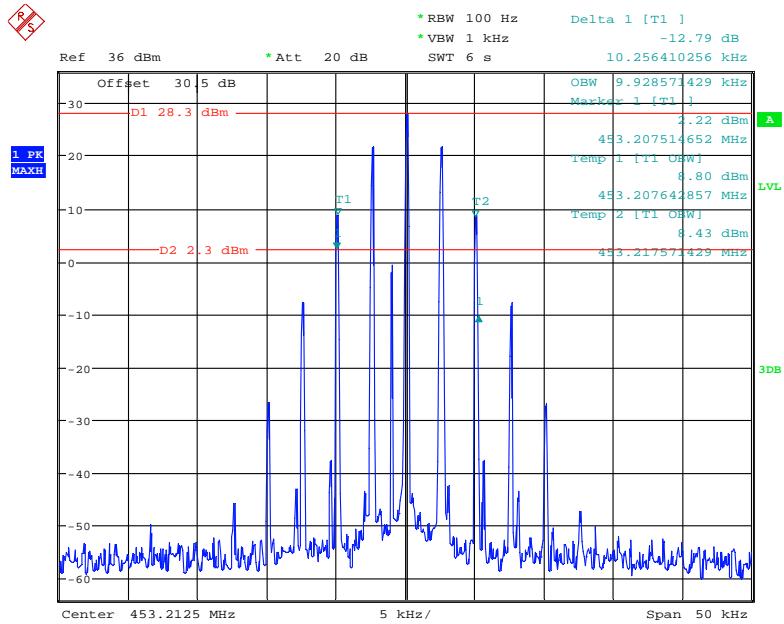
Emission Designator Per CFR 47 §2.201& §2.202&, Bn = 2M + 2D

For FM Mode (Channel Spacing: 12.5 kHz)

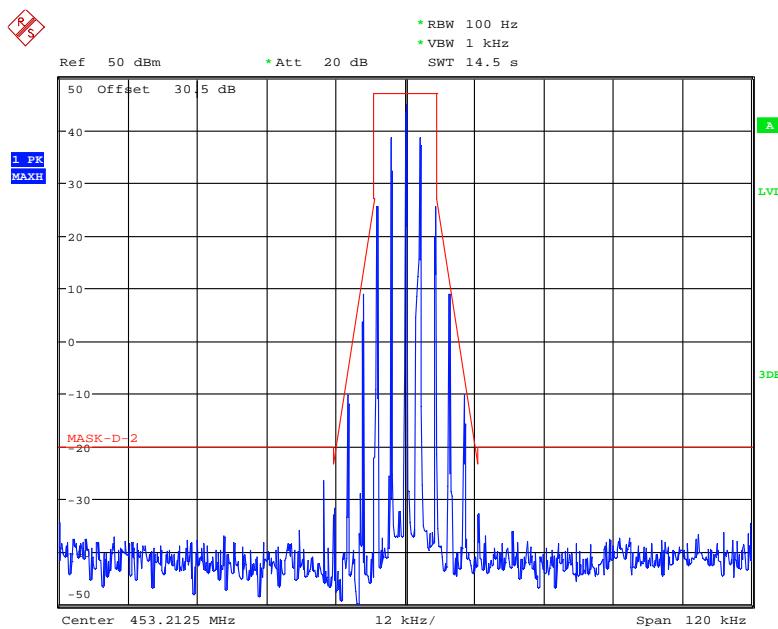
Emission Designator 11K0F3E In this case, the maximum modulating frequency is 3.0 kHz with a 2.5 kHz deviation. $BW = 2(M+D) = 2*(3.0 \text{ kHz} + 2.5 \text{ kHz}) = 11 \text{ kHz} \rightarrow 11K0$
F3E portion of the designator represents an FM voice transmission Therefore, the entire designator for 12.5 kHz channel spacing FM mode is 11K0F3E.


For Digital Mode (Channel Spacing: 12.5 kHz)

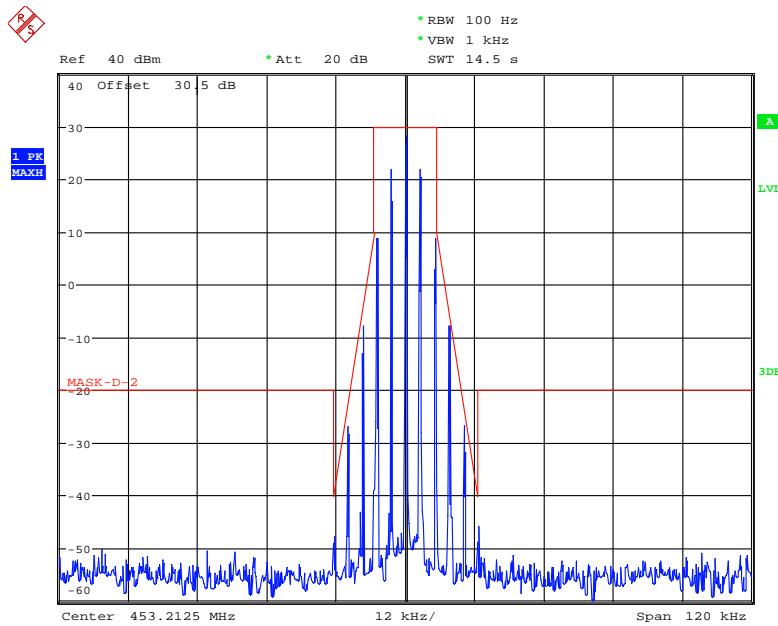
Emission Designator 7K60F1D and 7K60F1E


The 99% energy rule (title 47CFR 2.1049) was used for digital mode. It basically states that 99% of the modulation energy falls within X kHz, in this case, 7.60 kHz. The emission mask was obtained from 47CFR 90.210(d).

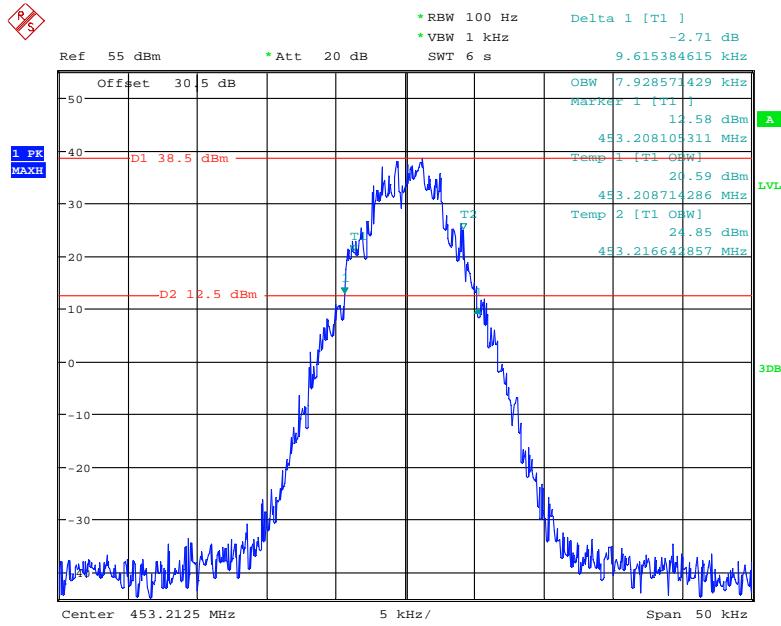
F1D and F1E portion of the designator indicates digital information.


Therefore, the entire designator for 12.5 kHz channel spacing digital mode is 7K60F1D and 7K60F1E.

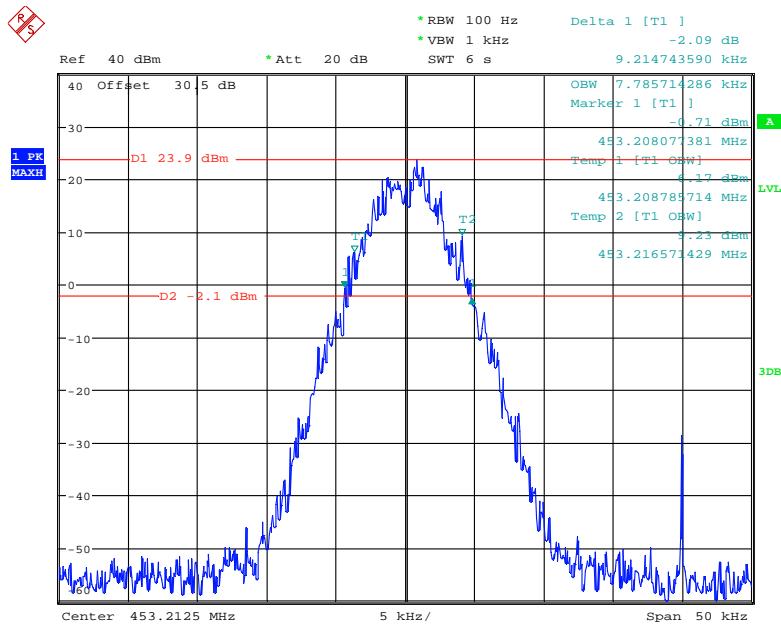
Analog Modulation:**Frequency 453.2125 MHz: 99% Occupied & 26 dB Bandwidth, High Power**


Date: 15.MAR.2019 12:32:13

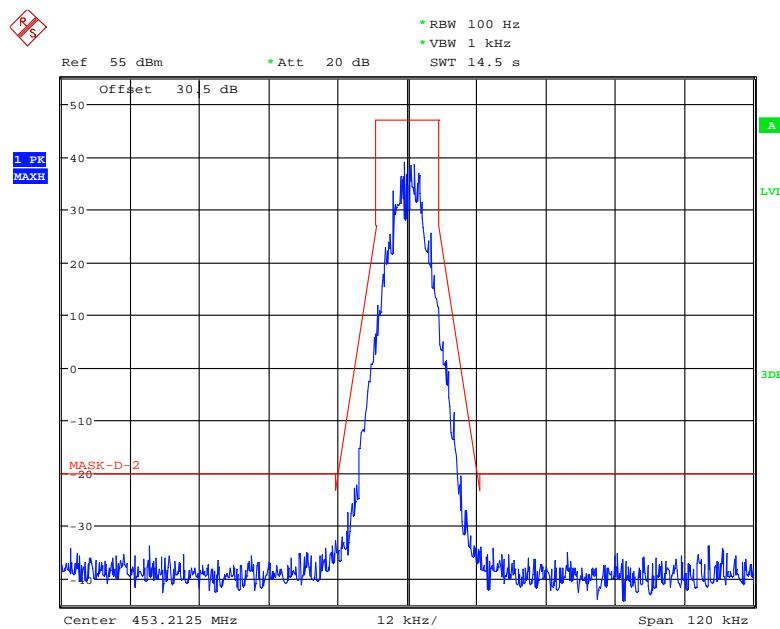
Frequency 453.2125 MHz: 99% Occupied & 26 dB Bandwidth, Low Power


Date: 15.MAR.2019 12:28:36

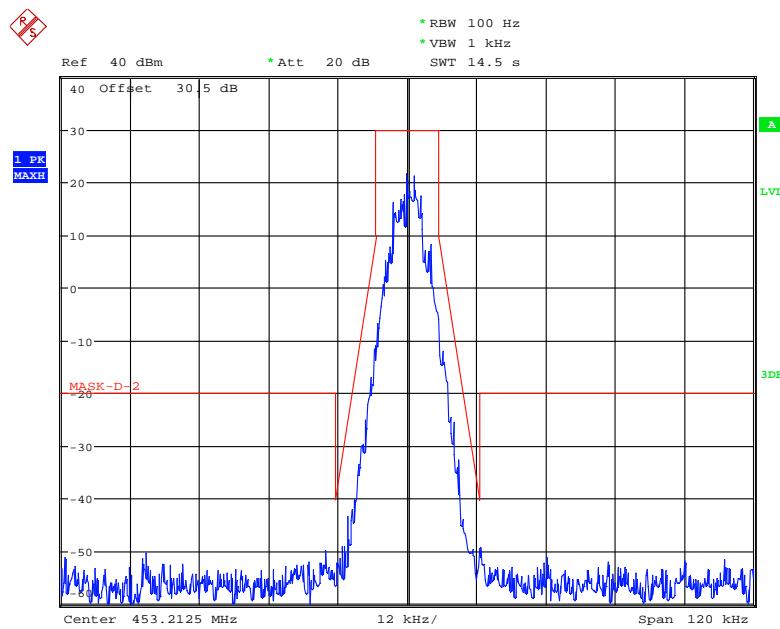
Frequency 453.2125 MHz: Emission Mask D, High Power


Date: 15.MAR.2019 12:34:52

Frequency 453.2125 MHz: Emission Mask D, Low Power


Date: 15.MAR.2019 12:43:56

Digital Modulation:**Frequency 453.2125 MHz: 99% Occupied & 26 dB Bandwidth, High Power**


Date: 15.MAR.2019 08:13:49

Frequency 453.2125 MHz: 99% Occupied & 26 dB Bandwidth, Low Power

Date: 15.MAR.2019 08:17:08

Frequency 453.2125 MHz: Emission Mask D, High Power

Date: 15.MAR.2019 09:06:28

Frequency 453.2125 MHz: Emission Mask D, Low Power

Date: 15.MAR.2019 09:04:15

FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

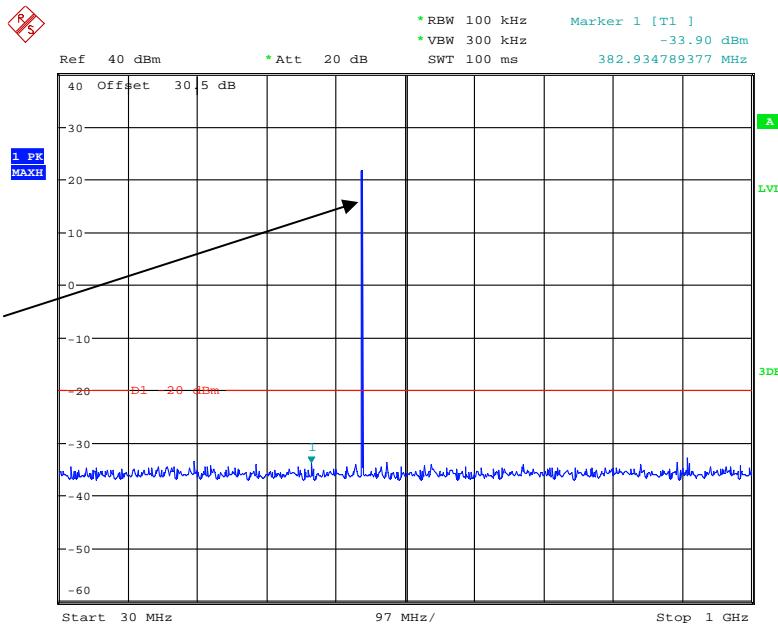
Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

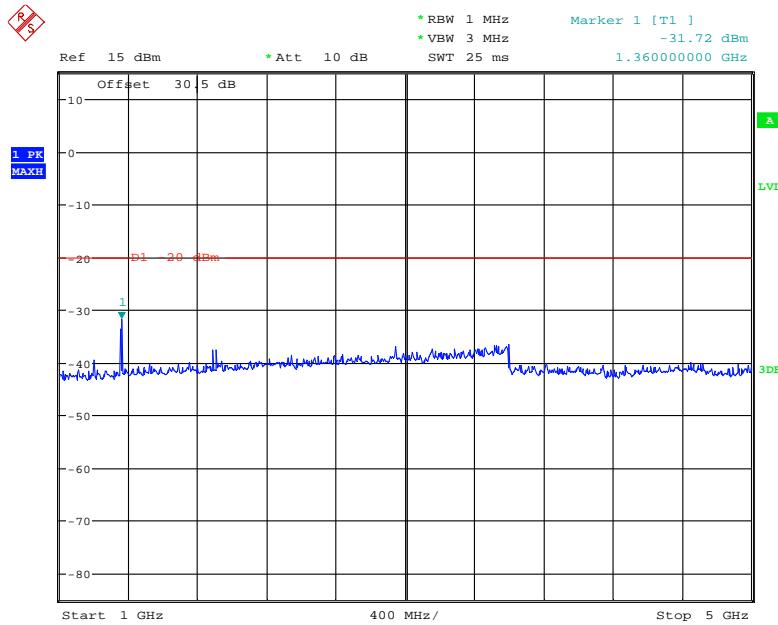
- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0 dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 ($f_d - 2.88$ kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least $50 + 10 \log (P)$ dB or 70 dB, whichever is the lesser attenuation.

Test Procedure

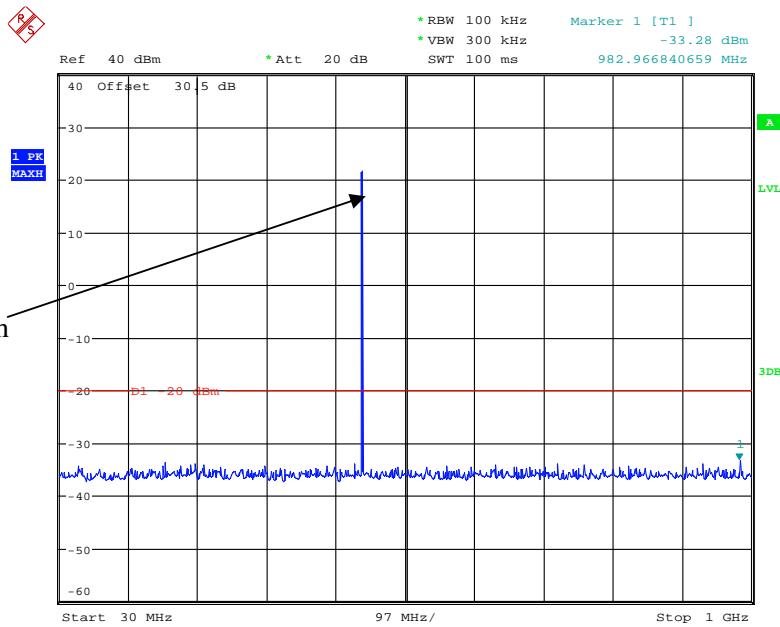
The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100kHz for below 1GHz, and 1MHz for above 1GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.


Test Data

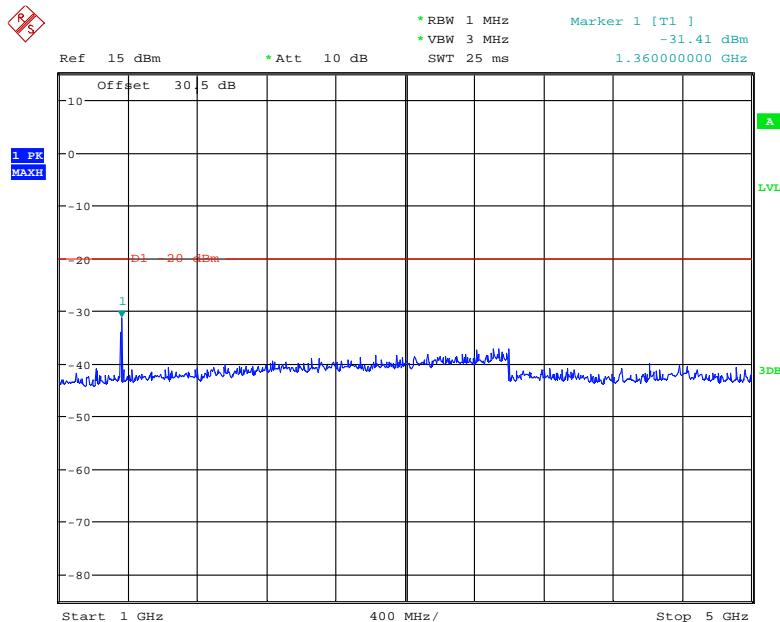
Environmental Conditions


Temperature:	24 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Kiki Kong on 2019-03-14.


Test Mode: Transmitting, worst case for High power level, please refer to the following plots.

Analog Modulation:**30MHz – 1 GHz, 453.2125 MHz**Fund.test with
filter


Date: 14.MAR.2019 15:51:35

1 GHz – 5 GHz, 453.2125 MHz

Date: 14.MAR.2019 16:05:22

Digital Modulation:**30MHz – 1 GHz, 453.2125 MHz**Fund.test with
filter

Date: 14.MAR.2019 16:00:41

1 GHz – 5 GHz, 453.2125 MHz

Date: 14.MAR.2019 16:03:22

FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053 and §90.210

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = $10 \log_{10} (\text{TXpwr in Watts} / 0.001)$ - the absolute level

Spurious attenuation limit in dB = $50 + 10 \log_{10} (\text{power out in Watts})$ for EUT with a 12.5 kHz channel bandwidth.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by Kiki Kong on 2019-03-14.

Test Mode: Transmitting, worst case for High power level.

30MHz - 5GHz:

Frequency (MHz)	Receiver Reading (dB μ V)	Turn Table Angle Degree	Rx Antenna		Substituted			Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)			
Analog Modulation 453.2125MHz-12.5 kHz										
906.425	46.38	173	1.1	H	-50.6	1.24	0.0	-51.84	-20	31.84
906.425	42.98	2	2.2	V	-53.0	1.24	0.0	-54.24	-20	34.24
1359.04	51.40	94	1.8	H	-56.6	1.60	7.90	-50.30	-20	30.3
1359.04	53.20	61	1.2	V	-55.0	1.60	7.90	-48.70	-20	28.7
1812.05	56.97	168	2.1	H	-49.5	1.30	9.30	-41.50	-20	21.5
1812.05	59.83	266	1.4	V	-46.2	1.30	9.30	-38.20	-20	18.2
2718.08	56.44	139	2.1	H	-47.8	2.00	10.40	-39.40	-20	19.4
2718.08	58.80	24	1.6	V	-45.1	2.00	10.40	-36.70	-20	16.7
Digital Modulation 453.2125MHz-12.5 kHz										
906.425	45.27	56	2.1	H	-51.7	1.24	0.0	-52.94	-20	32.94
906.425	42.08	113	1.4	V	-53.9	1.24	0.0	-55.14	-20	35.14
1359.04	49.30	142	2.4	H	-58.7	1.60	7.90	-52.40	-20	32.4
1359.04	51.85	176	1.6	V	-56.4	1.60	7.90	-50.10	-20	30.1
1812.05	58.47	299	1.6	H	-48.0	1.30	9.30	-40.00	-20	20.0
1812.05	60.35	49	2.3	V	-45.7	1.30	9.30	-37.70	-20	17.7
2718.08	52.30	164	2.1	H	-52.0	2.00	10.40	-43.60	-20	23.6
2718.08	57.70	347	1.3	V	-46.2	2.00	10.40	-37.80	-20	17.8

Note:

Absolute Level = Substituted Level - Cable loss + Antenna Gain

Margin = Limit- Absolute Level

FCC §2.1055 & §90.213 - FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 and §90.213

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The power cable and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by Kiki Kong on 2019-03-14.

Test Mode: Transmitting

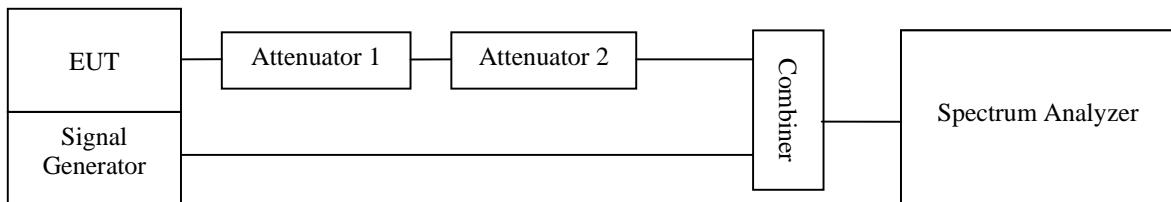
Note: The device is intended for fixed using.

For 12.5 kHz:

Analog Modulation, Reference Frequency: 453.2125 MHz, Limit: ± 1.5 ppm			
Test Environment		Frequency Measure with Time Elapsed	
Temperature (°C)	Voltage Supplied (V _{AC})	Measured Frequency (MHz)	Frequency Error (ppm)
Frequency Stability versus Input Temperature			
50	120	453.212475	-0.0552
40	120	453.212481	-0.0427
30	120	453.212468	-0.0712
20	120	453.212489	-0.0247
10	120	453.212489	-0.0238
0	120	453.212491	-0.0203
-10	120	453.212480	-0.0447
-20	120	453.212491	-0.0203
-30	120	453.212473	-0.0586
Frequency Stability versus Input Voltage			
20	108	453.212489	-0.0247
20	132	453.212480	-0.0447

Digital Modulation, Reference Frequency: 453.2125 MHz, Limit: ± 1.5 ppm			
Test Environment		Frequency Measure with Time Elapsed	
Temperature (°C)	Voltage Supplied (V _{AC})	Measured Frequency (MHz)	Frequency Error (ppm)
Frequency Stability versus Input Temperature			
50	120	453.212486	-0.0309
40	120	453.212484	-0.0353
30	120	453.212501	0.0027
20	120	453.212501	0.0024
10	120	453.212485	-0.0333
0	120	453.212487	-0.0283
-10	120	453.212496	-0.0098
-20	120	453.212494	-0.0143
-30	120	453.212480	-0.0452
Frequency Stability versus Input Voltage			
20	108	453.212501	0.0024
20	132	453.212485	-0.0333

FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR


Applicable Standard

Regulations: FCC §90.214

Test method: ANSI/TIA-603-D 2010, section 2.2.19.3

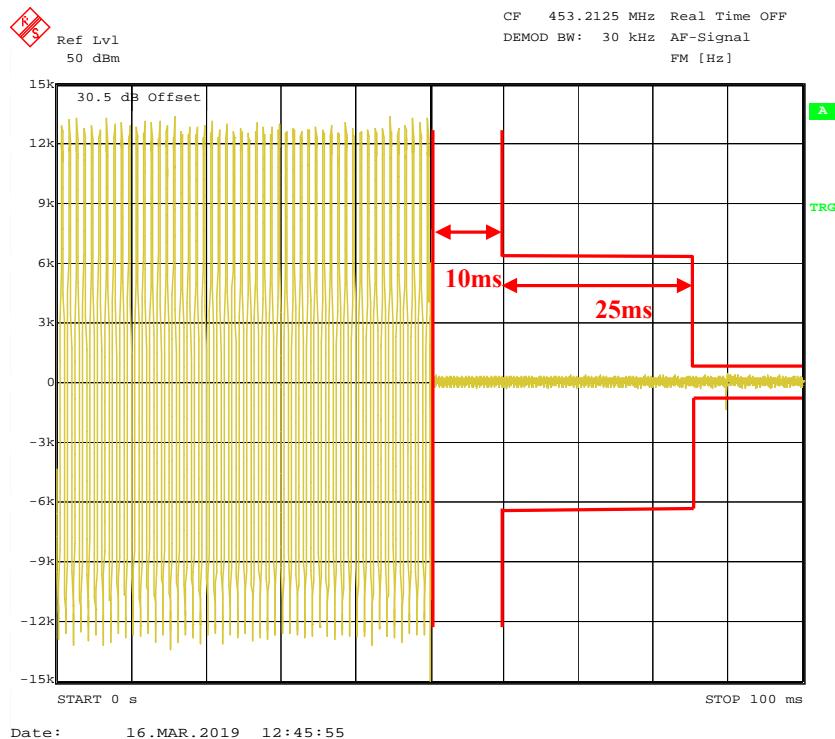
Test Procedure

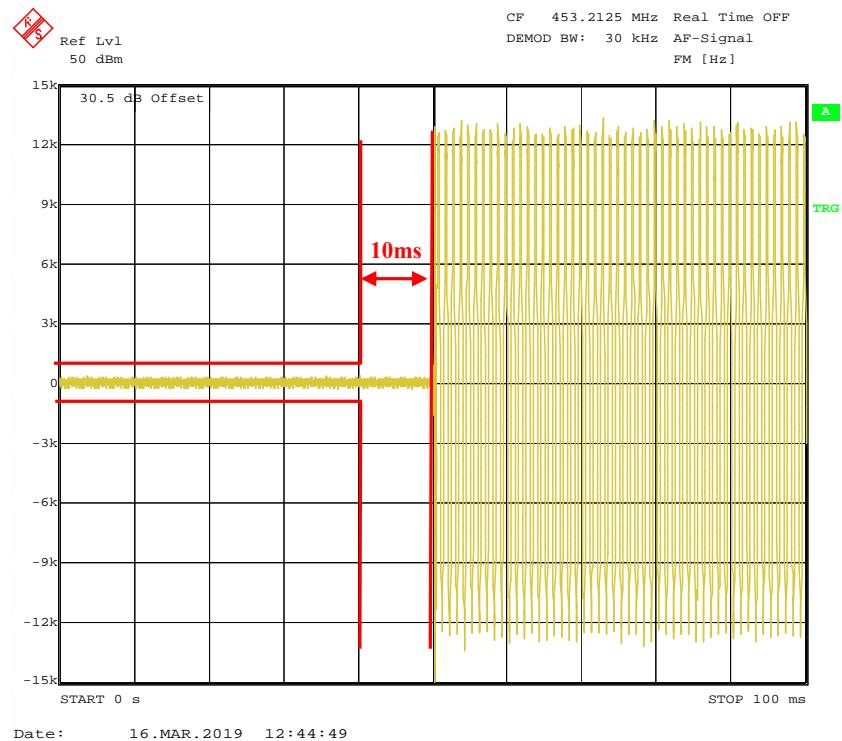
- a) Connect the EUT and test equipment as shown on the following block diagram.
- b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.
- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ± 12.5 kHz deviation and set its output level to -100dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P_0 .
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P_0 . This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ± 4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to “Video”, and tune the “trigger level” on suitable level. Then set the “tiger offset” to -10ms for turn on and -15ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t_{on} . The trace should be maintained within the allowed divisions during the period t_1 and t_2 .
- k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t_3 .

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa


The testing was performed by Kiki Kong on 2019-03-16.


Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
12.5	10 (t1)	<+/-12.5 kHz	Pass
	25(t2)	<+/-6.25 kHz	
	10 (t3)	<+/-12.5 kHz	

Please refer to the following plots.

Channel: 453.2125 MHz, 12.5 kHz

Turn on

Turn off

***** END OF REPORT *****