

HAC Receive Volume Control Test Report

For

Applicant Name: FOXX Development Inc.
Address: 3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA
EUT Name: Smart Phone
Brand Name: FOXX
Model Number: A55

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.
Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: BTF250327R00503
Test Standards: ANSI C63.19:2019 FCC 47 CFR §20.19 TIA-5050:2018
FCC ID: 2AQRMA55

Test Conclusion: Pass
Test Date: 2025-04-17
Date of Issue: 2025-04-18

Reviewed By: Zoey Zhang

Date: Zoey Zhang / Project Engineer
2025-04-18

Approved By: Olic Huang

Date: Olic Huang / EMC Manager
2025-04-18

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Revision History		
Version	Issue Date	Revisions Content
Rev_V0	2025-04-18	Original
Note:	<i>Once the revision has been made, then previous versions reports are replaced by the latest version.</i>	

Table of Contents

1. Introduction	4
1.1 Identification of Testing Laboratory	4
1.2 Identification of the Responsible Testing Location	4
1.3 Laboratory Condition	4
1.4 Announcement	4
2. Product Information	5
2.1 Application Information	5
2.2 Manufacturer Information	5
2.3 Factory Information	5
2.4 General Description of Equipment under Test (EUT)	5
2.5 Equipment under Test Ancillary Equipment	6
2.6 Technical Information	6
3. Summary of Test Results	7
3.1 Test Standards	7
3.2 Air Interfaces / Bands Indicating Operating Modes	7
4. Test Uncertainty	7
5. Measurement System	8
5.1 MEASUREMENT SET-UP	8
6. Evaluation of Test	9
6.1 RECEIVE VOLUME CONTROL PERFORMANCE	9
6.2 RECEIVE DISTORTION AND NOISE PERFORMANCE	10
6.3 RECEIVE ACOUSTIC FREQUENCY RESPONSE PERFORMANCE	11
7. Test Equipment List	13
8. Air Interfaces / Bands used for testing	13
9. Test Result	14
9.1 Receive volume control, distortion and noise performance	14
9.2 Receive acoustic frequency response performance	14
10. EUT photograph	15
ANNEX A Test Data	16
1.1 Receive Distortion and Noise 8N NB	16
3.2 Receive Distortion and Noise 2N NB	18
3.3 Receive Frequency Response	21
ANNEX B Test Setup Photo	22
ANNEX C CALIBRATION REPORT	22

1. Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Test Location:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Description:	All measurement facilities used to collect the measurement data are located at F101,201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1.3 Laboratory Condition

Ambient Temperature:	18°C to 25°C
Ambient Relative Humidity:	32% to 49%
Ambient Pressure:	100 kPa to 102 kPa

1.4 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2. Product Information

2.1 Application Information

Company Name:	FOXX Development Inc.
Address:	3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA

2.2 Manufacturer Information

Company Name:	FOXX Development Inc.
Address:	3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA

2.3 Factory Information

Company Name:	FOXX Development Inc.
Address:	3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA

2.4 General Description of Equipment under Test (EUT)

EUT Name	Smart Phone
Under Test Model Name	A55
Series Model Name	N/A
Description of Model name differentiation	N/A
Hardware Version	N/A
Software and Firmware Version	N/A
Dimensions (Approx.)	147*70*8mm
Weight (Approx.)	155g

2.5 Equipment under Test Ancillary Equipment

Ancillary Equipment 1	Battery	
	Brand Name	FOXX
	Model No.	A55
	Serial No.	N/A
	Capacity	Typical capacity: 2000mAh
	Rated Voltage	3.8 V

2.6 Technical Information

Network and Wireless connectivity	4G Network FDD LTE Band 7
-----------------------------------	---------------------------

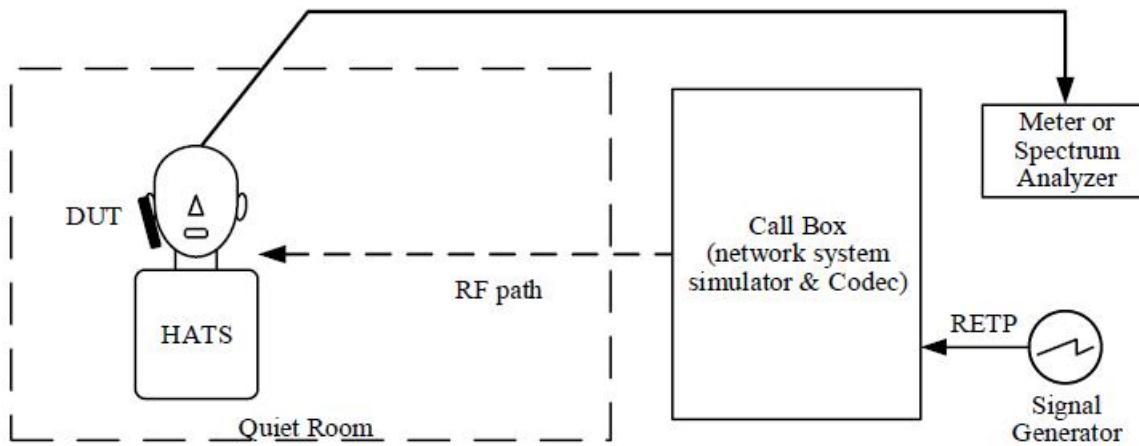
3. Summary of Test Results

3.1 Test Standards

No.	Identity	Document Title
1	ANSI C63.19-2019	American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids
2	FCC 47 CFR §20.19	Hearing Aid Compatible Mobile Headsets
3	TIA-5050:2018	Telecommunications Communications Products Receive Volume Control Requirements for Wireless (Mobile) Devices
4	KDB285076 D05v01	HACWaiverDA23-914
5	KDB285076 D04v02	Volume Control
6	KDB285076 D01v06r04	HAC Guidance

3.2 Air Interfaces / Bands Indicating Operating Modes

Air Interface	Band	Type	Simultaneous Transmitter	Name of Service
LTE	Band 7	VD	WLAN & BT	VoLTE
NA: Not Applicable				
VO: Voice Only				
VD: CMRS and IP Voice Service over Digital Transport				
DT: Digital Transport Only				
Note: The hearing aid compatibility mode of the prototype was turned on during testing, and all tests were performed in HAC mode.				


4. Test Uncertainty

UNCERTAINTY EVALUATION FOR AUDIO HAC MEASUREMENT					
Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Uncertainty (dB)	Uncertainty (%)
Measurement System					
RF reflections	0.1	R	$\sqrt{3}$	0.06	
Acoustic noise	0.1	R	$\sqrt{3}$	0.06	
Probe coil sensitivity	0.49	R	$\sqrt{3}$	0.28	
Reference signal level	0.25	R	$\sqrt{3}$	0.14	
Positioning accuracy	0.4	R	$\sqrt{3}$	0.23	
Cable loss	0.1	N	2	0.05	
Frequency analyzer	0.15	R	$\sqrt{3}$	0.09	
System repeatability	0.2	N	1	0.20	
Repeatability of the WD	0.4	N	1	0.40	
Combined Standard Uncertainty		N	1	0.61	
Expanded uncertainty (confidence level of 95%, k = 2)		N	K=2	1.22	15.05
REPORTED Expanded uncertainty (confidence level of 95%, k = 2)		N	K=2	1.20	15.00

5. Measurement System

5.1 MEASUREMENT SET-UP

The general test arrangement is shown in Figure 1. The Call Box passes the voice channel stream to the DUT without modification. There is no gain or loss in the voice channel stream due to the Call Box interface.

NOTES:

1. Additional information related to the air interface for the various RF technologies is specified in several 3GPP documents. A list of these can be found in 3GPP TS 26.132 V14.0.0 clause 4
2. Additional information related to the test setup can be found in 3GPP TS 26.132, V14.0.0 clause 5.1.
3. The RETP (receive electrical test point) is the point in the device test arrangement where signals are applied to the DUT in the receive direction.

6. Evaluation of Test

6.1 RECEIVE VOLUME CONTROL PERFORMANCE

6.1.1 Requirement

1. With a mounting force of 8N, the DUT shall have at least one volume control setting that will produce a conversational gain of ≥ 6 dB with the output distortion and the frequency response meeting the requirements in clause 5.2.1 & 5.3.1 respectively.
2. With a mounting force of 2N, the DUT shall have at least one volume control setting that will produce a conversational gain of ≥ 6 dB with the output distortion and the frequency response meeting the requirements in clause 5.2.1 & 5.3.1 respectively.

NOTE: Other acoustic receive features may be available such as additional amplification, tone control, automatic gain control, etc. ANSI/TIA-4953-B contains performance requirements for output levels and tone control operation for amplified devices.

6.1.2 Method of Measurement

1. Configure the DUT with a mounting force of 8N and test equipment as shown in Figure 1 in an active call state with the applicable codec for the transmission mode under test.
2. Set the DUT volume control to the maximum setting.
3. If the DUT has an adjustable tone control feature, a tone control setting that meets the frequency response requirements in section 5.3.1 shall be used.
4. Apply the real speech test signal at a level of -20 dBm0 at the RETP and measure the acoustic output at the Drum Reference Point (DRP) over one complete sequence of the test signal.
5. Translate the measurement made at the DRP to the Free Field (FF) using the translation data in Annex B.
6. Over the applicable frequency band, determine the ASL in dB SPL for the resulting sound pressure level in accordance with Method B of ITU-T Recommendation P.56:
 - a. Narrowband 100 Hz through 4000 Hz.
 - b. Wideband 100 Hz through 7720 Hz.
7. Calculate the Conversational Gain by subtracting 70 dB from the measured dB SPL.
[Conversational Gain = (Measured dB SPL Level - 70 dB SPL) dB]
8. Measure the output distortion per clause 5.2. If a distortion failure occurs at the maximum volume control setting, reduce the volume control setting and repeat the measurement to determine if a setting can be found for which the conversational gain requirement is met without a distortion failure.
9. Repeat steps 2-8 with a mounting force of 2N.

6.1.3 Test Result

Refer to test Annex A.

Remark: The report only reflects the test data plots of worst mode (for LTE Band 7)

6.1.4 Test Conclusion

PASS.

6.2 RECEIVE DISTORTION AND NOISE PERFORMANCE

6.2.1 Requirement

With a mounting force of 8N and 2N, the ratio of the stimulus signal power to the 100 Hz to 8000 Hz total A-weighted distortion and noise power shall be ≥ 20 dB when tested over the range of 1/3 octave band center frequencies:

1. Narrowband transmission mode: Each 1/3 octave band center frequency from 400 Hz to 3150 Hz.
2. Wideband transmission mode: Each 1/3 octave band center frequency from 250 Hz to 5000 Hz.

6.2.2 Method of Measurement

1. Configure the DUT with a mounting force of 8N and test equipment as shown in Figure 1 in an active call state with the applicable codec for the transmission mode under test with the volume control at the setting determined in 5.1.1.
2. Receive distortion and noise is measured using the PN-SDNR procedure as described in Annex A.
3. To ensure DUT activation, apply the real speech test signal at a level of -20 dBm0 followed immediately by the initial 1/3 octave center frequency PN test signal in Table A.1 based on the narrowband or wideband operating mode. Measure the acoustic output at the DRP over the complete sequence of the PN test signal.
4. Translate the measurement made at the DRP to the FF using the translation data in Annex B.
5. Calculate the acoustic output unweighted total signal power of the stimulus measurement band as described in A.2.
6. Calculate the notched A-weighting distortion and noise components as described in A.3.
7. Calculate the ratio of the signal power to the total A-weighted distortion and noise power using Eq A-1.
8. Repeat for each of the remaining 1/3 octave center frequencies in Table A.1 based on the narrowband or wideband operating mode.
9. Repeat steps 2-8 with a mounting force of 2N.

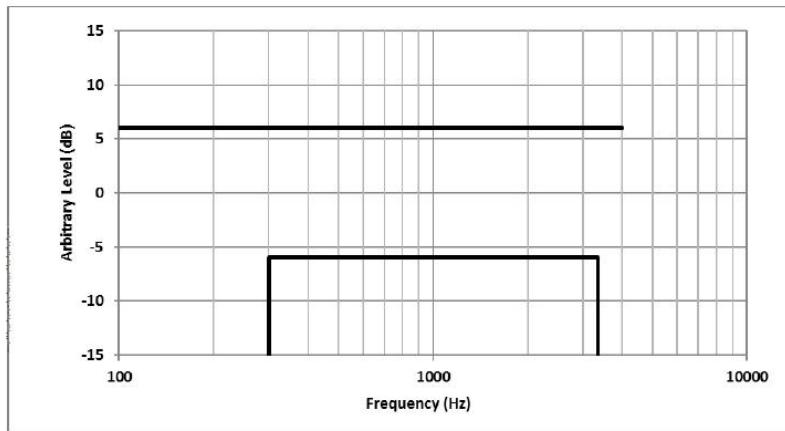
6.2.3 Test Result

Refer to test Annex A.

Remark: The report only reflects the test data plots of worst mode (for LTE Band 7)

6.2.4 Test Conclusion

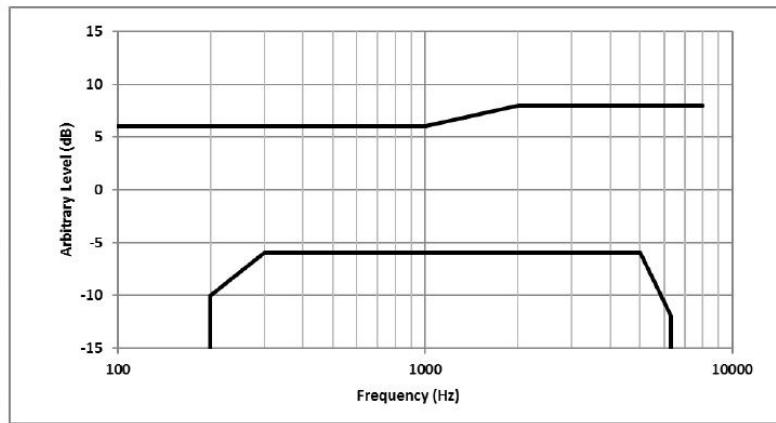
PASS.


6.3 RECEIVE ACOUSTIC FREQUENCY RESPONSE PERFORMANCE

6.3.1 Requirement

1. Narrowband: The 1/12 octave band frequency response after translation to the FF or DF shall fall between the upper and lower limits given in Table 1 and shown in Figure below.

Table 1 – Narrowband Receive Frequency Response Limits


Lower Limit Frequency (Hz)	Lower Limit (dB)	Upper Limit Frequency (Hz)	Upper Limit (dB)
300	-6	100	+6
3400	-6	4000	+6

2. Wideband: The 1/12 octave band frequency response after translation to the FF or DF shall fall between the upper and lower limits given in Table 2 and shown in Figure below.

Table 2 – Wideband Receive Frequency Response Limits

Lower Limit Frequency (Hz)	Lower Limit (dB)	Upper Limit Frequency (Hz)	Upper Limit (dB)
200	-10	100	+6
300	-6	1000	+6
5000	-6	2000	+8
6300	-12	8000	+8

6.3.2 Method of Measurement

1. Configure the DUT with a mounting force of 8N and test equipment as shown in Figure 1 in an active call state with the applicable codec for the transmission mode under test with the volume control at the setting determined in 5.1.1.
2. If the DUT has an adjustable tone control feature the initial measurement is to be performed with the default tone control setting.
3. Apply the real speech test signal with a level of -20 dBm0 at the RETP.
4. Capture the frequency spectrum at the DRP of the HATS using real-time analysis with 1/12 octave bands over the frequency range from 100 Hz to 4000 Hz for narrowband measurements, or over the frequency range from 100 Hz to 8000 Hz for wideband measurements, averaged over the entire duration of the test signal.
5. Transform the DRP frequency spectrum measurement to the FF or DF (see Annex B).
6. Divide the 1/12 octave measurement data by the 1/12 octave frequency spectrum of the test signal at the RETP and present the measurement in terms of dB(Pa/V).
7. Apply the applicable frequency response limits to determine compliance.
8. If the default tone control setting does not meet the requirement, repeat the above steps for other tone control settings to determine a tone control setting that meets the requirements.
9. Repeat with a mounting force of 2N.

6.3.3 Test Result

Refer to test Annex A.

Remark: The report only reflects the test data plots of worst mode (for LTE Band 7)

6.3.4 Test Conclusion

PASS.

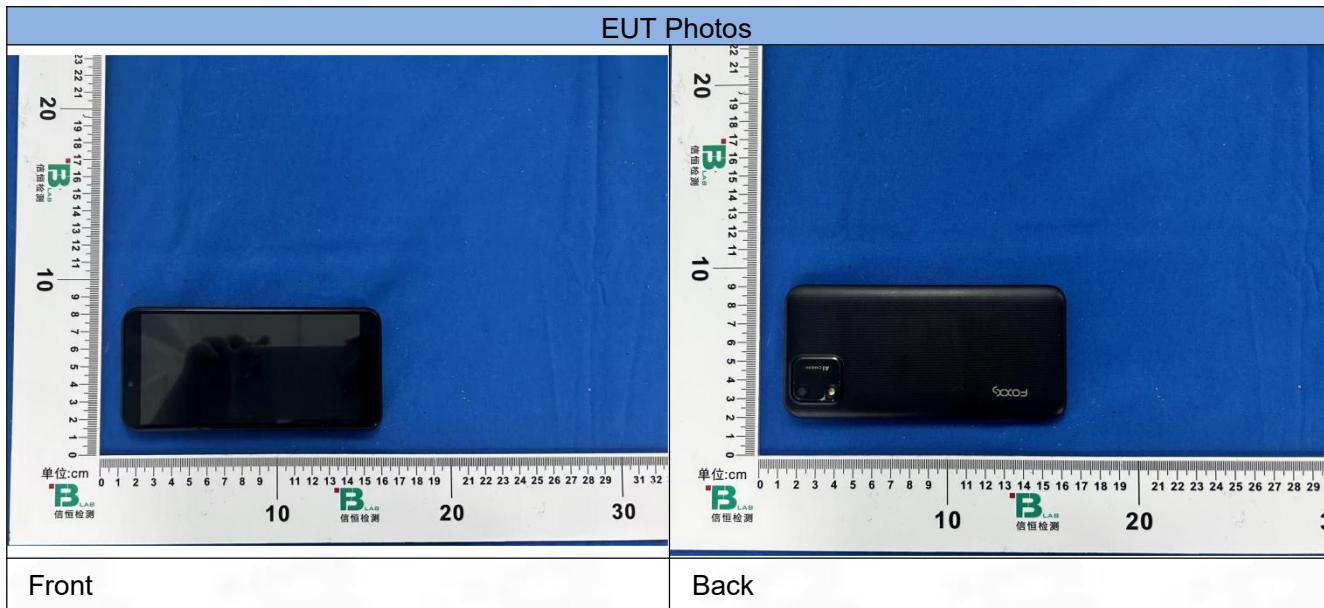
7. Test Equipment List

Description	Manufacturer	Model	Internal number	Cal. Date	Cal. Due
WIDEBAND RADIO COMMUNICATION TESTER	ROHDE&SCHWARZ	CMW500	BTF-EM-023	2024/10/25	2025/10/24
Conditioning Amplifier	Brule&Kjaer	Type -2690--030	BTF-EM-146	2025/2/11	2026/2/10
Head and Torso Simulator	Brule&Kjaer	Type 4128C	BTF-EM-148	2025/2/11	2026/2/10
Sound Calibration	Brule&Kjaer	Type 4231	BTF-EM-149	2025/2/08	2026/2/07
Anechoic Test Chamber	MEC	Type 115	BTF-EM-150	N/A	N/A

8. Air Interfaces / Bands used for testing

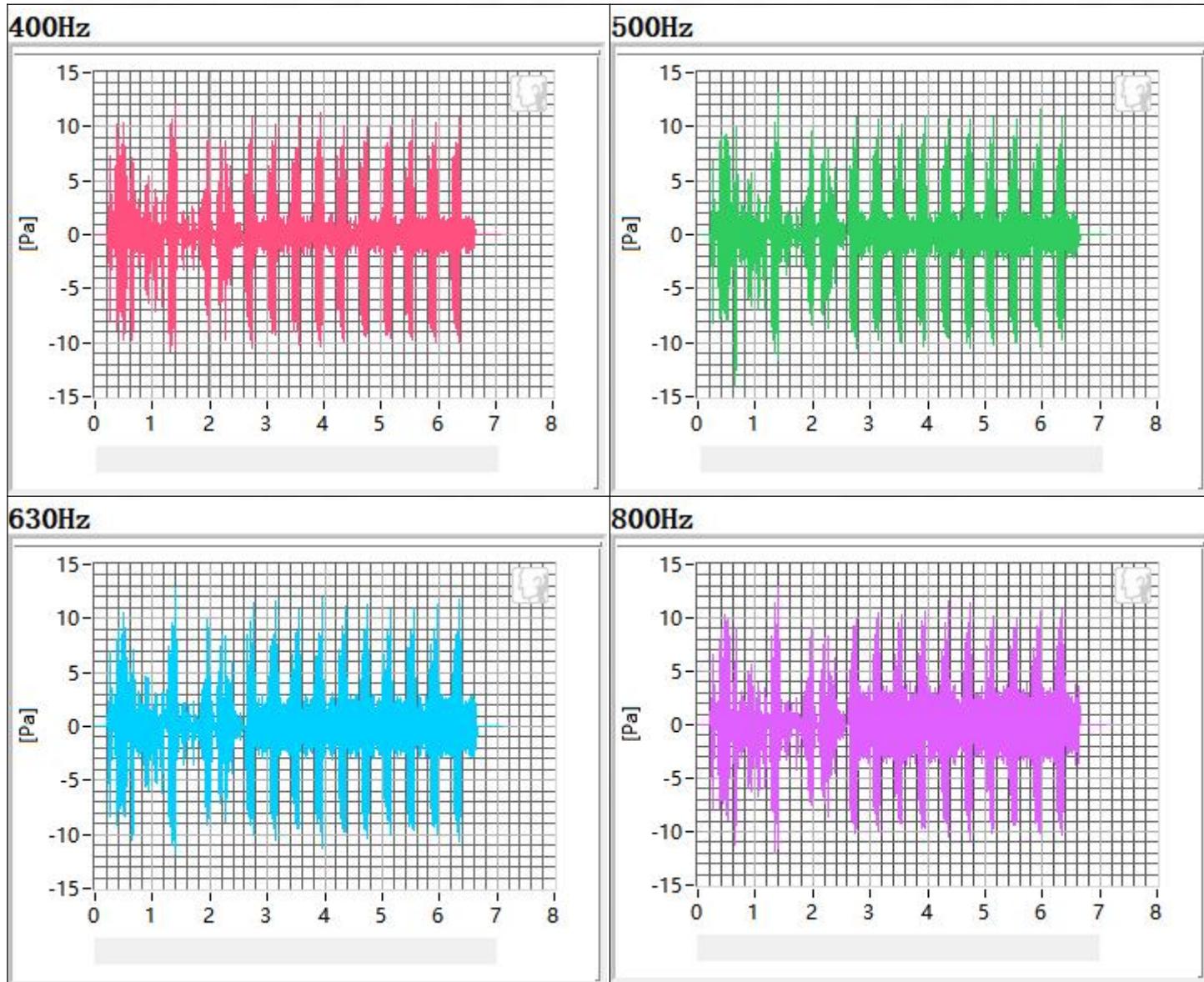
Air-interface	Band	Tested Codec	Tested Rate(kbps)
VoLTE	Band 7	AMR-NB	4.75/12.2
		AMR-WB	6.6/23.85

9. Test Result

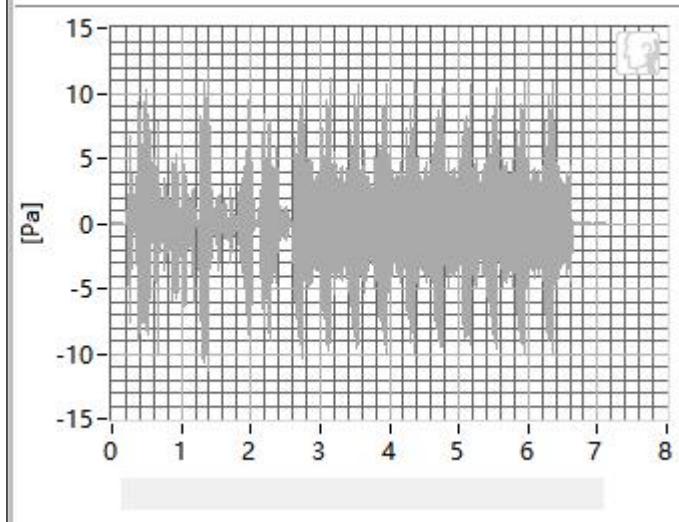

9.1 Receive volume control, distortion and noise performance

Plot No.	Mode	Channel/Freq.	BW	Codec Bitrate	Volume Level	Codec Type	Codec Bandwidth	Mounting Force (N)	Frequency(HZ)	Min PN-SDNR (dB)	PN-SDNR Limb(dB)	Signal Quality (dB)	Conversational Gain	FCC CG Limit (dB)	CG Margin (dB)	Verdict
1	LTE FDD Band 7	21350/2560.0MHz	20MHz_QPSK_1_0	12.20	Max	AMR	NB	8N	3150	20.46	20.00	96.31	26.31	6.00	20.31	Pass
				12.20	Max	AMR	NB	2N	3150	21.34	20.00	96.92	26.92	6.00	20.92	
				23.85	Max	AMR	WB	8N	3150	20.62	20.00	96.42	26.42	6.00	20.42	
				23.85	Max	AMR	WB	2N	3150	21.54	20.00	96.98	26.98	6.00	20.98	

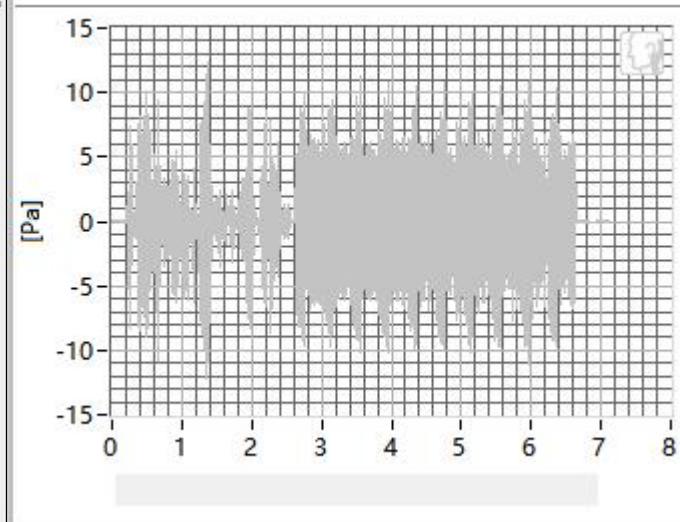
9.2 Receive acoustic frequency response performance


Plot No.10	Mode	Channel/Freq.	BW	Volume Level	Codec Type	Codec Bandwidth	Mounting Force (N)	RFR
								Test Result
1	LTE FDD Band 7	21350/2560.0MHz	20MHz_QPSK_1_0	Max	AMR	NB	2N	Pass
				Max	AMR	NB	8N	
				Max	AMR	WB	2N	
				Max	AMR	WB	8N	

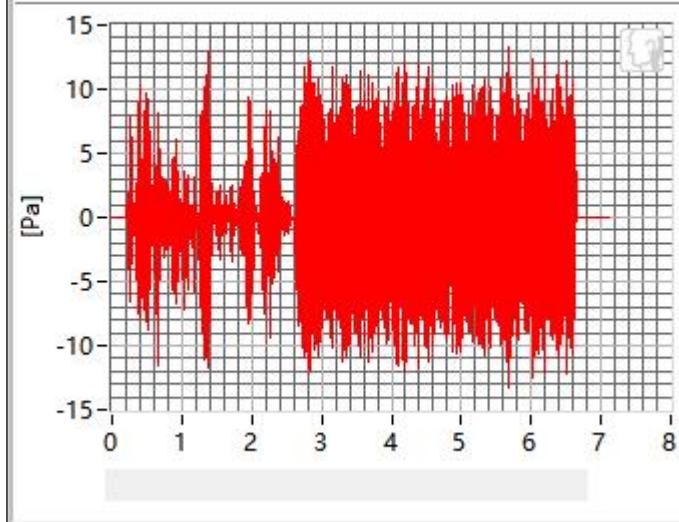
10. EUT photograph

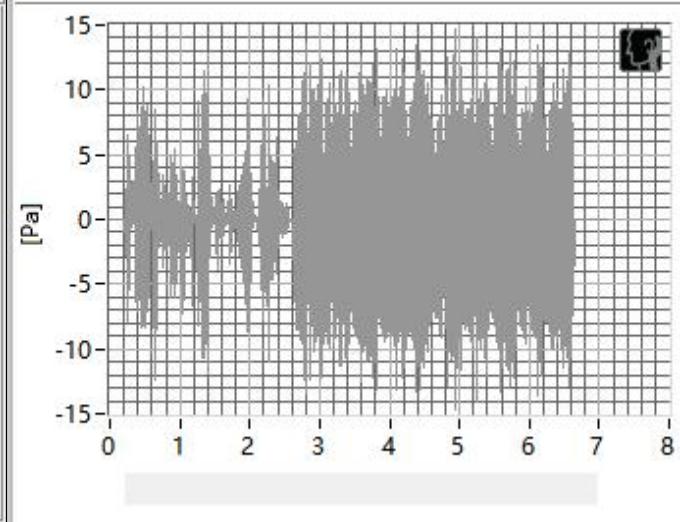


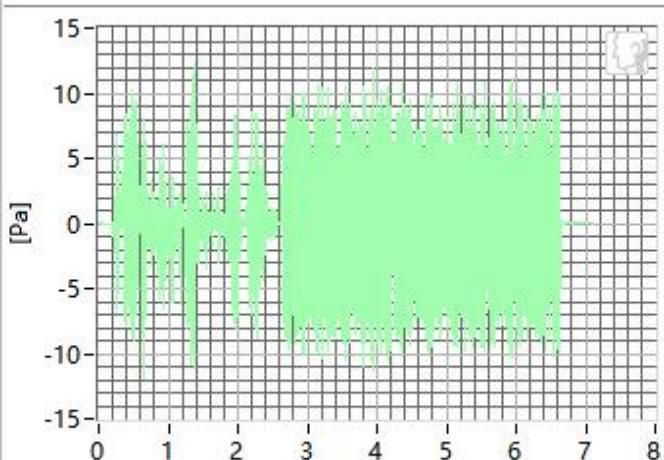
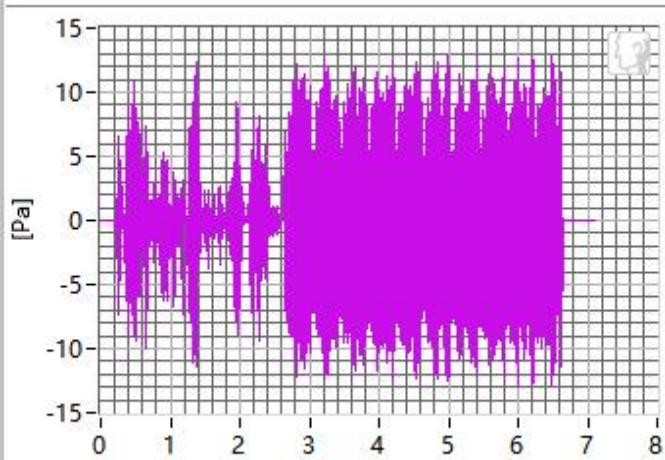
Volume Control Verification Test Results


Date of Testing	Test Location	Air Interface Equipment	Acoustical Calibrator	HATS Sens.(dB)	Ambient Noise(dBA)
17/4/2025	JB HATS R	CMW 500	B&K 4231 & UA1546	97.02	32.69
17/4/2025	JB HATS R	CMW 500	B&K 4231 & UA1546	97.13	32.45
17/4/2025	JB HATS R	CMW 500	B&K 4231 & UA1546	97.18	32.51

ANNEX A Test Data**1. LTE band 7 in channel 21350****1.1 Receive Distortion and Noise 8N NB**


1000Hz


1250Hz

1600Hz

2000Hz

2500Hz

3150Hz

Frequency
SDNR
Frequency
SDNR

400Hz 25.09 dB

1250Hz 25.38 dB

500Hz 25.21 dB

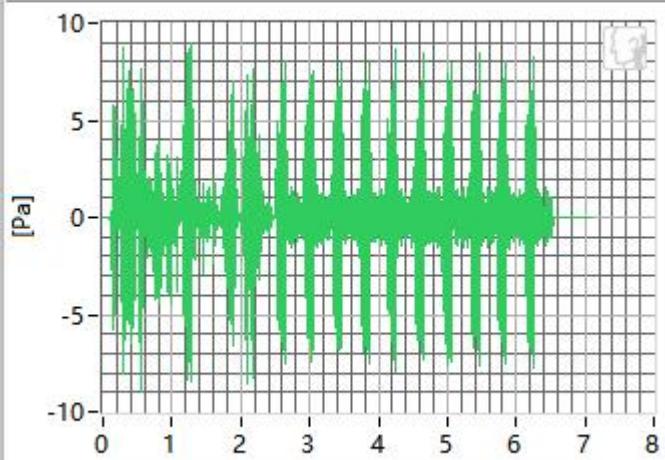
1600Hz 26.08 dB

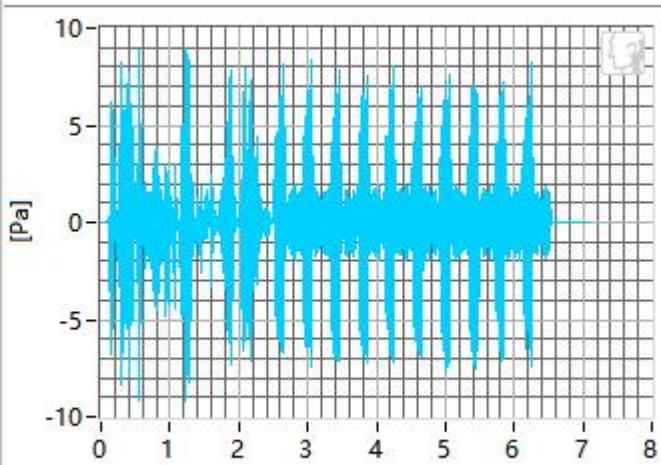
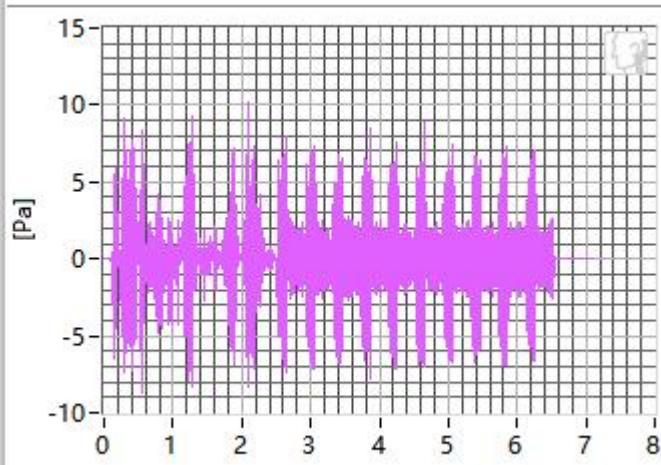
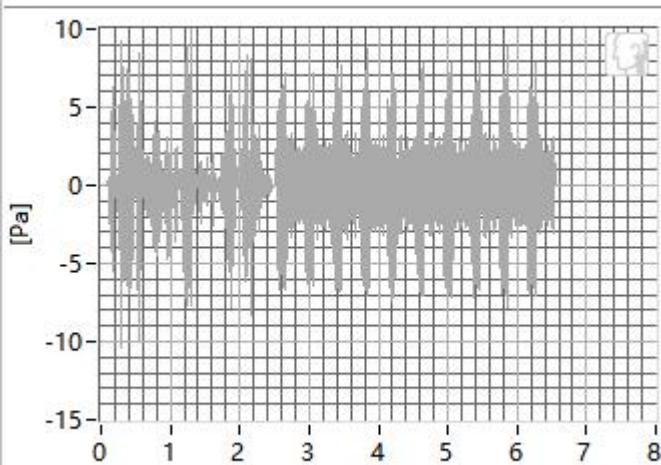
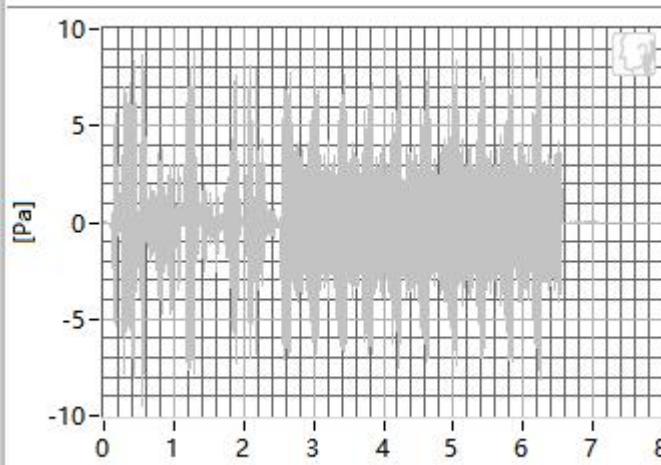
630Hz 23.60 dB

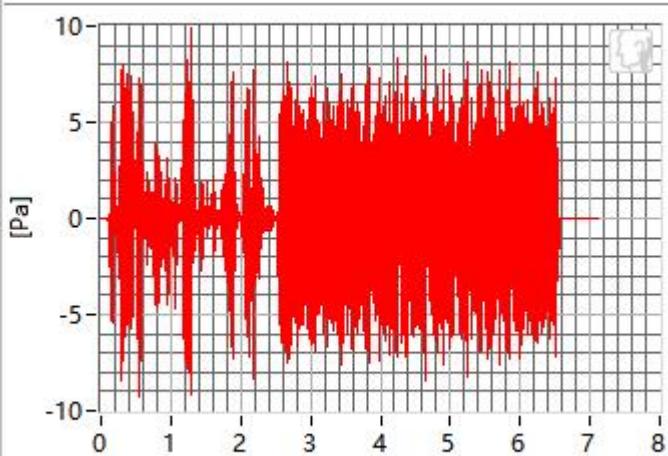
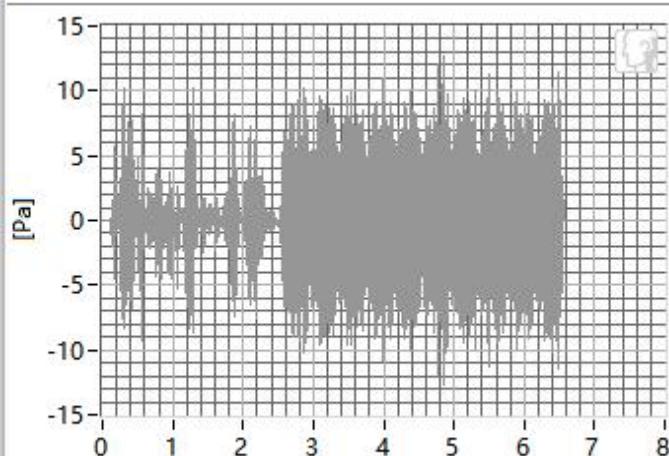
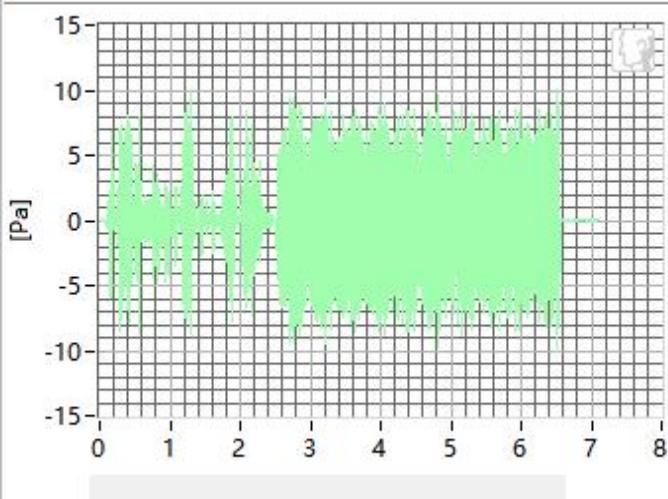
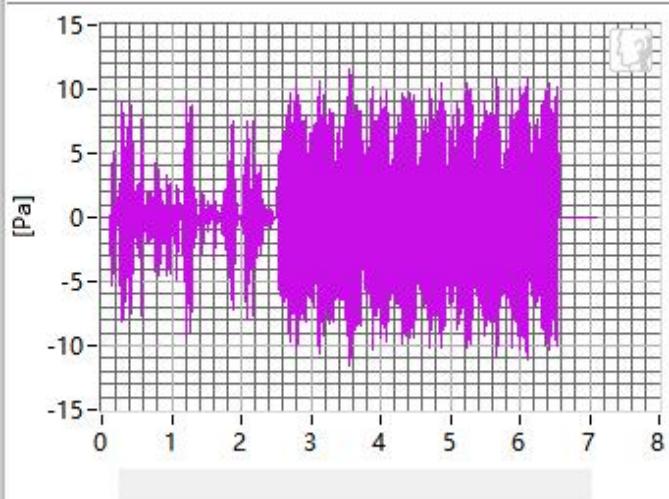
2000Hz 23.46 dB

800Hz 20.63 dB

2500Hz 21.30 dB


1000Hz 24.45 dB

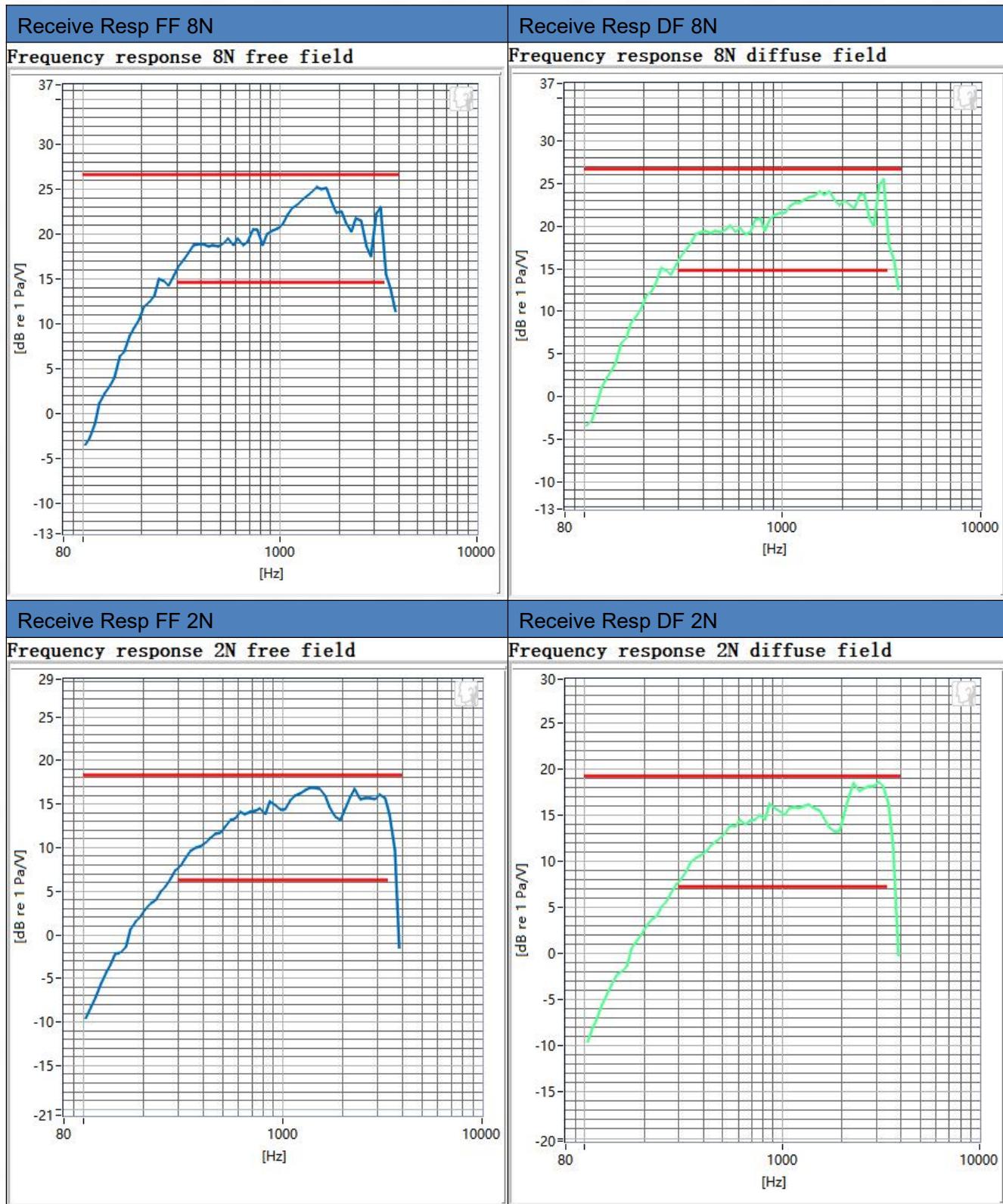




3150Hz 20.46 dB





All SDNRs were greater than 20.0 dB, requirement was met. Smallest SDNR was 20.46 dB at 3150 Hz.

3.2 Receive Distortion and Noise 2N NB

400Hz

500Hz


630Hz**800Hz****1000Hz****1250Hz**

1600Hz

2000Hz

2500Hz

3150Hz

Frequency	SDNR	Frequency	SDNR
400Hz	29.07 dB	1250Hz	23.57 dB
500Hz	27.84 dB	1600Hz	26.16 dB
630Hz	27.63 dB	2000Hz	24.13 dB
800Hz	21.67 dB	2500Hz	23.81 dB
1000Hz	23.74 dB	3150Hz	21.34 dB

All SDNRs were greater than 20.0 dB, requirement was met. Smallest SDNR was 21.34 dB at 3150Hz.

3.3 Receive Frequency Response

ANNEX B Test Setup Photo

ANNEX C CALIBRATION REPORT

Please refer the document "CALIBRATION REPORT.pdf".

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

--END OF REPORT--