

RF Test Report

For

Applicant name: FOXX Development Inc.

Address: 3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA

EUT name: Tablet PC

Brand name: MIRO, FOXX, FOXXD, AIRVOICE, FOXXD HTH

Model number: C10 Pro

Series model number: N/A

FCC ID: 2AQRM-C10PRO

Issued By

Company name: BTF Testing Lab (Shenzhen) Co., Ltd.

Address: 101/201/301, Building 1, Block 2, Tantou Industrial Park, Tantou

Community, Songgang Subdistrict, Bao'an District, Shenzhen, China

Report number: BTF250620R00404

Test standards: FCC CFR Title 47 Part 15 Subpart E (§ 15.407)

Chris Liu /Project envine

Test conclusion: Pass

Date of sample receipt: 2025-06-20

Test date: 2025-06-21 to 2026-07-09

Date of issue: 2025-07-18

Prepared by:

Ryan.CJ /EMC manager

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Revision History									
Version Issue date Revisions content									
R_V0	2025-07-18	Original							
N. f.									
Note: Once the revision has be	en made, then previous versions repo	orts are invalid.							

Table of Contents

1 Introduction	
1.1 Laboratory Location	4
1.2 Laboratory Facility	
1.3 Announcement	4
2 Product Information	
2.1 Application Information	
2.2 Manufacturer Information	
2.3 Factory Information	
2.4 General Description of Equipment under Test (EUT)	
2.5 Technical Information	
2.6 Channel List	
3 Test Information	
3.1 Test Standards	
3.2 Summary of Test	
3.3 Uncertainty of Test	
3.4 Additions to, deviations, or exclusions from the method	
3.5 Test Auxiliary Equipment	
3.6 Test Equipment List	
4 Test Configuration	
4.1 Environment Condition	
4.2 Test mode	10
4.3 Test Channel of EUT	
4.4 Test software	
4.5 Test procedure	
4.6 Test Setup Block	
5 Technical requirements specification	
5.1 Antenna Requirement	
5.2 Conducted Emission at AC power line	16
5.2.1 Test Data:	16
5.3 Emissions in Restricted Frequency Bands	19
5.3.1 Test Data:	2
5.4 Undesirable emission limits (below 1GHz)	24
5.4.1 Test Data:	
5.5 Undesirable emission limits (Above 1GHz)	28
5.5.1 Test Data:	30
5.6 Duty Cycle	3
5.6.1 Test Data:	3
5.7 Emission bandwidth and Occupied bandwidth	36
5.7.1 Test Data:	3
5.8 Maximum Conducted Output Power	38
5.8.1 Test Data:	39
5.9 Power Spectral Density	40
5.9.1 Test Data:	
5.10 Frequency Stability Measurement	
5.10.1 Test Data:	42
6 Test Setup Photos	
7 EUT Constructional Details (EUT Photos)	43

Report Number: BTF250620R00404

1 Introduction

1.1 Laboratory Location

Test location:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	101/201/301, Building 1, Block 2, Tantou Industrial Park,Tantou Community, Songgang Subdistrict, Bao'an District, Shenzhen, China
Description:	All measurement facilities used to collect the measurement data are located at 101/201/301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Subdistrict, Bao'an District, Shenzhen, China
Phone number:	+86-0755-23146130
Fax number:	+86-0755-23146130

1.2 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1409

BTF Testing Lab (Shenzhen) Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The test firm Registration No. is 695374.

CNAS - Registration No.: CNAS L17568

BTF Testing Lab (Shenzhen) Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L17568.

A2LA - Registration No.: 6660.01

BTF Testing Lab (Shenzhen) Co., Ltd. is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories.

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.
- (7) All entrusted information in this report is provided by the client and has been confirmed through consultation with the client; The testing items for this report have been discussed and confirmed with the client, and our company is only responsible for the content reflected in the report.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

2 Product Information

2.1 Application Information

Company name:	FOXX Development Inc.
Address:	3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA

2.2 Manufacturer Information

Company name:	FOXX Development Inc.
Address:	3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA

2.3 Factory Information

Company name:	FOXX Development Inc.		
Address:	3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA		

2.4 General Description of Equipment under Test (EUT)

EUT name	Tablet PC
Under test model name	C10 Pro
Series model name	N/A
Description of model name differentiation	N/A
Hardware Version	N/A
Software Version	N/A
Rating:	Li-ion polymer Battery DC 3.8V / 5000mAh 19Wh AC Power Adapter: Model: HJ-0502000W2-US Input: 100-240V ~50/60Hz 0.3A Output: 5.0V===2.0A 10.0W

2.5 Technical Information

Operation frequency:	Band 1: 5150MHz ~ 5250MHz Band 2A: 5250MHz ~ 5350MHz Band 2C: 5470MHz ~ 5725MHz Band 3: 5725MHz ~ 5850MHz
Channel number:	Band 1/2: 4, Band 3: 11, Band 4: 5 (for 802.11a/n-HT20/ac-VHT20) Band 1/2/4: 2, Band 3: 5 (for 802.11n-HT40/ac-VHT40) Band 1/2/4: 1, Band 3: 2 (for 802.11ac-VHT80)
Modulation technology: (IEEE 802.11a/n)	OFDM-BPSK, QPSK, 16QAM, 64QAM
Modulation technology: (IEEE 802.11ac)	OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM
Data rate:	802.11a: 6Mbps, 9Mbps etc., and up to 54Mbps 802.11n-HT20: 6.5Mbps, 13Mbps etc., and up to 72.2Mbps 802.11n-HT40: 13.5Mbps, 27Mbps etc., and up to 150Mbps

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 5 of 44

	802.11ac-VHT20: 6.5Mbps, 13Mbps etc., and up to 86.7Mbps 802.11ac-VHT40: 13.5Mbps, 27Mbps etc., and up to 200Mbps 802.11ac-VHT80: 29.3Mbps, 58.5Mbps etc., and up to 433.3Mbps
Equipment type:	Adaptive equipment
Max. Conducted Power:	13.43 dBm
Antenna type:	Internal Antenna
Antenna gain:	3.91 dBi (declare by Applicant)
Antenna transmit mode:	SISO (1TX, 1RX)

2.6 Channel List

Band 1: 5150MHz ~ 5250MHz								
20N	20MHz 40MHz 80MHz 160MHz							
Channel	Frequency	Channel	Frequency	Channel Frequency		Channel	Frequency	
36	5180	38	5190	42	5210	50	5250	
40	5200	46	5230			-		
48	5240							

Band 2A: 5250MHz ~ 5350MHz								
20N	20MHz 40MHz 80MHz 160MHz							
Channel	Frequency	Channel	Channel Frequency		Frequency	Channel	Frequency	
52	5260	54	5270	58	5290	50	5250	
60	5300	62	5310					
64	5320							

Band 2C: 5470MHz ~ 5725MHz								
20N	20MHz 40MHz 80MHz 160MHz							
Channel	Frequency	Channel	Channel Frequency		Frequency	Channel	Frequency	
100	5500	102	5510	106	5530	114	5570	
120	5600	118	5590	122	5610	-		
140	5700	134	5670			-		

Band 3: 5725MHz ~ 5850MHz					
20MHz 40MHz 80MHz				MHz	
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
157	5785	159	5795		
165	5825				

3 Test Information

3.1 Test Standards

Identity	Document Title		
FCC CFR Title 47 Part 15 Subpart E (§15.407)	Unlicensed National Information Infrastructure Devices		
ANSI C63.10-2020	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices		
KDB 789033 D02 General U-NII Test Procedures New Rules v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E		

3.2 Summary of Test

Clauses	Test Items	Result
Part 15.203	Antenna requirement	PASS
47 CFR 15.207(a)	Conducted Emission at AC power line	PASS
47 CFR 15.407(a)(1)(iv)- (B1), (a)(2)-(B2/3), (a)(3)(i)-(B4)	Duty Cycle	PASS
47 CFR 15.407(a)(12)	26dB Emission Bandwidth 99% Occupied Bandwidth	PASS
47 CFR 15.407(a)(1)(iv)- (B1), (a)(2)-(B2/3), (a)(3)(i)-(B4)	Maximum Conducted Output Power	PASS
47 CFR 15.407(a)(1)(iv)- (B1), (a)(2)-(B2/3), (a)(3)(i)-(B4)	Power Spectral Density	PASS
47 CFR 15.407(e)	6dB Emission Bandwidth	PASS
47 CFR 15.205 47 CFR 15.209 47 CFR 15.407(b)(1) - (B1), (2) -(B2), (3) -(B3), (4) -(B4), (9), (10)	Unwanted Emissions	PASS
47 CFR 15.407(g)	Frequency Stability	PASS

Remark:

- 1. Pass: met the requirements.
- 2. N/A: not applicable.

3.3 Uncertainty of Test

Measurement	Value
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Supply voltages	±3 %

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 7 of 44

101/201/ 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Email: info@btf-lab.com Tel: +86-755-23146130 http://www.btf-lab.com Version: 1/00

Time	±5 %
Conducted Emission for LISN (9kHz ~ 150kHz)	±2.97 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.45 dB
Radiated Emission (30MHz ~ 1000MHz)	±4.80 dB
Radiated Emission (1GHz ~ 18GHz)	±4.82 dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.4 Additions to, deviations, or exclusions from the method

None

3.5 Test Auxiliary Equipment

No.	Description	Manufacturer	Model	Serial Number	Certification
1	N/A	N/A	N/A	N/A	N/A

3.6 Test Equipment List

Radiated test method					
Test Equipment	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
EMI Receiver	Rohde &Schwarz	ESCI7	101032	2024/10/25	2025/10/24
Signal Analyzer	Rohde & Schwarz	FSQ40	100010	2024/10/25	2025/10/24
Log periodic antenna	Schwarzbeck	VULB 9168	01328	2024/10/28	2025/10/27
Preamplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9744	00246	2024/09/24	2025/09/23
Horn Antenna (1GHz ~18GHz)	Schwarzbeck	BBHA9120D	2597	2024/10/30	2025/10/29
Horn Antenna (15GHz ~ 40GHz)	SCHWARZBECK	BBHA9170	1157	2024/10/24	2025/10/23
Preamplifier (1GHz ~ 40GHz)	TST Pass	LNA10180G45	246	2024/09/24	2025/09/23
Test Software	Frad	EZ_EMC	Version	on: FA-03A2 R	E+

Conducted Emission Test					
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
EMI Receiver	Rohde & Schwarz	ESCI3	101422	2024/10/25	2025/10/24
V-LISN	Schwarzbeck	NSLK 8127	01073	2024/10/25	2025/10/24
Coaxial Switcher	Schwarzbeck	CX210	CX210	2024/10/25	2025/10/24
Pulse Limiter	Schwarzbeck	VTSD 9561-F	00953	2024/10/25	2025/10/24
Test Software	Frad	EZ_EMC	Version: EMC-CON 3A1.1+		

Conducted test method					
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	Keysight	N9020A	MY50410020	2024/10/25	2025/10/24

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 8 of 44

ESG Vector Signal Generator	Agilent	E4438C	MY45094854	2024/10/25	2025/10/24
MXG Vector Signal Generator	Agilent	N5182A	MY46240163	2024/10/25	2025/10/24
Wideband Radio Communication Tester	Rohde&Schwarz	CMW500	161997	2024/10/25	2025/10/24
Temperature Humidity Chamber	ZZCKONG	ZZ-K02A	20210928007	2024/10/25	2025/10/24
DC Power Supply	Tongmen	etm-6050c	20211026123	2024/10/25	2025/10/24
RF Control Unit	Techy	TR1029-1	1	2024/10/25	2025/10/24
RF Sensor Unit	Techy	TR1029-2	/	2024/10/25	2025/10/24
Test Software	TST Pass	/	Version: 2.0		

4 Test Configuration

4.1 Environment Condition

Selected Values During Tests				
Temperature	Relative Humidity	Ambient Pressure		
Normal: +15°C to +35°C Extreme: -30°C to +50°C	20% to 75%	86 kPa to 106 kPa		

4.2 Test mode

(TM1)Transmitting mode:	Keep the EUT in continuously transmitting mode with modulation			
We have verified the construction and function in typical operation. All the test items were carried out with				
the EUT in above test modes.				

Clauses	Test Items	Test mode
47 CFR 15.207(a)	Conducted Emission at AC power line	TM1
47 CFR 15.407(a)(1)(iv)- (B1), (a)(2)-(B2/3), (a)(3)(i)-(B4)	Duty Cycle	TM1
47 CFR 15.407(a)(12)	26dB Emission Bandwidth 99% Occupied Bandwidth	TM1
47 CFR 15.407(a)(1)(iv)- (B1), (a)(2)-(B2/3), (a)(3)(i)-(B4)	Maximum Conducted Output Power	TM1
47 CFR 15.407(a)(1)(iv)- (B1), (a)(2)-(B2/3), (a)(3)(i)-(B4)	Power Spectral Density	TM1
47 CFR 15.407(e)	6dB Emission Bandwidth	TM1
47 CFR 15.205 47 CFR 15.209 47 CFR 15.407(b)(1) - (B1), (2) -(B2), (3) -(B3), (4) -(B4), (9), (10)	Unwanted Emissions	TM1
47 CFR 15.407(g)	Frequency Stability	TM1

4.3 Test Channel of EUT

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Operation frequency: 5150 MHz – 5250 MHz									
		802.11b/g/n-H	T20/ac-VHT20						
Lowest	channel	Middle	channel	Highest channel					
Channel No.	Frequency (MHz)	Channel No.	Channel No. Frequency (MHz)		Frequency (MHz)				
36	5180	40	5200	48	5240				
802.11n-HT40/ac-VHT40									

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 10 of 44

Lowest	channel	Middle	channel	Highest channel							
Channel No.	Frequency (MHz)	Channel No. Frequency (MHz)		Channel No.	Frequency (MHz)						
38	5190	1	1	46	5230						
	802.11ac-VHT80										
Lowest	channel	Middle	channel	Highest	channel						
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)						
1	1	42 5210		1	1						

Operation frequency: 5250 MHz – 5350 MHz 802.11b/g/n-HT20/ac-VHT20										
Lowest	channel	Middle	channel	Highest	channel					
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)					
52	5260	56	5280	64	5320					
		802.11n-HT4	10/ac-VHT40							
Lowest	channel	Middle	channel	Highest channel						
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)					
54	5270	/	/	62	5310					
	802.11ac-VHT80									
Lowest	channel	Middle	channel	Highest	channel					
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)					
		58	5290							

Operation frequency: 5470 MHz – 5725 MHz 802.11b/g/n-HT20/ac-VHT20										
Lowest	Lowest channel Middle channel Highest channel									
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)					
100	5500	112 5560		140	5700					
		802.11n-HT4	40/ac-VHT40							
Lowest	channel	Middle	channel	Highest channel						
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)					
102	5510	118	5590	134	5670					

802.11ac-VHT80									
Lowest	channel	Middle	channel	Highest channel					
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)				
106	5530	1	/	122	5610				

Operation frequency: 5725 MHz – 5850 MHz 802.11b/g/n-HT20/ac-VHT20										
Lowest	channel	Middle	channel	Highest	channel					
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)					
149	5745	157	5785	165	5825					
	802.11n-HT40/ac-VHT40									
Lowest	channel	Middle	channel	Highest channel						
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)					
151	5755	1	1	159	5795					
	802.11ac-VHT80									
Lowest	channel	Middle	channel	Highest	channel					
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)					
		155	5775							

4.4 Test software

Test software:	Version:	Power Class:
FCC assist	1.0.0.2	Band1/2: 18 Band3/4: 0

Report Number: BTF250620R00404

4.5 Test procedure

AC Power Line Conducted Emission

The EUT is connected to the power mains through a LISN which provides $50~\Omega/50~\mu H$ of coupling impedance for the measuring instrument. The test frequency range is from 150 kHz to 30 MHz. The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels that are more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be remeasured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed.

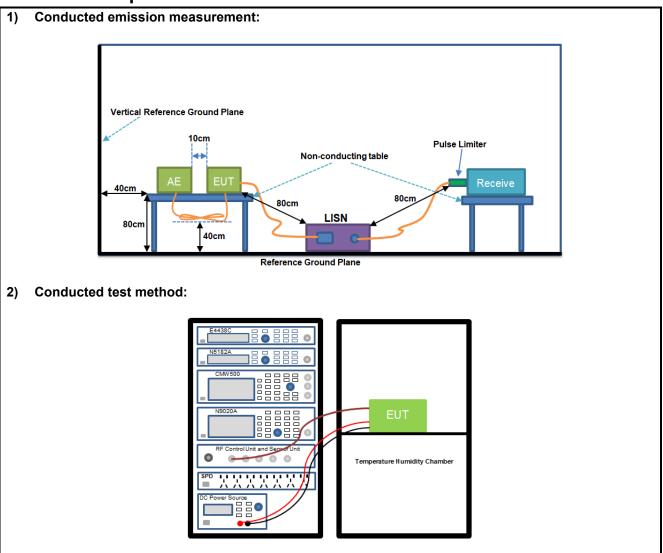
- 1. Level= Read Level+ Cable Loss+ LISN Factor
- 2. Margin=Level-Limit=Reading+factor-Limit

Radiated test method

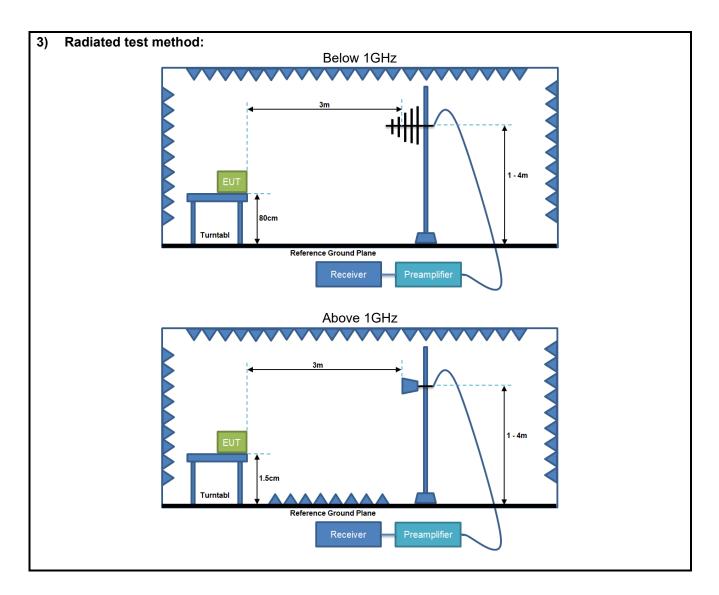
- 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
- 3. Open the test software to control the test antenna and test turntable. Perform the test, recorded the test results.
- 4. The substitution antenna shall be used to replace the equipment under test.
- 5. The reference point of the substitution antenna shall coincide with the volume centre of the UUT when its antenna is internal.
- 6. Set the required test frequency for the signal generator, adjust the emission level, until the spectrum analyzer reading on the receiving link is consistent with the recorded value in step 3, and the recorded signal generator emission level.
- 7. Final results = S.G. output (dBm) + Antenna Gain(dB/dBi) Cable Loss (dB). This report only reflects the final results.
- 1. Level=Read Level + Antenna Factor + Cable Loss Preamp Factor
- 2. Margin=Level-Limit=Reading+factor-Limit

Conducted test method

- 1. The WiFi antenna port of EUT was connected to the test port of the test system through an RF cable.
- 2. The EUT is keeping in continuous transmission mode and tested in all modulation modes.
- 3. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 13 of 44



4.6 Test Setup Block

Report Number: BTF250620R00404

5 Technical requirements specification

5.1 Antenna Requirement

§15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

§15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

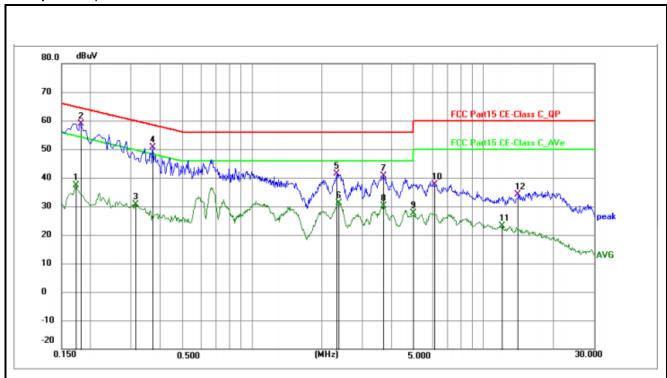
The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is 3.91 dBi. See product internal photos for details.

5.2 Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).								
Test Method:		Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices							
Test Limit:	Frequency of emission (MHz) 0.15-0.5 0.5-5 5-30 *Decreases with the logarithm of the	Conducted limit (dBµV) Quasi-peak Average 66 to 56* 56 to 46* 56 46 60 50							
Test Setup:	See section 4.6 for test setup descri Appendix I Test Setup Photos	ption. The photo of test se	tup please refer to						
Operating Environment:									
Temperature:	22.5℃								
Humidity:	46%RH								
Atmospheric Pressure:	1010 hpa								
Test voltage:	AC 120V 60Hz								

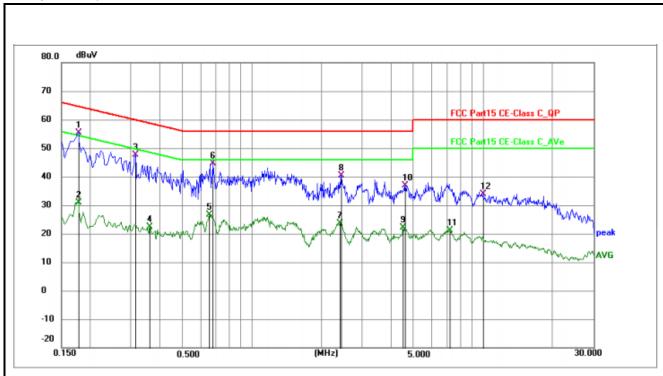
5.2.1 Test Data:

Remark: The report only reflects the test data of worst mode.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 16 of 44

Test phase: L phase



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1723	26.91	10.59	37.50	54.85	-17.35	AVG	Р	
2 *	0.1814	48.33	10.62	58.95	64.42	-5.47	QP	Р	
3	0.3120	20.08	10.67	30.75	49.92	-19.17	AVG	Р	
4	0.3704	39.88	10.67	50.55	58.49	-7.94	QP	Р	
5	2.3413	30.78	10.69	41.47	56.00	-14.53	QP	Р	
6	2.3640	20.54	10.69	31.23	46.00	-14.77	AVG	Р	
7	3.6960	29.94	10.73	40.67	56.00	-15.33	QP	Р	
8	3.6960	19.28	10.73	30.01	46.00	-15.99	AVG	Р	
9	4.9920	16.63	11.03	27.66	46.00	-18.34	AVG	Р	
10	6.1573	26.42	11.30	37.72	60.00	-22.28	QP	Р	
11	12.0120	12.21	10.89	23.10	50.00	-26.90	AVG	Р	
12	14.0640	23.01	11.06	34.07	60.00	-25.93	QP	Р	

Test phase: N phase

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1 *	0.1770	44.74	10.56	55.30	64.63	-9.33	QP	Р	
2	0.1770	20.29	10.56	30.85	54.63	-23.78	AVG	Р	
3	0.3120	37.06	10.64	47.70	59.92	-12.22	QP	Р	
4	0.3613	11.81	10.68	22.49	48.70	-26.21	AVG	Р	
5	0.6540	15.85	10.86	26.71	46.00	-19.29	AVG	Р	
6	0.6809	33.72	10.87	44.59	56.00	-11.41	QP	Р	
7	2.4000	12.78	10.95	23.73	46.00	-22.27	AVG	Р	
8	2.4405	29.50	10.95	40.45	56.00	-15.55	QP	Р	
9	4.5194	11.08	10.99	22.07	46.00	-23.93	AVG	Р	
10	4.6050	25.76	11.01	36.77	56.00	-19.23	QP	Р	
11	7.1924	9.70	11.45	21.15	50.00	-28.85	AVG	Р	
12	9.9824	22.94	11.05	33.99	60.00	-26.01	QP	Р	

5.3 Emissions in Restricted Frequency Bands

	T	· · · ·		1							
	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2)										
Test Requirement:											
	47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)										
	· / /										
Test Method:		ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6									
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of										
	5.15-5.35 GHz band sh		•								
	For transmitters operati										
	All emissions shall be li										
	or below the band edge										
	below the band edge, a										
	linearly to a level of 15. from 5 MHz above or be										
	dBm/MHz at the band e		reasing inleany	to a level of 21							
	MHz	MHz	MHz	GHz							
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15							
	¹0.495-0.505	16.69475-16.69525		5.35-5.46							
	2.1735-2.1905	16.80425-16.80475	960-1240								
	4.125-4.128	25.5-25.67	1300-1427								
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2							
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5							
	6.215-6.218	74.8-75.2 108-121.94	1660-1710 1718.8-	10.6-12.7							
Test Limit:	6.26775-6.26825	13.25-13.4									
Test Lillit.	6.31175-6.31225	123-138	2200-2300	14.47-14.5							
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2							
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4							
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12							
	8.41425-8.41475	162.0125-167.17	3260-3267								
	12.29-12.293	167.72-173.2	3332-3339								
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5							
	12.57675-12.57725 13.36-13.41	322-335.4	3600-4400	(2)							
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.										
	² Above 38.6										
	The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.										
	Except as provided else	ewhere in this subpart,	the emissions fr	rom an intentional							

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

Page 19 of 44

		. 6.11.4	. 41 6. H 2 4 . I. I .
		e field strength levels specified in	~
	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance
	0.000.0.400	0.400/5/1-11->	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Procedure:	above the ground at a 3 medegrees to determine the pub. The EUT was set 3 meter was mounted on the top of c. The antenna height is varied determine the maximum varied polarizations of the antenna d. For each suspected emisting the antenna was tuned to hoof below 30MHz, the antenna table was turned from 0 degree. The test-receiver system Bandwidth with Maximum H. If the emission level of the specified, then testing could reported. Otherwise the emitested one by one using pering a data sheet. In the radiation measurem. Transmitting mode, and four it. Repeat above procedures Remark: Level= Read Level+ Cab 2. Scan from 18GHz to 4000 points marked on above plotesting, so only above point emissions from the radiator need not be reported. As shown in this section, are based on average limits shall not exceed the maxim than 20 dB under any conditive listower than the average or. The disturbance above 1	T was placed on the top of a rotate ter fully-anechoic chamber. The osition of the highest radiation. The osition of the highest radiation of the field strength. Both hor a reset to make the measurement of the field strength. Both hor a reset to make the measurement of the field strength	table was rotated 360 ceiving antenna, which rs above the ground to rizontal and vertical ent. Its worst case and then (for the test frequency and the rotatable maximum reading. In and Specified ower than the limit is of the EUT would be nargin would be re- ed and then reported the Highest channel. Is positioning for It is the worst case. In practor It was very low. The Itild be found when itude of spurious 20dB below the limit are field strength limits the field strength limits the field strength limits are field strength limits the field strength limits are field strength limits
Test Setup:	See section 4.6 for test sets Appendix I Test Setup Photo	up description. The photo of test tos	setup please refer to
Operating Environment:			
Temperature:	22.5 ℃		
Humidity:	46%RH		

Page 20 of 44

Atmospheric Pressure:	1010 hpa
Test voltage:	DC 3.8V From Battery

5.3.1 Test Data:

Remark: The report only reflects the test data of worst mode.

	Band 1&2A: 5180 MHz - 5320 MHz Test Channel: Lowest channel, Test Polarization: Vertical								
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result		
5103.800	45.44	7.07	52.51	74.00	-21.49	Peak	Pass		
5103.800	34.18	7.07	41.25	54.00	-12.75	AV	Pass		
5150.000	48.11	7.05	55.16	74.00	-18.84	Peak	Pass		
5150.000	37.17	7.05	44.22	54.00	-9.78	AV	Pass		
	Test	Channel: Lo	west channe	, Test Polariz	ation: Horizo	ntal			
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result		
5103.800	44.69	7.07	51.76	74.00	-22.24	Peak	Pass		
5103.800	35.62	7.07	42.69	54.00	-11.31	AV	Pass		
5150.000	47.63	7.05	54.68	74.00	-19.32	Peak	Pass		
5150.000	37.58	7.05	44.63	54.00	-9.37	AV	Pass		
	Tes	st Channel: H	lighest chann	el, Test Polar	ization: Verti	cal			
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result		
5350.000	44.52	6.20	50.72	74.00	-23.28	Peak	Pass		
5350.000	35.04	6.20	41.24	54.00	-12.76	AV	Pass		
5460.000	49.15	6.27	55.42	74.00	-18.58	Peak	Pass		
5460.000	38.52	6.27	44.79	54.00	-9.21	AV	Pass		
Test Channel: Highest channel, Test Polarization: Horizontal									
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result		
5350.000	45.41	6.20	51.61	74.00	-22.39	Peak	Pass		
5350.000	36.36	6.20	42.56	54.00	-11.44	AV	Pass		
5460.000	48.03	6.27	54.30	74.00	-19.70	Peak	Pass		
5460.000	36.00	6.27	42.27	54.00	-11.73	AV	Pass		

Band 2C: 5500 MHz -5720 MHz Test Channel: Lowest channel, Test Polarization: Vertical								
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result	
5350.000	45.58	5.56	51.14	74.00	-22.86	Peak	Pass	
5350.000	36.99	5.49	42.48	54.00	-11.52	AV	Pass	
5460.000	49.69	5.63	55.32	74.00	-18.68	Peak	Pass	
5460.000	38.06	5.56	43.62	54.00	-10.38	AV	Pass	
	Test	Channel: Lo	west channel	, Test Polariz	ation: Horizo	ntal		
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result	
5350.000	43.86	5.56	49.42	74.00	-24.58	Peak	Pass	
5350.000	34.64	5.49	40.13	54.00	-13.87	AV	Pass	
5460.000	48.03	5.63	53.66	74.00	-20.34	Peak	Pass	
5460.000	37.07	5.56	42.63	54.00	-11.37	AV	Pass	
	Tes	st Channel: H	lighest chann	el, Test Polar	ization: Verti	cal		
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result	
5725.000	47.27	6.77	54.04	68.20	-14.16	Peak	Pass	
5725.000	36.82	5.53	42.35	48.20	-5.85	AV	Pass	
5730.000	43.93	6.83	50.76	68.20	-17.44	Peak	Pass	
5730.000	34.60	5.59	40.19	48.20	-8.01	AV	Pass	
Test Channel: Highest channel, Test Polarization: Horizontal								
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result	
5725.000	47.15	6.77	53.92	68.20	-14.28	Peak	Pass	
5725.000	36.81	5.53	42.34	48.20	-5.86	AV	Pass	
5730.000	43.98	6.83	50.81	68.20	-17.39	Peak	Pass	
5730.000	35.12	5.59	40.71	48.20	-7.49	AV	Pass	

Band 3: 5745 MHz - 5825 MHz Test Channel: Lowest channel, Test Polarization: Vertical									
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result		
5650.000	44.20	5.00	49.20	68.20	-19.00	Peak	Pass		
5700.000	46.90	5.07	51.97	105.20	-53.23	Peak	Pass		
5720.000	47.50	5.03	52.53	110.80	-58.27	Peak	Pass		
5725.000	49.50	5.03	54.53	122.20	-67.67	Peak	Pass		
	Test	Channel: Lo	west channel	, Test Polariz	ation: Horizo	ntal	,		
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result		
5650.000	43.42	5.00	48.42	68.20	-19.78	Peak	Pass		
5700.000	46.45	5.07	51.52	105.20	-53.68	Peak	Pass		
5720.000	47.98	5.03	53.01	110.80	-57.79	Peak	Pass		
5725.000	49.98	5.03	55.01	122.20	-67.19	Peak	Pass		
	Tes	st Channel: H	lighest chann	el, Test Polar	ization: Verti	cal			
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result		
5850.000	49.98	5.81	55.79	122.20	-66.41	Peak	Pass		
5855.000	47.98	5.80	53.78	110.80	-57.02	Peak	Pass		
5875.000	47.83	5.78	53.61	105.20	-51.59	Peak	Pass		
5925.000	43.43	5.74	49.17	68.20	-19.03	Peak	Pass		
Test Channel: Highest channel, Test Polarization: Horizontal									
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result		
5850.000	52.71	6.26	58.97	122.20	-63.23	Peak	Pass		
5855.000	50.71	6.25	56.96	110.80	-53.84	Peak	Pass		
5875.000	49.95	6.23	56.18	105.20	-49.02	Peak	Pass		
5925.000	46.40	6.19	52.59	68.20	-15.61	Peak	Pass		

5.4 Undesirable emission limits (below 1GHz)

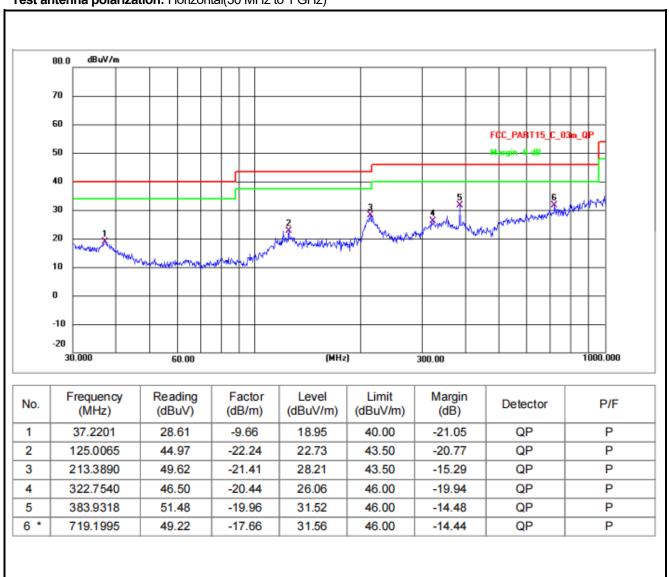
Test Method: ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6 Unwanted emissions below 1 GHz must comply with the general field strength limit set forth in § 15.209. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: Frequency (MHz) Field strength Measurement (microvolts/meter) distance (meters) 0.009-0.490 24400/F(kHz) 300 0.490-1.705 24000/F(kHz) 300 1.705-30.0 30 30 30-88 100 ** 3 88-216 150 ** 3 216-960 200 ** 3 Above 960 500 3 Below 1GHz: a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights of the test frequency of below 30MHz, the antenna was tuned to heights of the test frequency of below 30MHz, the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency below 30MHz, the antenna was tuned to heights of the detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be resteted one by one using quasi-p	Tast Davis	47 OFD Day 45 407/1 \(\text{/0} \)					
Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: Frequency (MHz) Field strength levels specified in the following table: Frequency (MHz) Field strength wheather (microvolts/meter) (meters) (0.009-0.490 2400/F(kHz) 300 0.490-1.705 24000/F(kHz) 300 0.490-1.705 24000/F(kHz) 30 30 30-88 100 ** 3 38-216 150 ** 3 34-266 200 ** 3 34-266 200 ** 3 34-266 200 ** 3 34-266 200 ** 3 34-266 300 30-266 30	Test Requirement:	47 CFR Part 15.407(b)(9)					
Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: Frequency (MHz) Field strength Measurement (microvolts/meter) Measurement (microvolts/meter) Measurement (microvolts/meter) 0.009-0.490 2400/F(kHz) 300 0.490-1.705 24000/F(kHz) 30 1.705-30.0 30 30 30-88 100 ** 3 88-216 150 ** 3 88-216 150 ** 3 216-960 200 ** 3 88-216 150 ** 3 88-216 150 ** 3 88-216 150 ** 3 88-216 150 ** 3 88-216 150 ** 3 89-216 150 ** 3 80-216-960 200 ** 3 80-216-960 200 ** 3 80-216-960 500 30 80 Below 1GHz: a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz the antenna was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that	Test Method:						
Test Limit: (microvolts/meter) distance (meters) 0.009-0.490 2400/F(kHz) 300 0.490-1.705 24000/F(kHz) 30 1.705-30.0 30 30 30-88 100 ** 3 88-216 150 ** 3 216-960 200 ** 3 Above 960 500 3 Below 1GHz: a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using quasi-peak method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 9kHz to 30MHz, the		set forth in § 15.209. Except as provided elsewher radiator shall not exceed the	ere in this subpart, the emissions e field strength levels specified ir	from an intentional the following table:			
a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using quasi-peak method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be report	Test Limit:	0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960	(microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 **	distance (meters) 300 30 30 3 3			
3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. Above 1GHz:	Procedure:	a. For below 1GHz, the EUT above the ground at a 3 medegrees to determine the pob. The EUT was set 3 or 10 which was mounted on the form of the antenna height is varied determine the maximum valiable polarizations of the antenna d. For each suspected emisting the antenna was tuned to he of below 30MHz, the antenna was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum Hf. If the emission level of the specified, then testing could reported. Otherwise the emitested one by one using quadata sheet. g. Test the EUT in the lowes h. The radiation measurement Transmitting mode, and four i. Repeat above procedures Remark: 1. Level= Read Level+ Cable 2. Scan from 9kHz to 30MH points marked on above plotesting, so only above points emissions from the radiator need not be reported. 3. The disturbance below 10 point could be found when to displayed.	ter semi-anechoic chamber. The osition of the highest radiation. I meters away from the interferent top of a variable-height antennative of the field strength. Both hore are set to make the measurement is sion, the EUT was arranged to it eights from 1 meter to 4 meters (the awas tuned to heights 1 meter) to 360 degrees to find the maximal was set to Peak Detect Function was set t	e table was rotated 360 ace-receiving antenna, tower. rs above the ground to rizontal and vertical ent. Its worst case and then for the test frequency and the rotatable table num reading. In and Specified Every than the limit is of the EUT would be reargin would be red then reported in a specifical in the Highest channel. It is positioning for the test case. It is the worst case and the worst case. It is the worst case and the worst case. It is the worst case. It is the worst case. It is the worst case and the worst case. It is the worst case.			

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

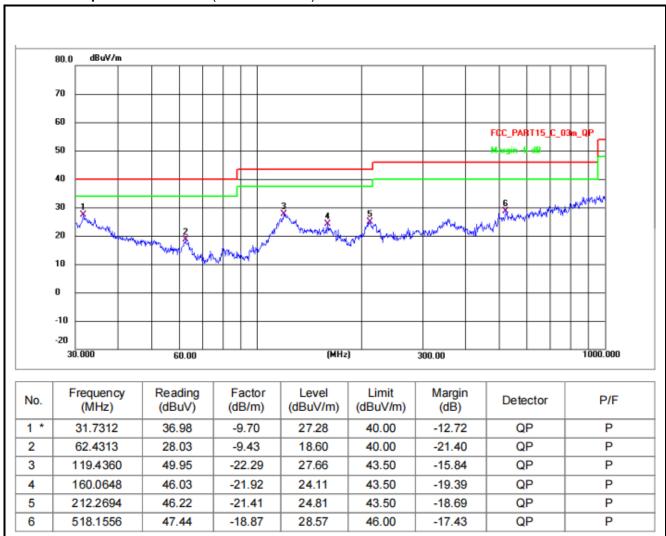
Page 24 of 44

101/201/ 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China Email: info@btf-lab.com Tel: +86-755-23146130 http://www.btf-lab.com Version: 1/00

	a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360
	degrees to determine the position of the highest radiation.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which
	was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to
	determine the maximum value of the field strength. Both horizontal and vertical
	polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then
	the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency
	of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified
	Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit
	specified, then testing could be stopped and the peak values of the EUT would be
	reported. Otherwise the emissions that did not have 10dB margin would be re-
	tested one by one using peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
	h. The radiation measurements are performed in X, Y, Z axis positioning for
	Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
	Remark:
	Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
	2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The
	points marked on above plots are the highest emissions could be found when
	testing, so only above points had been displayed. The amplitude of spurious
	emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
	3. As shown in this section, for frequencies above 1GHz, the field strength limits are
	based on average limits. However, the peak field strength of any emission shall not
	exceed the maximum permitted average limits specified above by more than 20 dB
	under any condition of modulation. For the emissions whose peak level is lower
	than the average limit, only the peak measurement is shown in the report.
	4. The disturbance above 18GHz were very low and the harmonics were the
	highest point could be found when testing, so only the above harmonics had been
	displayed.
Test Setup:	See section 4.6 for test setup description. The photo of test setup please refer to
Tool Goldp.	Appendix I Test Setup Photos
Operating Environment:	
Temperature:	22.5℃
Humidity:	46%RH
Atmospheric Pressure:	1010 hpa
Test voltage:	DC 3.8V From Battery



5.4.1 Test Data:


Remark: The report only reflects the test data of worst mode.

Test antenna polarization: Horizontal(30 MHz to 1 GHz)

Test antenna polarization: Vertical (30 MHz to 1 GHz)

5.5 Undesirable emission limits (Above 1GHz)

	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2)								
Test Requirement:	47 CFR Part 15.407(b)								
		47 CFR Part 15.407(b)(10)							
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6								
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6 For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. MHz MHz MHz GHz 0.090-0.110 16.42-16.423 399.9-410 4.5-5.15 10.495-0.505 16.69475-16.69525 608-614 5.35-5.46								
	2.1735-2.1905								
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
	4.17725-4.17775		1435-1626.5	9.0-9.2					
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5					
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4					
T41 ::	6.31175-6.31225	123-138	2200-2300	14.47-14.5					
Test Limit:	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4					
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
	8.41425-8.41475	162.0125-167.17 167.72-173.2	3260-3267 3332-3339	23.6-24.0 31.2-31.8					
	12.29-12.293 12.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
	12.57675-12.57725 13.36-13.41	322-335.4	3600-4400	(²)					
	¹ Until February 1, 1999 ² Above 38.6	o, this restricted band s	hall be 0.490-0.5	510 MHz.					
	The field strength of emissions appearing within these frequency bands shall no exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrate based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.								
	Except as provided els radiator shall not excee Frequency (MHz)		els specified in t						
	i requericy (IVII IZ)	i iciu stretigiti		เพเธสอนเซเทเซทเ					

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 28 of 44

		(microvolts/meter)	distance
		(microvoits/meter)	(meters)
	0.009-0.490	2400/E/kH=\	
	0.490-1.705	2400/F(kHz)	300 30
		24000/F(kHz)	
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Procedure:	Above 1GHz: a. For above 1GHz, the EU above the ground at a 3 medegrees to determine the pb. The EUT was set 3 metewas mounted on the top of c. The antenna height is vadetermine the maximum vapolarizations of the antennad. For each suspected emisthe antenna was tuned to hof below 30MHz, the antenwas turned from 0 degrees e. The test-receiver system Bandwidth with Maximum Hf. If the emission level of the specified, then testing could reported. Otherwise the emtested one by one using peadata sheet. g. Test the EUT in the lowe h. The radiation measurem. Transmitting mode, and four i. Repeat above procedures Remark: 1. Level= Read Level+ Cab 2. Scan from 18GHz to 400 points marked on above plotesting, so only above point emissions from the radiator need not be reported. 3. As shown in this section, based on average limits. He exceed the maximum permunder any condition of mod than the average limit, only 4. The disturbance above 1 highest point could be foundisplayed.	T was placed on the top of a rotal eter fully-anechoic chamber. The osition of the highest radiation. It is away from the interference-rela variable-height antenna tower. It is rised from one meter to four meter lue of the field strength. Both hore are set to make the measurement is sion, the EUT was arranged to it is eights from 1 meter to 4 meters on a was tuned to heights 1 meter to 360 degrees to find the maxing was set to Peak Detect Function	ating table 1.5 meters table was rotated 360 ceiving antenna, which its above the ground to rizontal and vertical ent. Its worst case and then for the test frequency and the rotatable table num reading. In and Specified cower than the limit is of the EUT would be largin would be read and then reported in the Highest channel. Its positioning for the test frequency and the reported in the Highest channel. Its positioning for the tist worst case. It was very low. The lidd be found when the found when the field strength limits are from the report. It is the worst case and then report in the report. It is the worst case are from the report. It is the worst case are from the report. It is the worst case are from the report. It is the worst case are from the report. It is the worst case are from the report. It is the worst case are from the report. It is the worst case are from the report. It is the worst case are from the report. It is the worst case are from the report. It is the worst case are from the report. It is the worst case are from the report. It is the worst case and then report the report. It is the worst case are from the report. It is the worst case are from the report. It is the worst case and then report the report. It is the worst case and then report the report. It is the worst case and then report the report
Test Setup:	Appendix I Test Setup Photo		ootap piodoo roioi to
Operating Environment:			
Temperature:	22.5℃		
Humidity:	46%RH		
Atmospheric Pressure:	1010 hpa		
	•		
Test voltage:	DC 3.8V From Battery		

5.5.1 Test Data:

Remark: The report only reflects the test data of worst mode.

Band 1: 5150 MHz - 5250 MHz								
Test Channel: Lowest channel, Test Polarization: Vertical								
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result	
10360.00	93.48	-45.18	48.30	68.20	-19.90	Peak	Pass	
10360.00	82.19	-45.18	37.01	48.20	-11.19	AVG	Pass	
15540.00	90.09	-42.94	47.15	74.00	-26.85	Peak	Pass	
15540.00	81.45	-42.94	38.51	54.00	-15.49	AVG	Pass	
	Tes	t Channel: I	owest chanr	nel, Test Pola	rization: Hor	izontal		
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result	
10360.00	92.99	-45.10	47.89	68.20	-20.31	Peak	Pass	
10360.00	81.70	-45.18	36.52	48.20	-11.68	AVG	Pass	
15540.00	89.60	-42.86	46.74	74.00	-27.26	Peak	Pass	
15540.00	80.96	-42.94	38.02	54.00	-15.98	AVG	Pass	
	To	est Channel	: Middle chan	nel, Test Pol	arization: Ve	rtical		
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result	
10400.00	90.48	-43.87	46.61	74.00	-27.39	Peak	Pass	
10400.00	79.19	-45.18	34.01	54.00	-19.99	AVG	Pass	
15600.00	87.09	-41.63	45.46	74.00	-28.54	Peak	Pass	
15600.00	78.45	-42.94	35.51	54.00	-18.49	AVG	Pass	
	Tes	st Channel:	Middle chann	el, Test Pola	rization: Hor	izontal		
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result	
10400.00	90.03	-43.87	46.16	74.00	-27.84	Peak	Pass	
10400.00	78.74	-45.18	33.56	54.00	-20.44	AVG	Pass	
15600.00	86.64	-41.63	45.01	74.00	-28.99	Peak	Pass	
15600.00	78.00	-42.94	35.06	54.00	-18.94	AVG	Pass	
Test Channel: Highest channel, Test Polarization: Vertical								
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result	
10480.00	92.57	-43.75	48.82	68.20	-19.38	Peak	Pass	
10480.00	81.28	-45.18	36.10	48.20	-12.10	AVG	Pass	
15720.00	89.18	-41.51	47.67	74.00	-26.33	Peak	Pass	
15720.00	80.54	-42.94	37.60	54.00	-16.40	AVG	Pass	
	Tes	t Channel: H	lighest chani	nel, Test Pola	rization: Hor	rizontal		
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result	

10480.00	92.18	-43.75	48.43	68.20	-19.77	Peak	Pass
10480.00	80.89	-45.18	35.71	48.20	-12.49	AVG	Pass
15720.00	88.79	-41.51	47.28	74.00	-26.72	Peak	Pass
15720.00	80.15	-42.94	37.21	54.00	-16.79	AVG	Pass

Remark: Test frequency up to 40GHz and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

Band 2A: 5250 MHz - 5350 MHz Test Channel: Lowest channel, Test Polarization: Vertical								
Frequency	Reading	Factor	Level	Limit	Marging	rticai		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector	Result	
10500.00	91.08	-45.08	46.00	74.00	-28.00	Peak	Pass	
10500.00	91.08	-45.08	46.00	54.00	-8.00	AVG	Pass	
15750.00	87.39	-42.74	44.65	74.00	-29.35	Peak	Pass	
15750.00	78.75	-42.74	36.01	54.00	-17.99	AVG	Pass	
	Tes	t Channel: L	owest chanr	nel, Test Pola	rization: Hor	izontal		
Frequency	Reading	Factor	Level	Limit	Marging	D	Б	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector	Result	
10500.00	90.60	-45.07	45.53	74.00	-28.47	Peak	Pass	
10500.00	90.60	-45.08	45.52	54.00	-8.48	AVG	Pass	
15750.00	86.91	-42.73	44.18	74.00	-29.82	Peak	Pass	
15750.00	78.27	-42.74	35.53	54.00	-18.47	AVG	Pass	
Test Channel: Middle channel, Test Polarization: Vertical								
Frequency	Reading	Factor	Level	Limit	Marging	Detector	Result	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector	result	
10560.00	91.36	-44.41	46.95	74.00	-27.05	Peak	Pass	
10560.00	91.36	-45.08	46.28	54.00	-7.72	AVG	Pass	
15840.00	87.67	-42.07	45.60	74.00	-28.40	Peak	Pass	
15840.00	79.03	-42.74	36.29	54.00	-17.71	AVG	Pass	
	Tes	t Channel: I	Middle chann	el, Test Pola	rization: Hori	izontal		
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result	
10560.00	90.91	-44.41	46.50	74.00	-27.50	Peak	Pass	
10560.00	90.91	-45.08	45.83	54.00	-8.17	AVG	Pass	
15840.00	87.22	-42.07	45.15	74.00	-28.85	Peak	Pass	
15840.00	78.58	-42.74	35.84	54.00	-18.16	AVG	Pass	
	Te	st Channel:	Highest char	nnel, Test Po	larization: Ve	ertical		
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result	
10640.00	92.46	-44.94	47.52	74.00	-26.48	Peak	Pass	
10640.00	92.46	-45.08	47.38	74.00	-26.62	AVG	Pass	

15960.00	88.77	-42.60	46.17	74.00	-27.83	Peak	Pass
15960.00	80.13	-42.74	37.39	74.00	-36.61	AVG	Pass
	Tes	t Channel: F	lighest chani	nel, Test Pola	rization: Hor	rizontal	
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result
10640.00	92.07	-44.94	47.13	74.00	-26.87	Peak	Pass
10640.00	92.07	-45.08	46.99	74.00	-27.01	AVG	Pass
15960.00	88.38	-42.60	45.78	74.00	-28.22	Peak	Pass
15960.00	79.74	-42.74	37.00	74.00	-37.00	AVG	Pass
Remark: Te	st frequency	up to 40GHz	and the emis	ssion levels of	f other freque	ncies are low	er than the limit

20dB, not show in test report.

	Band 2C: 5470 MHz - 5725 MHz Test Channel: Lowest channel, Test Polarization: Vertical						
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result
11000.00	85.94	-43.46	42.48	74.00	-31.52	Peak	Pass
11000.00	74.87	-44.77	30.10	54.00	-23.90	AVG	Pass
16500.00	81.61	-40.18	41.43	68.20	-26.77	Peak	Pass
16500.00	72.57	-41.49	31.08	48.20	-17.12	AVG	Pass
	Tes	t Channel: L	owest chanr	nel, Test Pola	rization: Hor	izontal	
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result
11000.00	87.22	-43.46	43.76	74.00	-30.24	Peak	Pass
11000.00	76.15	-44.77	31.38	54.00	-22.62	AVG	Pass
16500.00	82.89	-40.18	42.71	68.20	-25.49	Peak	Pass
16500.00	73.85	-41.49	32.36	48.20	-15.84	AVG	Pass
	To	est Channel:	: Middle chan	nel, Test Pol	arization: Ve	rtical	
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result
11120.00	88.44	-44.34	44.10	74.00	-29.90	Peak	Pass
11120.00	77.37	-44.77	32.60	54.00	-21.40	AVG	Pass
16800.00	84.11	-41.06	43.05	68.20	-25.15	Peak	Pass
16800.00	75.07	-41.49	33.58	48.20	-14.62	AVG	Pass
Test Channel: Middle channel, Test Polarization: Horizontal							
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result
11120.00	87.55	-44.34	43.21	74.00	-30.79	Peak	Pass
11120.00	76.48	-44.77	31.71	54.00	-22.29	AVG	Pass
16800.00	83.22	-41.06	42.16	68.20	-26.04	Peak	Pass
16800.00	71.32	-41.49	29.83	48.20	-18.37	AVG	Pass

	Test Channel: Highest channel, Test Polarization: Vertical						
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result
11400.00	86.59	-44.66	41.93	74.00	-32.07	Peak	Pass
11400.00	76.64	-44.77	31.87	54.00	-22.13	AVG	Pass
17100.00	82.26	-41.38	40.88	68.20	-27.32	Peak	Pass
17100.00	74.34	-41.49	32.85	48.20	-15.35	AVG	Pass
	Tes	t Channel: H	lighest chani	nel, Test Pola	rization: Hor	rizontal	
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result
11400.00	86.24	-44.66	41.58	74.00	-32.42	Peak	Pass
11400.00	77.26	-44.77	32.49	54.00	-21.51	AVG	Pass
17100.00	81.91	-41.38	40.53	68.20	-27.67	Peak	Pass
	74.96	-41.49	33.47	48.20	-14.73	AVG	Pass
17100.00	14.30	-41.43	33.47	40.20	-14.70	7,10	1 033

Remark: Test frequency up to 40GHz and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

	Band 3: 5725 MHz - 5825 MHz Test Channel: Lowest channel, Test Polarization: Vertical						
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result
11490.00	94.99	-44.28	50.71	74.00	-23.29	Peak	Pass
11490.00	84.29	-44.70	39.59	54.00	-14.41	AVG	Pass
17235.00	88.66	-40.19	48.47	68.20	-19.73	Peak	Pass
17235.00	78.03	-40.61	37.42	48.20	-10.78	AVG	Pass
	Tes	t Channel: I	owest chanr	nel, Test Pola	rization: Hor	izontal	
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result
11490.00	94.99	-44.28	50.71	74.00	-23.29	Peak	Pass
11490.00	84.29	-44.70	39.59	54.00	-14.41	AVG	Pass
17235.00	88.66	-40.19	48.47	68.20	-19.73	Peak	Pass
17235.00	78.03	-40.61	37.42	48.20	-10.78	AVG	Pass
	Test Channel: Middle channel, Test Polarization: Vertical						
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result
11570.00	94.94	-43.22	51.72	74.00	-22.28	Peak	Pass
11570.00	84.24	-44.70	39.54	54.00	-14.46	AVG	Pass
17355.00	88.61	-39.13	49.48	68.20	-18.72	Peak	Pass
17355.00	77.98	-40.61	37.37	48.20	-10.83	AVG	Pass

	Test Channel: Middle channel, Test Polarization: Horizontal						
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result
11570.00	94.48	-43.22	51.26	74.00	-22.74	Peak	Pass
11570.00	83.78	-44.70	39.08	54.00	-14.92	AVG	Pass
17355.00	88.15	-39.13	49.02	68.20	-19.18	Peak	Pass
17355.00	77.52	-40.61	36.91	48.20	-11.29	AVG	Pass
	Te	est Channel:	Highest char	nnel, Test Po	larization: Ve	ertical	
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result
11650.00	95.67	-43.58	52.09	74.00	-21.91	Peak	Pass
11650.00	84.97	-44.70	40.27	54.00	-13.73	AVG	Pass
17475.00	89.34	-39.49	49.85	68.20	-18.35	Peak	Pass
17475.00	78.71	-40.61	38.10	48.20	-10.10	AVG	Pass
	Tes	t Channel: F	lighest chani	nel, Test Pola	rization: Hor	rizontal	
Frequency (MHz)	Reading (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Marging (dB)	Detector	Result
11650.00	95.32	-43.58	51.74	74.00	-22.26	Peak	Pass
11650.00	84.62	-44.70	39.92	54.00	-14.08	AVG	Pass
17475.00	88.99	-39.49	49.50	68.20	-18.70	Peak	Pass
17475.00	78.36	-40.61	37.75	48.20	-10.45	AVG	Pass

Remark: Test frequency up to 40GHz and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

5.6 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2020
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.
Test Setup:	See section 4.6 for test setup description. The photo of test setup please refer to Appendix I Test Setup Photos
Operating Environment:	
Temperature:	22.5℃
Humidity:	46%RH
Atmospheric Pressure:	1010 hpa
Test voltage:	DC 3.8V From Battery

5.6.1 Test Data:

Please Refer to Appendix-5G WIFI for Details

5.7 Emission bandwidth and Occupied bandwidth

	idwidth and Occupied bandwidth
Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Procedure:	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. Otherwise, peak detection and max hold mode (until the trace

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

BTF Testing Lab (Shenzhen) Co., Ltd.

101/201/ 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China Email: info@btf-lab.com
Tel: +86-755-23146130

http://www.btf-lab.com
V Version: 1/00

	power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. c) Detector = Peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Test Setup:	See section 4.6 for test setup description. The photo of test setup please refer to Appendix I Test Setup Photos
Operating Environment:	
Temperature:	22.5℃
Humidity:	46%RH
Atmospheric Pressure:	1010 hpa
Test voltage:	DC 3.8V From Battery

5.7.1 Test Data:

Please Refer to Appendix-5G WIFI for Details

5.8 Maximum Conducted Output Power

O.O Maximum OC	nauctea Output Power
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.3
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the
Test Limit:	directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 38 of 44

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

BTF Testing Lab (Shenzhen) Co., Ltd.

101/201/ 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China Email: info@btf-lab.com
Tel: +86-755-23146130

http://www.btf-lab.com Version: 1/00

	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Procedure:	Method SA-1 a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal. b) Set RBW = 1 MHz. c) Set VBW >= 3 MHz. d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so that narrowband signals are not lost between frequency bins.) e) Sweep time = auto. f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode. g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle >= 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run." h) Trace average at least 100 traces in power averaging (rms) mode. i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.
Test Setup:	See section 4.6 for test setup description. The photo of test setup please refer to Appendix I Test Setup Photos
Operating Environment:	
Temperature:	22.5℃
Humidity:	46%RH
Atmospheric Pressure:	1010 hpa
Test voltage:	DC 3.8V From Battery

5.8.1 Test Data:

Please Refer to Appendix-5G WIFI for Details

5.9 Power Spectral Density

5.9 Power Spect	rai Density
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.5
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum
	power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
Test Limit:	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.

Page 40 of 44

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

BTF Testing Lab (Shenzhen) Co., Ltd.

101/201/ 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China Email: info@btf-lab.com
Tel: +86-755-23146130

http://www.btf-lab.com Version: 1/00

	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Procedure:	a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power" (This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum. c) Make the following adjustments to the peak value of the spectrum, if applicable: 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum. 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. d) The result is the PPSD. e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This requirement also permits use of resolution bandwidths less than 1 MHz "provided that the measured power is integrated to show the total power over the measurement bandwidth" (i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply: 1) Set RBW >= 1 / T, where T is defined in 12.2 a). 2) Set VBW >= [3 × RBW]. 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.
Test Setup:	See section 4.6 for test setup description. The photo of test setup please refer to Appendix I Test Setup Photos
Operating Environment:	
Temperature:	22.5°C
Humidity:	46%RH
Atmospheric Pressure:	1010 hpa
Test voltage:	DC 3.8V From Battery
Test voltage.	DO 3.0V From Dattery

5.9.1 Test Data:

Please Refer to Appendix-5G WIFI for Details

5.10 Frequency Stability Measurement

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
Test Method:	ANSI C63.10: 2020
Test Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Setup:	See section 4.6 for test setup description. The photo of test setup please refer to Appendix I Test Setup Photos
Operating Environment:	
Temperature:	22.5°C
Humidity:	46%RH
Atmospheric Pressure:	1010 hpa
Test voltage:	DC 3.8V From Battery

5.10.1 Test Data:

Please Refer to Appendix-5G WIFI for Details

6 Test Setup Photos

Please refer to the Appendix I Test Setup Photos

7 EUT Constructional Details (EUT Photos)

Please refer to the Appendix II External Photos & Appendix III External Photos

BTF Testing Lab (Shenzhen) Co., Ltd.

101/201/301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Subdistrict, Bao'an District, Shenzhen, China

www.btf-lab.com

--END OF REPORT--