FCC TEST REPORT

FOR

Workwell Technologies, Inc.

Workwell Face Recognition Cloud Tablet Time Clock

Test Model: DR2500

Additional Model No.: Please Refer To Page 6

Prepared for : Workwell Technologies, Inc.

Address 2777 Loker Avenue West, Suite A Carlsbad, California 92010, USA

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing Street,

Baoan District, Shenzhen, China

(+86)755-82591330 Tel Fax (+86)755-82591332 Web www.LCS-cert.com

Mail webmaster@LCS-cert.com

Date of receipt of test sample September 04, 2020

Number of tested samples

Address

Sample number Prototype

Date of Test September 04, 2020 ~September 17, 2020

Date of Report September 21, 2020

FCC TEST REPORT FCC CFR 47 PART 15 C

Report Reference No.: LCS200825099AEB

Date of Issue.....: September 21, 2020

Testing Laboratory Name......: : Shenzhen LCS Compliance Testing Laboratory Ltd.

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing Street, Address....::

Baoan District, Shenzhen, China

Testing Location/ Procedure Partial application of Harmonised standards

Other standard testing method

Applicant's Name: Workwell Technologies, Inc.

Address......: 2777 Loker Avenue West, Suite A Carlsbad, California 92010, USA

Test Specification

Standard : FCC CFR 47 PART 15 C / ANSI C63.10: 2013

Test Report Form No.....: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.: Workwell Face Recognition Cloud Tablet Time Clock

Trade Mark: N/A

Test Model : DR2500

Ratings.....: For adapter:

Input: 100-240V~, 50/60Hz, 0.6A Max

Output: DC 12V, 2000mA

Result: Positive

Compiled by:

Supervised by:

Approved by:

Cherry Chen/ File administrators

Jin Wang / Technique principal

Gavin Liang/ Manager

FCC -- TEST REPORT

September 17, 2020 **Test Report No.:** LCS200825099AEB Date of issue

Test Model.....: DR2500 EUT.....:: Workwell Face Recognition Cloud Tablet Time Clock Applicant..... : Workwell Technologies, Inc. 2777 Loker Avenue West, Suite A Carlsbad, California 92010, Address..... USA Telephone..... : / Fax..... : / . SHENZHEN WANGLINFA TECHNOLOGY CORPORATION Manufacturer..... 2/F Block P, Shang Xia Wei Industrial Area, Sha 3, Shajing, Address..... Bao-an District, ShenZhen GuangDong, China Telephone..... Fax..... Factory..... Address..... Telephone..... : / Fax.....

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	evision Issue Date Re		Revised By
000	September 21, 2020	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. Description of Device (EUT)	6
1.2. Host System Configuration List and Details	
1.3. External I/O	7
1.4. Description of Test Facility	
1.5. Statement of the Measurement Uncertainty	
1.6. Measurement Uncertainty	
1.7. Description of Test Modes	
2. TEST METHODOLOGY	9
2.1. EUT Configuration	9
2.2. EUT Exercise	
2.3. General Test Procedures	9
3. SYSTEM TEST CONFIGURATION	10
3.1. Justification	10
3.2. EUT Exercise Software	
3.3. Special Accessories	10
3.4. Block Diagram/Schematics	10
3.5. Equipment Modifications	
3.6. Test Setup	
4. SUMMARY OF TEST RESULTS	11
5. POWER LINE CONDUCTED EMISSIONS	12
5.1 Standard Applicable	
5.2 Block Diagram of Test Setup	
5.3 Test Results	
6. RADIATED EMISSION MEASUREMENT	
6.1. Standard Applicable	
6.2. Instruments Setting	
6.3. Test Procedure	
6.4. Block Diagram of Test Setup	
6.5. Test Results	
7. 99% AND 20DB BANDWIDTH MEASUREMENT	22
7.1. Standard Applicable	22
7.2. Block Diagram of Test Setup	
7.3. Test Procedure	
7.4. Test Results	22
8. ANTENNA REQUIREMENTS	24
8.1 Standard Applicable	
8.2 Antenna Connected Construction.	24
8.3. Results: Compliance	
9. LIST OF MEASURING EQUIPMENTS	
10. TEST SETUP PHOTOGRAPHS OF EUT	
11. EXTERIOR PHOTOGRAPHS OF THE EUT	
12. INTERIOR PHOTOGRAPHS OF THE EUT	26

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Workwell Face Recognition Cloud Tablet Time Clock

Test Model : DR2500

Additional Models No.: DR1000, DR1500, DR2000, DR4000, DR4500, KB1000, KB1500,

KB2000, KB2500, KB4000, KB4500, BG100, BG150, BG200,

BG250, BG400, BG450

Models Declaration : PCB board, structure and internal of these model(s) are the same,

So no additional models were tested.

Power Supply : For adapter:

Input: 100-240V~, 50/60Hz, 0.6A Max

Output: DC 12V, 2000mA

Hardware Version : /
Software Version : /

WIFI(2.4G Band)

Frequency Range : 2412MHz-2462MHz

Channel Spacing : 5MHz

Channel Number : 11 channels for 20MHz bandwidth(2412MHz~2462MHz)

Modulation Type : IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK);

IEEE 802.11g/n: OFDM(64QAM, 16QAM, QPSK, BPSK)

Antenna Description : PIFA Antenna, 2.0dBi(Max.)

125KHz

Frequency Range : 125KHz

Channel Number : 1 channel

Channel Spacing : N/A

Modulation Type : OOK

Antenna Description : Coil Antenna

1.2. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate
SHENZHEN FUJIA APPLIANCE CO., LTD	SWITCHING ADAPTOR	FJ-SW1202000U		SDOC

1.3. External I/O

I/O Port Description	Quantity	Cable
DN IN Port	1	N/A
USB Port	1	N/A

1.4. Description of Test Facility

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	±3.10dB	(1)
		30MHz~200MHz	±2.96dB	(1)
Radiation Uncertainty	:	200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
		26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

The EUT operates at 125 KHz. The following operating modes were applied for the related test items.

All test modes were tested, only the result of the worst case was recorded in the report. It was pre-tested on the positioned of each 3 axis. The worst case was found positioned on X-plane.

Mode of Operations	Transmitting Frequency (KHz)				
OOK	125				
For Conducted Emission					
Test Mode	TX Mode				
For Radiated Emission					
Test Mode	TX Mode				

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power.

^{***}Note: Using a temporary antenna connector for the EUT when the conducted measurements are performed.

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.201 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmits condition. The duty cycle is 100% and the average correction factor is 0.

3.2. EUT Exercise Software

Powered on the EUT then the EUT will transmit at 125 KHz signal.

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

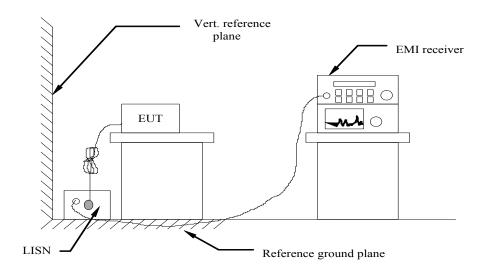
Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C							
FCC Rules Description of Test Result Remark							
§15.203	Antenna Requirements	Compliant	Note 1				
§15.207(a)	AC Conducted Emissions	Compliant	Note 1				
§15.201(a), §15.205(a),	Radiated Emissions	Compliant	Note 1				
§15.209(a), §15.215(a)	Measurement	Compliant	Note 1				
§2.1049	99% and 20dB Bandwidth	Compliant	Note 1				

Remark:

1. Note 1 – Test results inside test report;


5. Power Line Conducted Emissions

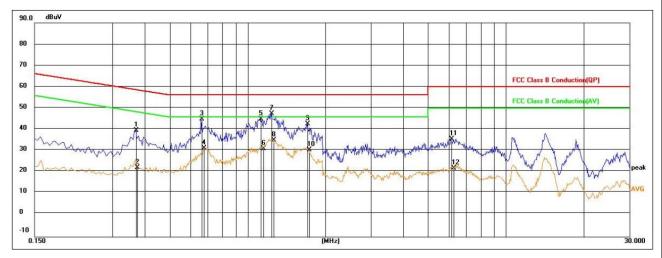
5.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (dBμV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

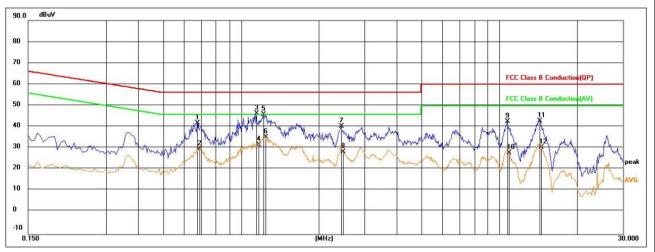
5.2 Block Diagram of Test Setup

5.3 Test Results


PASS.

Temperature	23.3 ℃	Humidity	53.7%
Test Engineer	Carl Fu	Configurations	1

The test data please refer to following page.


AC Conducted Emission of power adapter @ AC 120V/60Hz

Line

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.3704	20.52	19.31	39.83	58.49	-18.66	QP
2	0.3751	2.96	19.31	22.27	48.39	-26.12	AVG
3	0.6630	25.68	19.24	44.92	56.00	-11.08	QP
4	0.6765	12.18	19.25	31.43	46.00	-14.57	AVG
5	1.1265	25.75	19.27	45.02	56.00	-10.98	QP
6	1.1490	12.00	19.27	31.27	46.00	-14.73	AVG
7	1.2390	28.31	19.28	47.59	56.00	-8.41	QP
8	1.2570	15.88	19.29	35.17	46.00	-10.83	AVG
9	1.7070	23.36	19.36	42.72	56.00	-13.28	QP
10	1.7295	11.31	19.36	30.67	46.00	-15.33	AVG
11	6.1485	16.24	19.54	35.78	60.00	-24.22	QP
12	6.2520	2.52	19.55	22.07	50.00	-27.93	AVG

Neutral

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.6765	22.77	19.25	42.02	56.00	-13.98	QP
2	0.6900	10.77	19.26	30.03	46.00	-15.97	AVG
3	1.1445	27.30	19.27	46.57	56.00	-9.43	QP
4	1.1715	12.60	19.27	31.87	46.00	-14.13	AVG
5	1.2210	26.69	19.28	45.97	56.00	-10.03	QP
6	1.2480	16.13	19.28	35.41	46.00	-10.59	AVG
7	2.4405	21.02	19.43	40.45	56.00	-15.55	QP
8	2.4765	9.15	19.43	28.58	46.00	-17.42	AVG
9	10.7205	23.13	19.75	42.88	60.00	-17.12	QP
10	10.8690	8.48	19.77	28.25	50.00	-21.75	AVG
11	14.2485	23.03	20.06	43.09	60.00	-16.91	QP
12	14.5140	10.63	20.11	30.74	50.00	-19.26	AVG

^{***}Note: 1). Pre-scan all modes and recorded the worst case results in this report (RFID in 125kHz).

^{2).} Margin=Reading level + Correct - Limit

6. RADIATED EMISSION MEASUREMENT

6.1. Standard Applicable

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation. 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) and 15.215 limit in the table below has to be followed.

Fundamental Frequency	Field Strength of fundamental (millivolts/meter)	Field Strength of harmonics (microvolts/meter)
902-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

6.2. Instruments Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

6.3. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

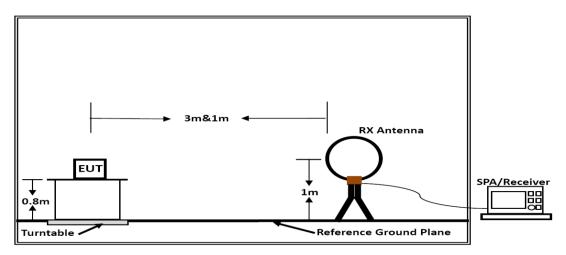
Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

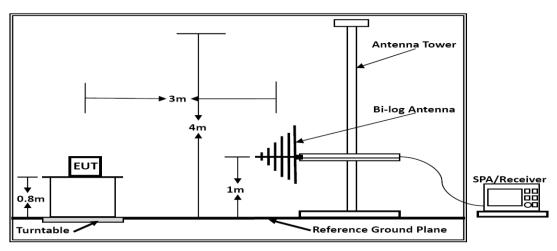
2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.


Premeasurement:

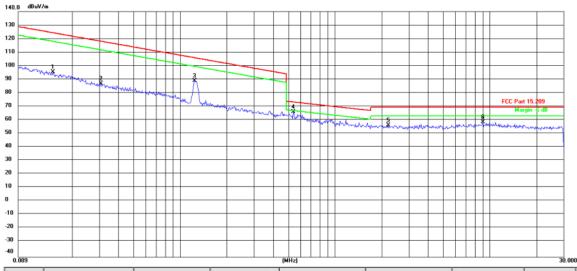
- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.


Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization. turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

6.4. Block Diagram of Test Setup

Below 30MHz



Below 1GHz

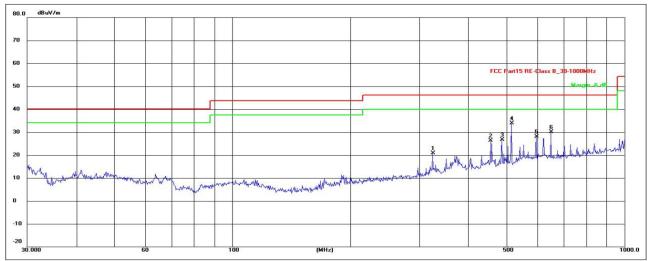
6.5. Test Results

Results of Radiated Emissions (9 kHz~30MHz)

Temperature	24.6°C	Humidity	54.1%
Test Engineer	Carl Fu	Configurations	Transmit

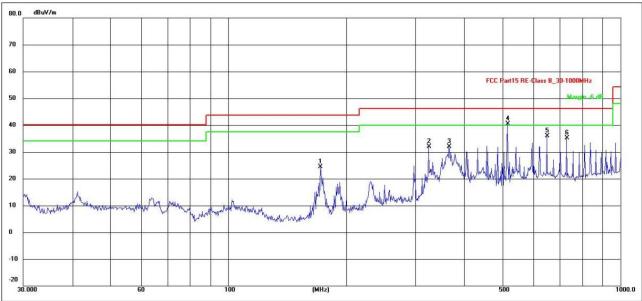
	ty						
No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0151	75.06	20.59	95.65	124.01	-28.36	QP
2	0.0308	66.40	20.71	87.11	117.82	-30.71	QP
3	0.1246	68.71	20.47	89.18	105.69	-16.51	QP
4 *	0.5411	46.31	20.28	66.59	73.26	-6.67	QP
5	2.2195	36.24	20.23	56.47	69.50	-13.03	QP
6	9.0309	38.84	20.22	59.06	69.50	-10.44	QP

Note:


The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


Measured at both 90 degree and 0 degree, recorded worst case at 90 degree.

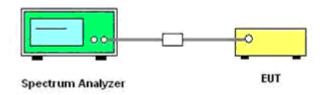
Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	324.4561	35.95	-15.02	20.93	46.00	-25.07	QP
2	455.9058	38.62	-12.21	26.41	46.00	-19.59	QP
3	487.3151	38.48	-11.71	26.77	46.00	-19.23	QP
4 *	515.4374	45.00	-11.16	33.84	46.00	-12.16	QP
5	595.1329	37.42	-9.39	28.03	46.00	-17.97	QP
6	649.6597	38.90	-8.78	30.12	46.00	-15.88	QP

Vertical

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	171.9946	44.97	-20.60	24.37	43.50	-19.13	QP
2	324.4561	46.96	-15.02	31.94	46.00	-14.06	QP
3	365.5391	46.07	-14.10	31.97	46.00	-14.03	QP
4 *	515.4374	51.71	-11.16	40.55	46.00	-5.45	QP
5	649.6597	44.69	-8.78	35.91	46.00	-10.09	QP
6	729.3583	43.11	-7.95	35.16	46.00	-10.84	QP

Note:


- 1). Pre-scan all modes and recorded the worst case results in this report.
- 2). Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3). Corrected Reading: Antenna Factor + Cable Loss + Read Level = Level.

7. 99% and 20dB Bandwidth Measurement

7.1. Standard Applicable

According to §15.215, device must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

7.2. Block Diagram of Test Setup

7.3. Test Procedure

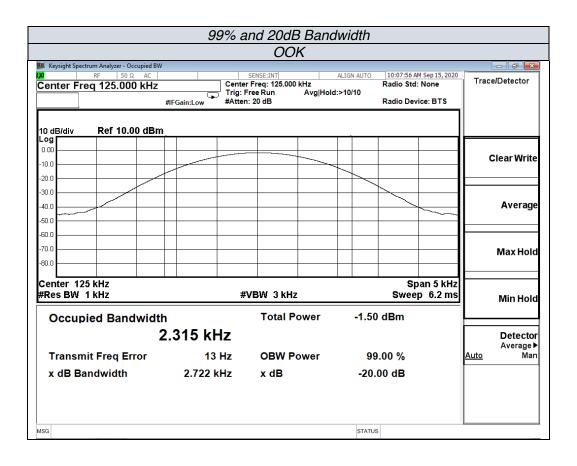
Use the following spectrum analyzer settings:

Span = 5 KHz

RBW = 1 KHz

VBW = 3 KHz

Sweep = auto


Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

7.4. Test Results

	99% and 20dB Bandwidth Measurement						
Test Frequency 99% Occupied Bandwidth 20dB Bandwidth Limit							
(KHz)	(KHz)	(Hz)	(KHz)				
125	2.315	2.722	No Limit				

8. Antenna Requirements

8.1 Standard Applicable

According to antenna requirement of §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

8.2 Antenna Connected Construction

8.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.2.2. Antenna Connector Construction

The antenna gain used for transmitting is 0dBi, the antenna is an coil antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

8.3. Results: Compliance.

9. LIST OF MEASURING EQUIPMENTS

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Meter	R&S	NRVS	100444	2020-06-11	2021-06-10
2	Power Sensor	R&S	NRV-Z81	100458	2020-06-11	2021-06-10
3	Power Sensor	R&S	NRV-Z32	10057	2020-06-11	2021-06-10
4	Test Software	Tonscend	JS1120-2	/	N/A	N/A
5	RF Control Unit	Tonscend	JS0806-2	N/A	2020-06-11	2021-06-10
6	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2019-11-22	2020-11-21
7	DC Power Supply	Agilent	E3642A	N/A	2019-11-14	2020-11-13
8	EMI Test Software	AUDIX	E3	/	N/A	N/A
9	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2020-06-11	2021-06-10
10	Positioning Controller	MF	MF-7082	N/A	2020-06-11	2021-06-10
11	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018-07-26	2021-07-25
12	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-07-26	2021-07-25
13	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2018-07-02	2021-07-01
14	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2017-09-21	2020-09-20
15	Broadband Preamplifier	SCHWARZBECK	BBV 9719	9719-025	2020-06-11	2021-06-10
16	EMI Test Receiver	R&S	ESR 7	101181	2020-06-11	2021-06-10
17	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2019-11-14	2020-11-13
18	Broadband Preamplifier	/	BP-01M18G	P190501	2020-06-11	2021-06-10
19	RF Cable-R03m	Jye Bao	RG142	CB021	2020-06-11	2021-06-10
20	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2020-06-11	2021-06-10
21	6dB Attenuator	/	100W/6dB	1172040	2020-06-11	2021-06-10
22	3dB Attenuator	/	2N-3dB	/	2020-06-11	2021-06-10
23	EMI Test Receiver	R&S	ESPI	101840	2020-06-11	2021-06-10
24	Artificial Mains	R&S	ENV216	101288	2020-06-11	2021-06-10
25	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2020-06-11	2021-06-10

10. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

11. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

12. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF TEST REPORT-----