

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC160827

1 of 32 Page:

FCC Radio Test Report FCC ID: 2AQLJYM-P20

Original Grant

Report No. TB-FCC160827

Shenzhen Wintop Electronics Co.,Ltd. **Applicant**

Equipment Under Test (EUT)

EUT Name Wireless Charger

Model No. YM-P20

Serial Model No. YM-P10, YM-M10, YM-M20, YM-P25, YM-P30, YM-C10,

YM-U10, YM-U20, YM-U30, YM-U40, POA01, WI-S1, WI-X1,

WI-U1

: Wintop, BONAI, ONPRO, POWEROWL **Brand Name**

Receipt Date 2018-06-22

Test Date 2018-06-23 to 2018-07-02

Issue Date 2018-07-02

FCC Part 15: 2017, Subpart C(15.209) **Standards**

ANSI C63.10: 2013 **Test Method**

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness Engineer

: IVAN SU

Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Page: 2 of 32

Contents

COL	NIENIS	
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	5
	1.4 Description of Support Units	5
	1.5 Description of Test Mode	5
	1.6 Description of Test Software Setting	6
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	
2.	TEST SUMMARY	8
3.	TEST EQUIPMENT	9
4.	CONDUCTED EMISSION TEST	
	4.1 Test Standard and Limit	10
	4.2 Test Setup	10
	4.3 Test Procedure	10
	4.4 EUT Operating Mode	11
	4.5 Test Data	11
5.	RADIATED EMISSION TEST	12
	5.1 Test Standard and Limit	12
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	14
	5.5 Test Data	14
6.	BANDWIDTH MEASUREMENT	15
	6.1 Test Standard and Limit	15
	6.2 Test Setup	
	6.3 Test Procedure	15
	6.4 EUT Operating Condition	15
	6.5 Test Data	
ATT	TACHMENT A CONDUCTED EMISSION TEST DATA	
	ACHMENT B RADIATED EMISSION TEST DATA	
	ACHMENT C BANDWIDTH MEASUREMENT DATA	

Page: 3 of 32

Revision History

Report No.	Version	Description	Issued Date
TB-FCC160827	Rev.01	Initial issue of report	2018-07-02
033	1000	The same of the sa	
2 MORE	THE PERSON NAMED IN		6000
D N	3		
TO:33	3	THE PARTY OF THE P	TODA
	(UI)	TO TO	
	1177	District Control	
	TUDY	A COLUMN TO THE PARTY OF THE PA	
TODA			TOBI
	0.53	CHILD TO THE PARTY OF THE PARTY	
TO DE	THE PARTY OF		

Page: 4 of 32

1. General Information about EUT

1.1 Client Information

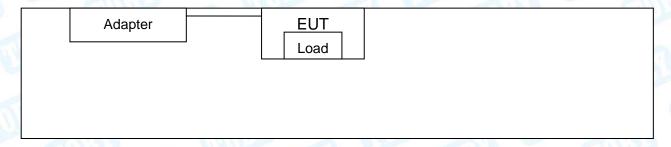
Applicant		Shenzhen Wintop Electronics Co.,Ltd.	
Address	Huaguan Industrial Park, No.46 Xinhe Road, Baolai Industrial Shangmugu, Pinghu Town, Longgang District, Shenzhen, Chi		
Manufacturer	1	Shenzhen Wintop Electronics Co.,Ltd.	
Address : Huaguan Industrial Park, No.46 Xinhe Road, Baolai Shangmugu, Pinghu Town, Longgang District, Shen		Huaguan Industrial Park, No.46 Xinhe Road, Baolai Industrial District Shangmugu, Pinghu Town, Longgang District, Shenzhen, China	

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Wireless Charger	TODAY TO		
Models No.		YM-P20, YM-P10, YM-M10, YM-M20, YM-P25, YM-P30, YM-C1 YM-U10, YM-U20, YM-U30, YM-U40, POA01, WI-S1, WI-X1, WI-U1			
Model Difference		All these models are identical in the same PCB layout and circuit, the only difference is appearance.			
The state of the s		Operation Frequency:	110KHz-150KHz		
Product Description	ė	Modulation Type:	MSK		
Description		Antenna:	Coil Antenna		
Power Supply	:	Input: 5V/2A, 9V/ 1.67A Output: 5V/1A, 9V/ 1.1A			
Charging Distance):	≤8mm			
Software Version	•	YM_P20(004)V02			
Hardware Version		: YM_P20(004)V02 : Please refer to the User's Manual			
Connecting I/O Port(S)					

Note

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.


(2) Channel List:

Low Frequency(KHz)	Middle Frequency(KHz)	High Frequency(KHz)			
113	128	150			
Note: Operation Frequency=113+1*k,	Note: Operation Frequency=113+1*k, k∈ (0,1,2,3,37)				

Page: 5 of 32

1.3 Block Diagram Showing the Configuration of System Tested Charging + TX Mode

1.4 Description of Support Units

Name	Model	S/N	Manufacturer	Used "√"				
Load	5V/9V	339 V	CHIPSVISION	1				
Adapter	EP-TA200		SAMSUNG	√				
Input: AC100-240V,50/60Hz, 0.5A Output: DC 9V, 1.67A or DC 5V, 2A.								

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Pretest Mode					
Final Test Mode Description					
Mode 1	TX Mode(Low CH)				
Mode 2	TX Mode(Middle CH)				
Mode 3 TX Mode(High CH)					
Mode 4 Keeping TX Mode(5V/1A)					
Mode 5	Keeping TX Mode(9V/1.1A)				
	For Conducted Test				
Final Test Mode Description					
Mode 4	Keeping TX Mode(5V/1A)				
Mode 5	Keeping TX Mode(9V/1.1A)				

Page: 6 of 32

	For Radiated Test				
Final Test Mode Description					
Mode 4	Keeping TX Mode(5V/1A)				
Mode 5	Keeping TX Mode(9V/1.1A)				
	For Bandwidth Test				
Final Test Mode	Description				
Mode 1	TX Mode(Low CH)				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	N/A
Frequency	113-150KHz

Page: 7 of 32

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 8 of 32

2. Test Summary

FCC Part 15 Subpart C(15.209)							
Standard Section Test Item Judgment Remark							
15.207(a)	Conducted Emission	PASS	N/A				
15.209(a)(f)	Radiated emissions	PASS	N/A				
15.215	Bandwidth	PASS	N/A				

Page: 9 of 32

3. Test Equipment

Equipment Manufacturer Model No. Social No. Loct Col. Due								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Date			
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 20, 2017	Jul. 19, 2018			
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 20, 2017	Jul. 19, 2018			
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 20, 2017	Jul. 19, 2018			
LISN	Rohde & Schwarz	ENV216	101131	Jul. 21, 2017	Jul. 20, 2018			
Radiation Emission	n Test							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date			
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018			
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 20, 2017	Jul. 19, 2018			
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019			
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019			
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019			
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019			
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 03, 2017	Jul. 02, 2018			
Pre-amplifier	Sonoma	310N	185903	Mar.17, 2018	Mar. 16, 2019			
Pre-amplifier	HP	8449B	3008A00849	Mar.17, 2018	Mar. 16, 2019			
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.17, 2018	Mar. 16, 2019			
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A			
Antenna Conducto	ed Emission							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date			
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018			
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 20, 2017	Jul. 19, 2018			
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018			
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018			
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018			
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Oct. 26, 2017	Oct. 25, 2018			
DE Dower Server	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Oct. 26, 2017	Oct. 25, 2018			
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Oct. 26, 2017	Oct. 25, 2018			
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Oct. 26, 2017	Oct. 25, 2018			

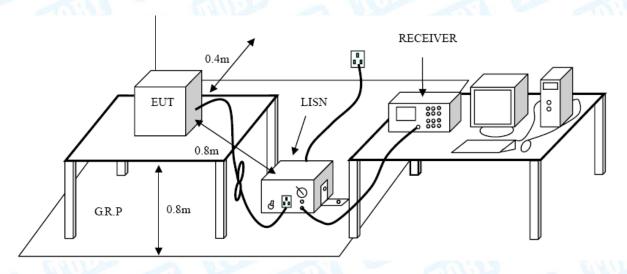
Page: 10 of 32

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit


Conducted Emission Test Limit

Fraguency	Maximum RF Lin	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 11 of 32

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 12 of 32

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.209(a)(f)

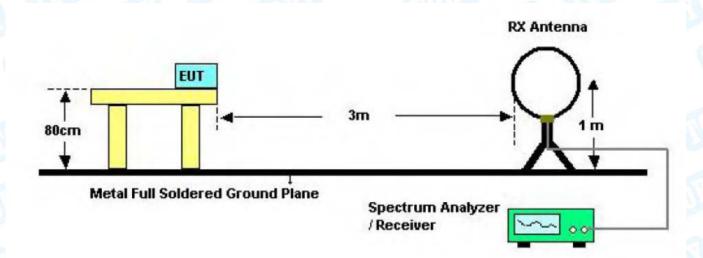
5.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

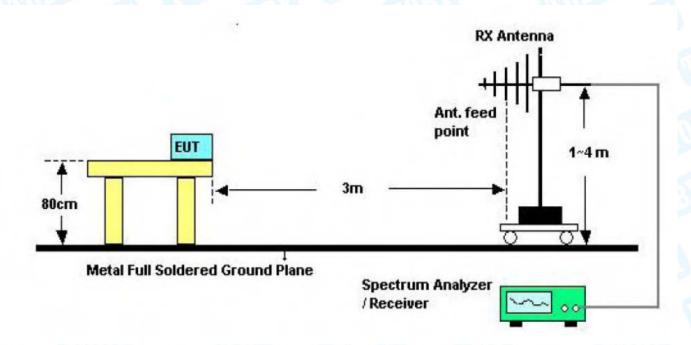
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3	m (dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)



Page: 13 of 32

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 14 of 32

5.3 Test Procedure

(1) Measurements at frequency 9KHz~30MHz and Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The table was rotated 360 degrees to determine the position of the highest radiation.

- (2) 9KHz~30MHz the test antenna 1m away from the ground, Both 0° and 90° antenna are set to make measurement.
 - Below 1GHz the test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW= 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW= 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple

(8) For the actual test configuration, please see the test setup photo.

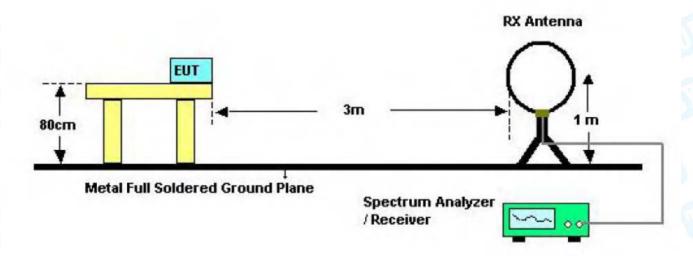
5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Please refer to the Attachment B.

Page: 15 of 32


6. Bandwidth Measurement

6.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.215

6.2 Test Setup

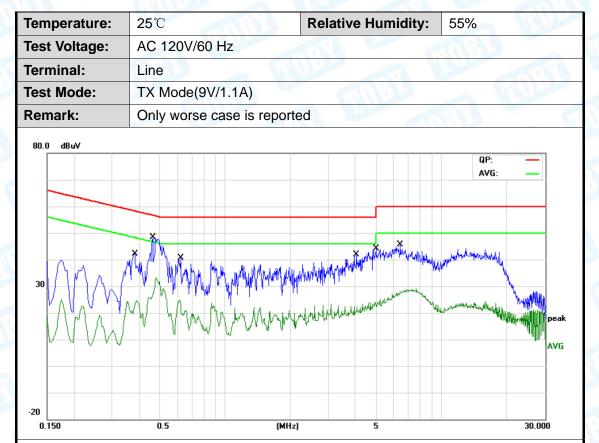
6.3 Test Procedure

- 1. The transmitter shall be operated at its maximum carrier power measured under normal test conditions;
- 2. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.
- 3. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data


Please refer to the Attachment C.

Page: 16 of 32

Attachment A-- Conducted Emission Test Data

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.3820	24.86	9.60	34.46	58.23	-23.77	QP
2		0.3820	13.71	9.60	23.31	48.23	-24.92	AVG
3	*	0.4620	29.42	9.60	39.02	56.66	-17.64	QP
4		0.4620	17.63	9.60	27.23	46.66	-19.43	AVG
5		0.6220	21.55	9.61	31.16	56.00	-24.84	QP
6		0.6220	11.86	9.61	21.47	46.00	-24.53	AVG
7		4.0340	20.25	9.68	29.93	56.00	-26.07	QP
8		4.0340	10.46	9.68	20.14	46.00	-25.86	AVG
9		4.9740	22.85	9.74	32.59	56.00	-23.41	QP
10		4.9740	11.89	9.74	21.63	46.00	-24.37	AVG
11		6.4220	25.42	9.83	35.25	60.00	-24.75	QP
12		6.4220	17.03	9.83	26.86	50.00	-23.14	AVG

Emission Level= Read Level+ Correct Factor

Page: 17 of 32

Temperatu	ure: 2	.5℃		Relati	ve Hum	idity:	55%
Test Volta	ge: A	C 120V/60	Hz		21/1/3		- W
Terminal:	N	leutral		500		Call	
Test Mode	: T	X Mode(9V	/1.1A)	11:		62	
Remark:		Only worse o	ase is repor	ted	Min a		A ABOVE
80.0 dBuV							
							QP: — AVG: —
		*	Jarde Jarden		*	×	
MA	Smy P	* * * * * * * * * * * * * * * * * * *	. X	المرادات	philippe of the manifestation	Williamshin	AND HAMPING TO THE REAL PROPERTY OF THE PERTY OF THE PERT
30	1 N W	/_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A SAN SAN SAN SAN SAN SAN SAN SAN SAN SA	W/Ayle-Meller August au	Leligion	Aera.	Mary Auton.
$\Lambda \Lambda \Lambda$	V MAIN P	" And Ma	100 10 10 101	المرابات المراب المراب المراب	hideliferantilation	" Vellighteden	
- IM (M)	V. 1. N	A .A. (7)	Nu Ost Du Shart	All works			יוואווי" רי
20		0.5					20.00
0.150		0.5	(MHz)	l	5		30.00
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1 *	MHz 0.4900	dBuV 28.89	dB 9.58	dBuV 38.47		dB -17.70	Detector
1 *					56.17		
1 * 2 3	0.4900	28.89	9.58	38.47	56.17 46.17	-17.70	QP
	0.4900	28.89 18.06	9.58 9.58	38.47 27.64	56.17 46.17 56.00	-17.70 -18.53	QP AVG
3	0.4900 0.4900 0.6140	28.89 18.06 21.45	9.58 9.58 9.59	38.47 27.64 31.04	56.17 46.17 56.00 46.00	-17.70 -18.53 -24.96	QP AVG QP
3	0.4900 0.4900 0.6140 0.6140	28.89 18.06 21.45 13.13	9.58 9.58 9.59 9.59	38.47 27.64 31.04 22.72	56.17 46.17 56.00 46.00 56.00	-17.70 -18.53 -24.96 -23.28	QP AVG QP AVG
3 4 5	0.4900 0.4900 0.6140 0.6140 0.8900	28.89 18.06 21.45 13.13 19.08	9.58 9.58 9.59 9.59 9.59	38.47 27.64 31.04 22.72 28.67	56.17 46.17 56.00 46.00 56.00 46.00	-17.70 -18.53 -24.96 -23.28 -27.33	QP AVG QP AVG QP
3 4 5 6	0.4900 0.4900 0.6140 0.6140 0.8900 0.8900	28.89 18.06 21.45 13.13 19.08 9.81	9.58 9.58 9.59 9.59 9.59 9.59	38.47 27.64 31.04 22.72 28.67 19.40	56.17 46.17 56.00 46.00 56.00 56.00	-17.70 -18.53 -24.96 -23.28 -27.33 -26.60	QP AVG QP AVG QP AVG
3 4 5 6 7	0.4900 0.4900 0.6140 0.6140 0.8900 0.8900 1.4180	28.89 18.06 21.45 13.13 19.08 9.81 18.95	9.58 9.58 9.59 9.59 9.59 9.59 9.60	38.47 27.64 31.04 22.72 28.67 19.40 28.55	56.17 46.17 56.00 46.00 56.00 46.00 46.00	-17.70 -18.53 -24.96 -23.28 -27.33 -26.60 -27.45	QP AVG QP AVG QP AVG QP AVG
3 4 5 6 7 8	0.4900 0.4900 0.6140 0.6140 0.8900 0.8900 1.4180 1.4180	28.89 18.06 21.45 13.13 19.08 9.81 18.95 8.61	9.58 9.58 9.59 9.59 9.59 9.60 9.60	38.47 27.64 31.04 22.72 28.67 19.40 28.55 18.21	56.17 46.17 56.00 46.00 56.00 46.00 46.00 60.00	-17.70 -18.53 -24.96 -23.28 -27.33 -26.60 -27.45 -27.79	QP AVG QP AVG QP AVG QP AVG
3 4 5 6 7 8 9	0.4900 0.4900 0.6140 0.6140 0.8900 0.8900 1.4180 1.4180 6.1540	28.89 18.06 21.45 13.13 19.08 9.81 18.95 8.61 24.04	9.58 9.58 9.59 9.59 9.59 9.60 9.60 10.13	38.47 27.64 31.04 22.72 28.67 19.40 28.55 18.21 34.17	56.17 46.17 56.00 46.00 56.00 46.00 60.00 50.00	-17.70 -18.53 -24.96 -23.28 -27.33 -26.60 -27.45 -27.79 -25.83	QP AVG QP AVG QP AVG QP AVG QP AVG

12

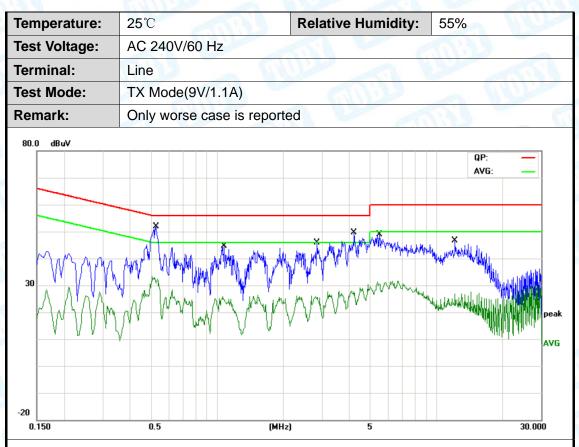
8.0620

14.70

Emission Level= Read Level+ Correct Factor

10.27

24.97


50.00 -25.03

AVG

Page: 18 of 32

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.5260	31.38	9.60	40.98	56.00	-15.02	QP
2	*	0.5260	21.67	9.60	31.27	46.00	-14.73	AVG
3		1.0740	23.73	9.60	33.33	56.00	-22.67	QP
4		1.0740	14.39	9.60	23.99	46.00	-22.01	AVG
5		2.8420	25.12	9.64	34.76	56.00	-21.24	QP
6		2.8420	15.33	9.64	24.97	46.00	-21.03	AVG
7		4.2220	27.52	9.69	37.21	56.00	-18.79	QP
8		4.2220	16.87	9.69	26.56	46.00	-19.44	AVG
9		5.5020	28.73	9.77	38.50	60.00	-21.50	QP
10		5.5020	20.04	9.77	29.81	50.00	-20.19	AVG
11		12.1580	27.91	10.23	38.14	60.00	-21.86	QP
12		12.1580	15.02	10.23	25.25	50.00	-24.75	AVG

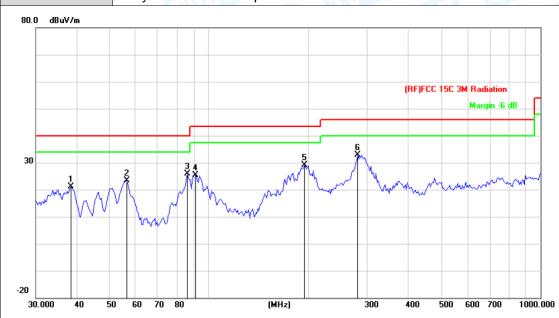
Emission Level= Read Level+ Correct Factor

19 of 32 Page:


Temperature	: 25 ℃		a W	Relative H	lumidity	55 %	
Test Voltage:	AC 2	40V/60 Hz	AU T				A MINIS
Terminal:	Neuti	al			6	160	
Test Mode:	TX M	ode(9V/1.1	A)			1	
Remark:	Only	worse case	e is reported			1	HATT
30 dBuV					ng ng hang ng hing ng n	A	P:
0.150	0.5	Reading	(MHz)	Measure-			30.000
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.5140	30.28	9.60	39.88		-16.12	QP
2 *	0.5140	20.62	9.60	30.22	46.00	-15.78	AVG
3	0.6300	24.10	9.61	33.71	56.00	-22.29	QP
4	0.6300	14.53	9.61	24.14	46.00	-21.86	AVG
5	1.0500	23.49	9.60	33.09	56.00	-22.91	QP
6	1.0500	13.42	9.60	23.02	46.00	-22.98	AVG
7	4.8659	26.39	9.73	36.12	56.00	-19.88	QP
8	4.8659	18.57	9.73	28.30	46.00	-17.70	AVG
9	7.8100	26.48	9.91	36.39	60.00	-23.61	QP
	7.8100	17.79	9.91	27.70	50.00	-22.30	AVG
10			10.00	37.59	60.00	-22 41	QP
10	9.2180	27.59	10.00	07.00			

Page: 20 of 32

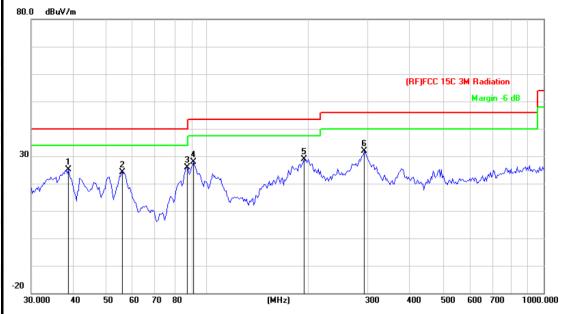
Attachment B-- Radiated Emission Test Data


30MHz~1GHz

Page: 21 of 32

١	Temperature:	25℃	Relative Humidity:	55%
3	Test Voltage:	AC 120/60Hz		
	Ant. Pol.	Vertical		
	Test Mode:	TX Mode(5V/1A)		
4	Remark:	Only worse case is reported	ed	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		38.3462	39.41	-18.33	21.08	40.00	-18.92	peak
2		56.3948	47.34	-23.97	23.37	40.00	-16.63	peak
3		85.8984	48.04	-22.21	25.83	40.00	-14.17	peak
4		90.8554	47.49	-21.99	25.50	43.50	-18.00	peak
5		193.7728	48.88	-19.87	29.01	43.50	-14.49	peak
6	*	281.0075	49.51	-16.57	32.94	46.00	-13.06	peak


^{*:}Maximum data x:Over limit !:over margin

Emission Level= Read Level+ Correct Factor

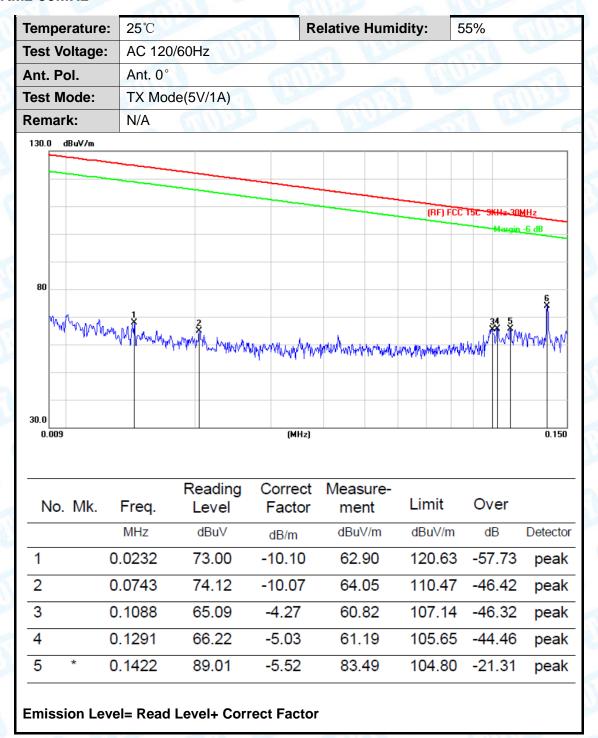
Page: 22 of 32

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	AC 120/60Hz		THE PARTY OF THE P
Ant. Pol.	Horizontal		The same of the sa
Test Mode:	TX Mode(9V/1.1A)		
Remark:	Only worse case is repo	orted	
80.0 dBuV/m			

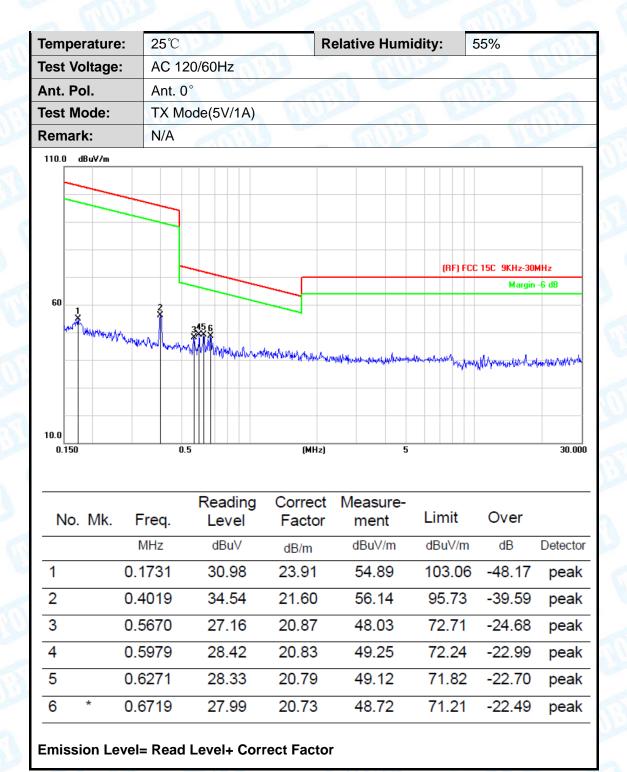
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		38.6160	43.52	-18.46	25.06	40.00	-14.94	peak
2		56.0007	48.05	-23.92	24.13	40.00	-15.87	peak
3		86.5029	48.03	-22.17	25.86	40.00	-14.14	peak
4		90.8554	49.95	-21.99	27.96	43.50	-15.54	peak
5		193.7728	48.86	-19.87	28.99	43.50	-14.51	peak
6	*	293.0842	48.30	-16.34	31.96	46.00	-14.04	peak

^{*:}Maximum data x:Over limit !:over margin

Emission Level= Read Level+ Correct Factor


Page: 23 of 32

	25 ℃	Re	lative Humid	dity: 5	5%	
Test Voltage:	AC 120/60Hz				<a>1	A BURE
Ant. Pol.	Vertical			(III)	13.3	
Test Mode:	TX Mode(9V/1.1	1A)		62		
Remark:	Only worse case	e is reported	WILL THE		1 187	Market
80.0 dBuV/m						
				(RF)FCC 150	3M Radiation	
					Margin -6	dB
₩	3 4	5.6	_			
30		MAN				
	Mr.	\ <i>[</i>]	My My Man	mundende	Mumm	and the same
		V., W.	W * 1	V		
-20			000	100 500	000 700	1000 000
30.000 40 5	60 70 80	(MHz)	300	400 500	600 700	1000.000
	Reading	_	Measure-			
N I - N / I -						
No. Mk.	Freq. Level	Factor	ment	Limit	Over	
NO. IVIK.	MHz dBuV	Factor dB/m	ment dBuV/m	dBuV/m	dB	Detector
						Detector
1 38	MHz dBuV	dB/m	dBuV/m	dBuV/m	dB	
1 38 2 * 46	MHz dBuV 3.0783 52.21	dB/m -18.21	dBuV/m 34.00	dBuV/m 40.00	dB -6.00	QP peak
1 38 2 * 46 3 ! 51	MHz dBuV 3.0783 52.21 5.3402 58.58 .8430 59.54	dB/m -18.21 -22.03 -23.45	dBuV/m 34.00 36.55 36.09	dBuV/m 40.00 40.00 40.00	dB -6.00 -3.45 -3.91	QP peak peak
1 38 2 * 46 3 ! 51 4 ! 87	MHz dBuV 3.0783 52.21 3.3402 58.58 .8430 59.54 7.7248 56.68	dB/m -18.21 -22.03 -23.45 -22.10	dBuV/m 34.00 36.55 36.09 34.58	dBuV/m 40.00 40.00 40.00 40.00	dB -6.00 -3.45 -3.91 -5.42	QP peak peak peak
1 38 2 * 46 3 ! 51 4 ! 87 5 16	MHz dBuV 3.0783 52.21 5.3402 58.58 .8430 59.54	dB/m -18.21 -22.03 -23.45 -22.10 -20.75	dBuV/m 34.00 36.55 36.09	dBuV/m 40.00 40.00 40.00	dB -6.00 -3.45 -3.91	QP peak peak


Page: 24 of 32

9KMz-30MHz

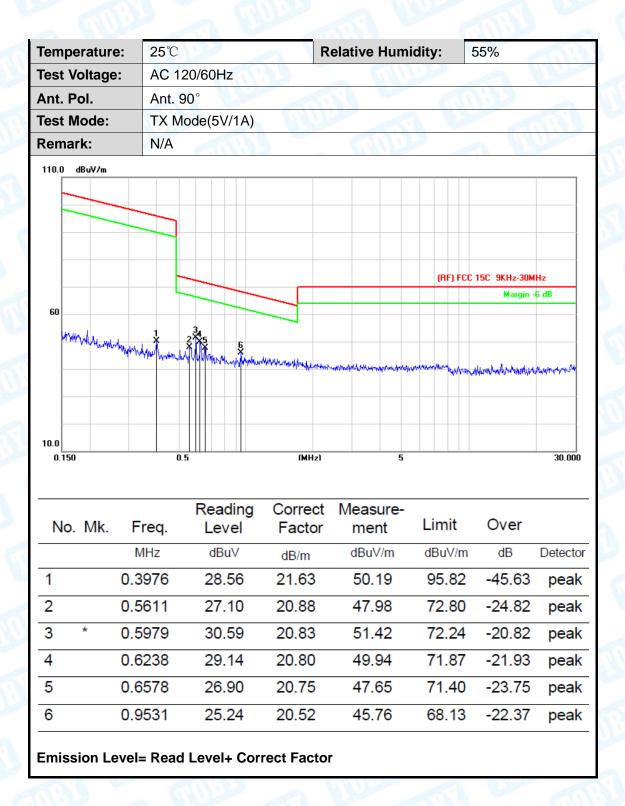
Page: 25 of 32

30.0 0.009 Report No.: TB-FCC160827

Page: 26 of 32

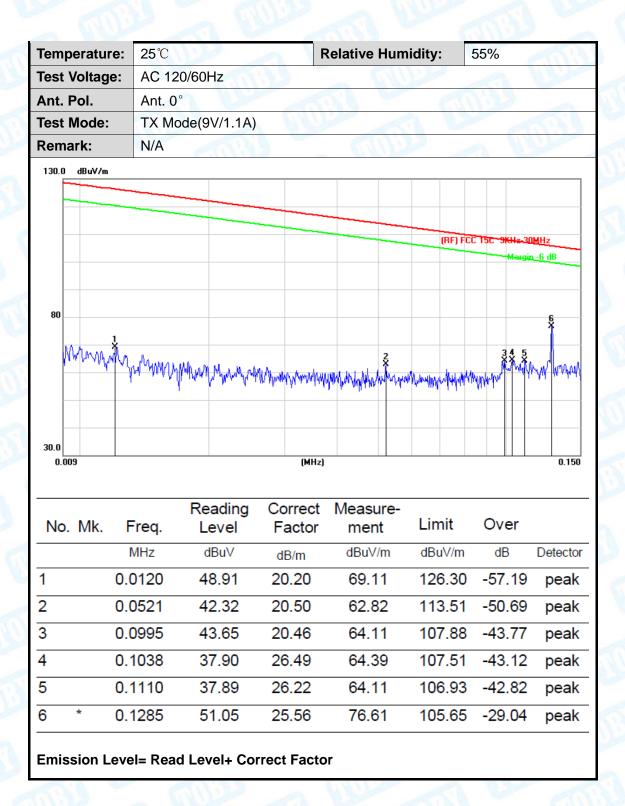
emperature:	25 ℃	Relative Humidity:	55%
est Voltage:	AC 120/60Hz		A WILL
Ant. Pol.	Ant. 90°	The state of	١
est Mode:	TX Mode(5V/1A)		
Remark:	N/A		A HILL
		(RF) FCI	Margin 6 dB

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		0.0136	48.06	20.24	68.30	125.21	-56.91	peak
2		0.0177	44.80	20.31	65.11	122.92	-57.81	peak
3		0.0264	41.28	20.46	61.74	119.43	-57.69	peak
4		0.1026	40.22	26.54	66.76	107.61	-40.85	peak
5		0.1171	38.52	25.99	64.51	106.46	-41.95	peak
6	*	0.1352	40.79	25.31	66.10	105.21	-39.11	peak


(MHz)

Emission Level= Read Level+ Correct Factor

0.150

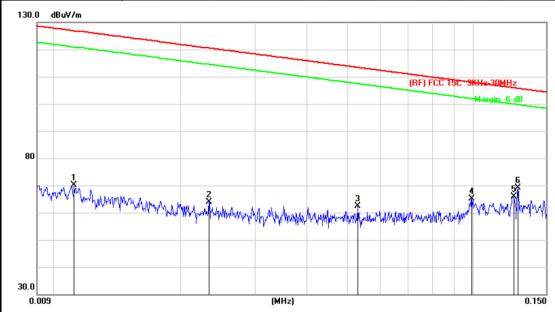


Page: 27 of 32

Page: 28 of 32

Page: 29 of 32

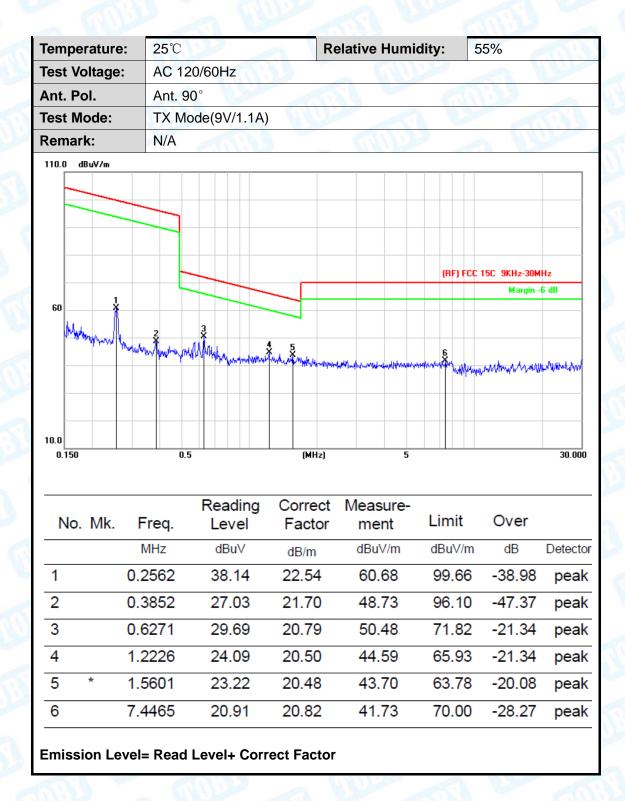
Temperature:	25℃	Relative H	umidity:	55%
Test Voltage:	AC 120/60Hz		MILL OF	73 1111
Ant. Pol.	Ant. 0°		67	The same of
est Mode:	TX Mode(9V/1.1A)	NO.		
Remark:	N/A			
110.0 dBuV/m				
10.0	* * * * * * * * * * * * * * * * * * *	production of the second of th		FCC 15C 9KHz-30MHz Margin -6 dB Marywall


	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	I		0.2548	44.92	22.55	67.47	99.69	-32.22	peak
2	2		0.3832	33.27	21.72	54.99	96.14	-41.15	peak
3	3	*	0.5128	30.47	20.94	51.41	73.60	-22.19	peak
4	1		0.5641	28.16	20.87	49.03	72.76	-23.73	peak
5	5		0.6271	28.56	20.79	49.35	71.82	-22.47	peak
6	6		1.0430	23.47	20.50	43.97	67.34	-23.37	peak

Emission Level= Read Level+ Correct Factor

Page: 30 of 32

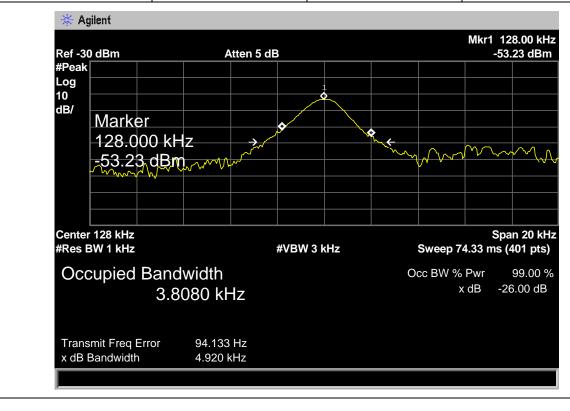
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	AC 120/60Hz		3 m
Ant. Pol.	Ant. 90°		339
Test Mode:	TX Mode(9V/1.1A)		
Remark:	N/A		A HATTE
130.0 dRuV/m			



No. N	/lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	0.0109	50.01	20.11	70.12	127.14	-57.02	peak
2	0.0233	43.53	20.44	63.97	120.52	-56.55	peak
3	0.0530	41.87	20.51	62.38	113.37	-50.99	peak
4	0.0995	44.73	20.46	65.19	107.88	-42.69	peak
5	0.1253	40.10	25.68	65.78	105.87	-40.09	peak
6 *	0.1281	43.62	25.57	69.19	105.68	-36.49	peak

Emission Level= Read Level+ Correct Factor

Page: 31 of 32



Page: 32 of 32

Attachment C-- Bandwidth Measurement Data

Frequency (KHz)	. ,		Result
128	4.920	3.8080	PASS

----END OF REPORT-----