

FCC/IC REPORT

(BLE)

Applicant: AceAge Inc.

Address of Applicant: 26 Ontario Street, Suite 109 Guelph, Ontario, Canada N1E7K1

Equipment Under Test (EUT)

Product Name: Karie Connectivity Module

Model No.: AceAge1A, AceAge1B, AceAge1C, AceAge1D, AceAge2A, AceAge2B, AceAge2C, AceAge2D

Trade mark: AceAge

FCC ID: 2AQKR-P001R1

Canada IC: 24087-P001R1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247
RSS-Gen Issue 5 March 2019 Amendment 1
RSS-247 Issue 2, February 2017

Date of sample receipt: 12 Nov., 2019

Date of Test: 13 Nov., to 22 Nov., 2019

Date of report issued: 10 Dec., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang
Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	10 Dec., 2019	Original

Remark: This report was amended on FCC ID: 2AQKR-P001R1 follow FCC Class II Permissive Change. The differences between them as below: Update DDR SDRAM and Flash Memory merchants, update Power connector and power cable, added model AceAge1B, AceAge1C, AceAge1D, AceAge2A, AceAge2B, AceAge2C, AceAge2D. So Radiated Emission Below 1GHz has been retested.

Tested by:

Mike.ou

Date:

10 Dec., 2019

Test Engineer

Reviewed by:

Winner Zhang

Date:

10 Dec., 2019

Project Engineer

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	4
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	5
5.2 GENERAL DESCRIPTION OF E.U.T.	5
5.3 TEST ENVIRONMENT AND TEST MODE	6
5.4 DESCRIPTION OF SUPPORT UNITS	6
5.5 MEASUREMENT UNCERTAINTY	6
5.6 LABORATORY FACILITY	6
5.7 LABORATORY LOCATION	7
5.8 TEST INSTRUMENTS LIST	7
6 TEST RESULTS AND MEASUREMENT DATA	8
6.1 ANTENNA REQUIREMENT	8
6.2 CONDUCTED OUTPUT POWER	9
6.3 OCCUPY BANDWIDTH	10
6.4 POWER SPECTRAL DENSITY	11
6.5 BAND EDGE	12
6.5.1 Conducted Emission Method	12
6.5.2 Radiated Emission Method	13
6.6 SPURIOUS EMISSION	14
6.6.1 Conducted Emission Method	14
6.6.2 Radiated Emission Method	15
7 TEST SETUP PHOTO	21
8 EUT CONSTRUCTIONAL DETAILS	22

4 Test Summary

Test Items	Section		Result
	FCC	IC	
Antenna Requirement	15.203/15.247 (c)	/	Pass
AC Power Line Conducted Emission	15.207	RSS-GEN Section 8.8	N/A
Conducted Peak Output Power	15.247 (b)(3)	RSS-247 Section 5.4 (d)	Pass*
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	RSS-247 Section 5.2 (a)	Pass*
Power Spectral Density	15.247 (e)	RSS-247 Section 5.2 (b)	Pass*
Band Edge	15.247(d)	RSS-GEN Section 8.10 RSS-247 Section 5.5	Pass*
Conducted and Radiated Spurious Emission	15.205/15.209	RSS-GEN Section 6.13 RSS-247 Section 5.5	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass: please refer to the FCC ID: 2AQKR-P001R1*

5 General Information

5.1 Client Information

Applicant:	AceAge Inc.
Address:	26 Ontario Street, Suite 109 Guelph, Ontario, Canada N1E7K1
Manufacturer	AceAge Inc.
Address:	26 Ontario Street, Suite 109 Guelph, Ontario, Canada N1E7K1

5.2 General Description of E.U.T.

Product Name:	Karie Connectivity Module
Model No.:	AceAge1A, AceAge1B, AceAge1C, AceAge1D, AceAge2A, AceAge2B, AceAge2C, AceAge2D
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.53 dBi
Power supply:	DC 4.2V
Remark:	Model No.: AceAge1A, AceAge1B, AceAge1C, AceAge1D, AceAge2A, AceAge2B, AceAge2C, AceAge2D were identical inside, the electrical circuit design, layout, components used and internal wiring. They only differences is Model Name

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:
In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

- **FCC - Registration No.: CN1211**

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

- **IC - Registration No.: CN0021**

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

- **CNAS - Registration No.: CNAS L6048**

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

- **A2LA - Registration No.: 4346.01**

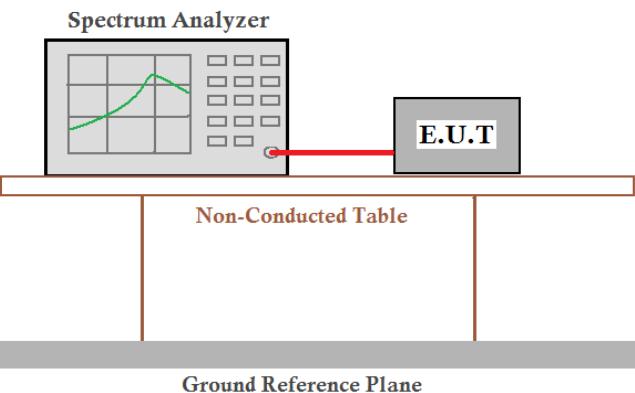
This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <https://portal.a2la.org/scopepdf/4346-01.pdf>

5.7 Laboratory Location

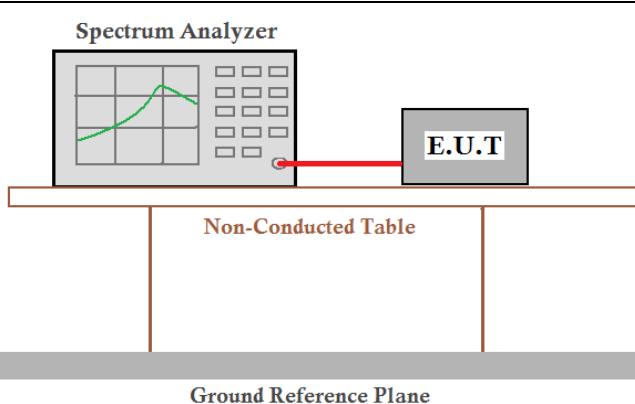
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
 Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
 Bao'an District, Shenzhen, Guangdong, China
 Tel: +86-755-23118282, Fax: +86-755-23116366
 Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

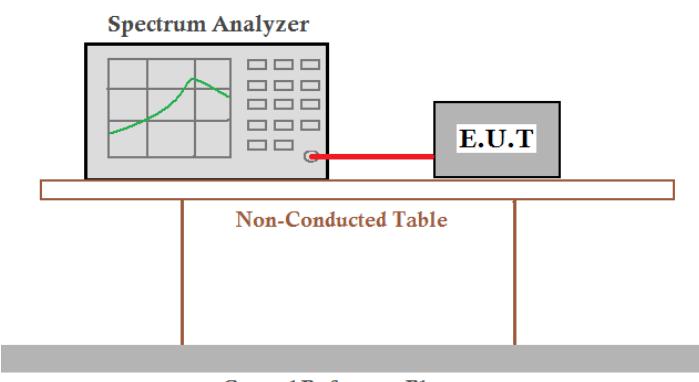
Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		


Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A

6 Test results and Measurement Data

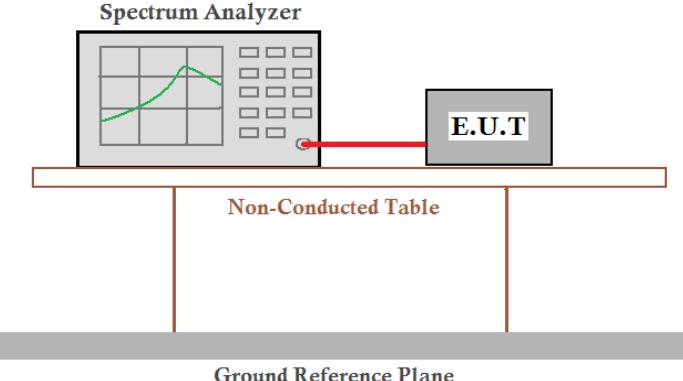

6.1 Antenna requirement:

Standard requirement:	FCC Part 15 C Section 15.203 /247(c)
15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.	
15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.	
E.U.T Antenna:	
The BLE antenna is an internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.53 dBi.	

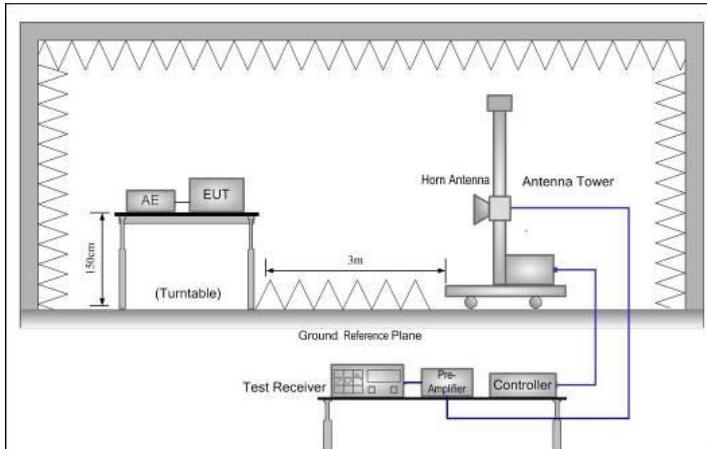

6.2 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3) RSS-247 section 5.4(d)
Test Method:	ANSI C63.10:2013 and KDB558074
Limit:	30dBm
Test setup:	
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass*, Refer to the FCC ID: 2AQKR-P001R1

6.3 Occupy Bandwidth

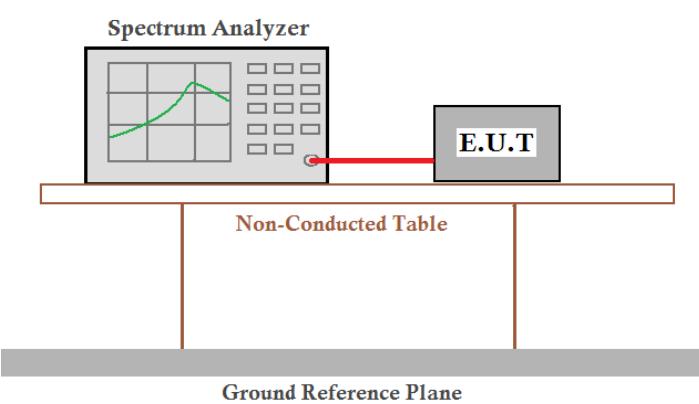

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2) RSS-247 section 5.2(a)
Test Method:	ANSI C63.10:2013 and KDB558074
Limit:	>500kHz
Test setup:	
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass*, Refer to the FCC ID: 2AQKR-P001R1

6.4 Power Spectral Density


Test Requirement:	FCC Part 15 C Section 15.247 (e) RSS-247 section 5.2(b)
Test Method:	ANSI C63.10:2013 and KDB558074
Limit:	8 dBm
Test setup:	
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass*, Refer to the FCC ID: 2AQKR-P001R1

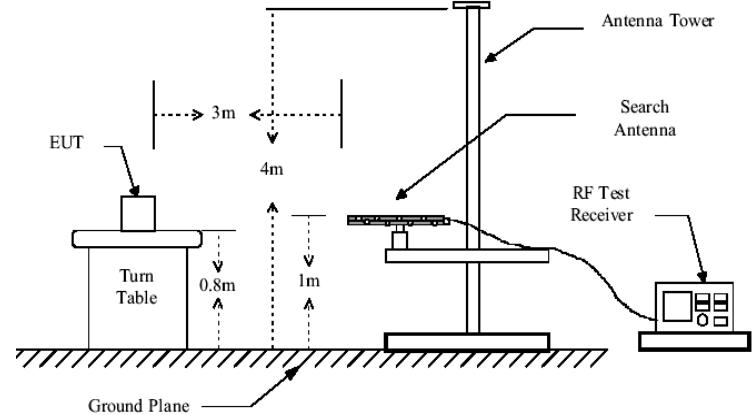
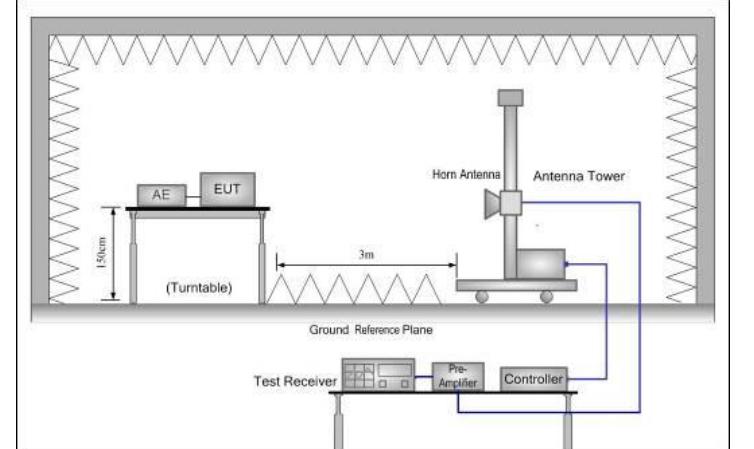
6.5 Band Edge

6.5.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d) RSS-247 section 5.5
Test Method:	ANSI C63.10:2013 and KDB558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass*, Refer to the FCC ID: 2AQKR-P001R1

6.5.2 Radiated Emission Method

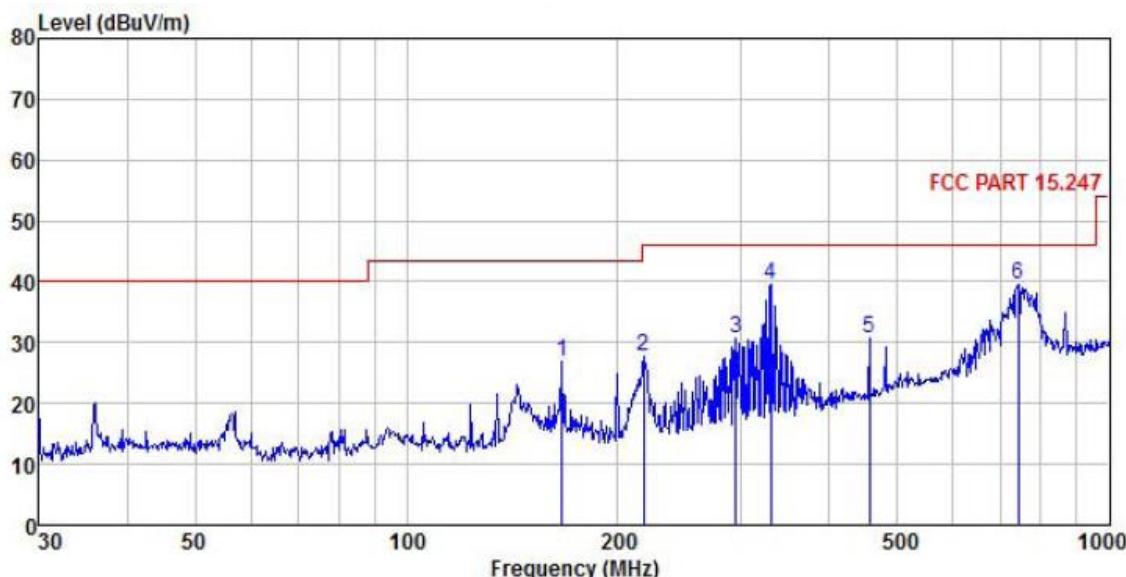
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205 RSS-GEN section 8.10										
Test Method:	ANSI C63.10: 2013 and KDB558074										
Test Frequency Range:	2.3GHz to 2.5GHz										
Test Distance:	3m										
Receiver setup:	Frequency	Detector	RBW	VBW	Remark						
	Above 1GHz	Peak	1MHz	3MHz	Peak Value						
Limit:	Frequency	Limit (dBuV/m @3m)		Remark							
	Above 1GHz	54.00		Average Value							
Test Procedure:		<ol style="list-style-type: none"> The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 									
Test setup:											
Test Instruments:	Refer to section 5.8 for details										
Test mode:	Refer to section 5.3 for details										
Test results:	Pass*, Refer to the FCC ID: 2AQKR-P001R1										



6.6 Spurious Emission

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d) RSS-247 section 5.5
Test Method:	ANSI C63.10:2013 and KDB558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass*, Refer to the FCC ID: 2AQKR-P001R1

6.6.2 Radiated Emission Method

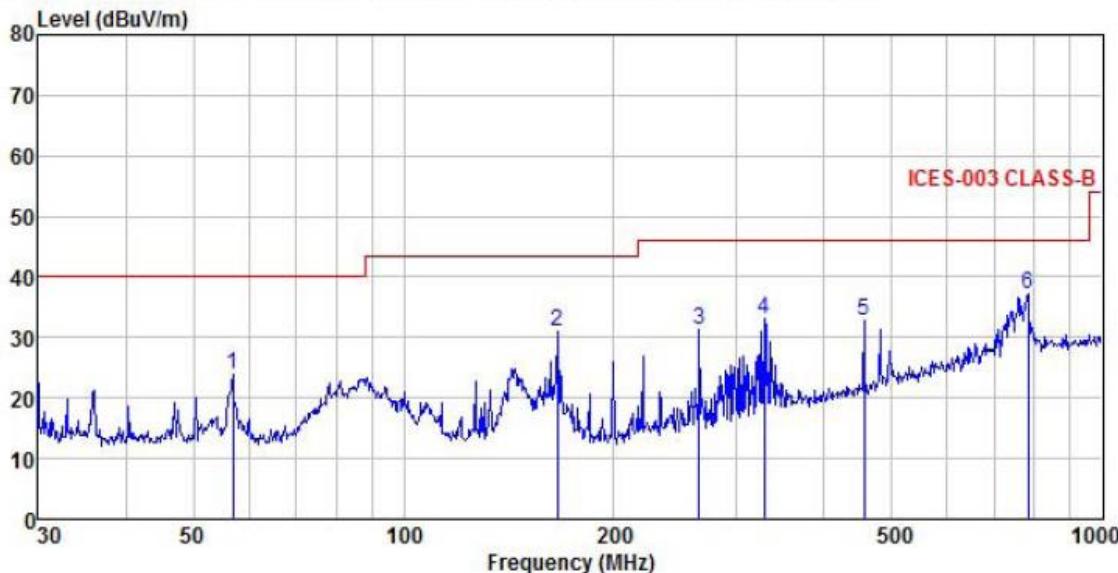

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205 RSS-Gen section 6.13				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	9kHz to 25GHz				
Test Distance:	3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
		RMS	1MHz	3MHz	Average Value
Limit:	Frequency	Limit (dBuV/m @3m)			Remark
	30MHz-88MHz	40.0			Quasi-peak Value
	88MHz-216MHz	43.5			Quasi-peak Value
	216MHz-960MHz	46.0			Quasi-peak Value
	960MHz-1GHz	54.0			Quasi-peak Value
	Above 1GHz	54.0			Average Value
		74.0			Peak Value
Test Procedure:	<ol style="list-style-type: none"> The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 				

<p>Test setup:</p>	<p>Below 1GHz</p> <p>Above 1GHz</p>
<p>Test Instruments:</p>	<p>Refer to section 5.8 for details</p>
<p>Test mode:</p>	<p>Refer to section 5.3 for details</p>
<p>Test results:</p>	<p>Passed</p>
<p>Remark:</p>	<ol style="list-style-type: none"> 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 2. 9 kHz to 30MHz is too low, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):**Below 1GHz:**

Product Name:	Karie Connectivity Module			Product Model:	AceAge1A																																																																										
Test By:	Mike			Test mode:	BLE Tx mode																																																																										
Test Frequency:	30 MHz ~ 1 GHz			Polarization:	Vertical																																																																										
Test Voltage:	AC 120/60Hz			Environment:	Temp: 24°C Huni: 57%																																																																										
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Freq</th> <th style="text-align: center;">Read Level</th> <th style="text-align: center;">Antenna Factor</th> <th style="text-align: center;">Cable Loss</th> <th style="text-align: center;">Preamp Factor</th> <th style="text-align: center;">Level</th> <th style="text-align: center;">Limit Line</th> <th style="text-align: center;">Over Limit</th> <th style="text-align: center;">Remark</th> </tr> <tr> <th style="text-align: center;">MHz</th> <th style="text-align: center;">dBuV</th> <th style="text-align: center;">dB/m</th> <th style="text-align: center;">dB</th> <th style="text-align: center;">dB</th> <th style="text-align: center;">dBuV/m</th> <th style="text-align: center;">dBuV/m</th> <th style="text-align: center;">dB</th> <th></th> </tr> </thead> <tbody> <tr> <td style="text-align: center;">1</td> <td style="text-align: center;">56.991</td> <td style="text-align: center;">40.69</td> <td style="text-align: center;">11.51</td> <td style="text-align: center;">1.37</td> <td style="text-align: center;">29.79</td> <td style="text-align: center;">23.78</td> <td style="text-align: center;">40.00</td> <td style="text-align: center;">-16.22 QP</td> </tr> <tr> <td style="text-align: center;">2</td> <td style="text-align: center;">166.068</td> <td style="text-align: center;">48.08</td> <td style="text-align: center;">9.49</td> <td style="text-align: center;">2.63</td> <td style="text-align: center;">29.08</td> <td style="text-align: center;">31.12</td> <td style="text-align: center;">43.50</td> <td style="text-align: center;">-12.38 QP</td> </tr> <tr> <td style="text-align: center;">3</td> <td style="text-align: center;">264.746</td> <td style="text-align: center;">43.91</td> <td style="text-align: center;">12.99</td> <td style="text-align: center;">2.85</td> <td style="text-align: center;">28.51</td> <td style="text-align: center;">31.24</td> <td style="text-align: center;">46.00</td> <td style="text-align: center;">-14.76 QP</td> </tr> <tr> <td style="text-align: center;">4</td> <td style="text-align: center;">327.887</td> <td style="text-align: center;">44.50</td> <td style="text-align: center;">14.17</td> <td style="text-align: center;">3.03</td> <td style="text-align: center;">28.51</td> <td style="text-align: center;">33.19</td> <td style="text-align: center;">46.00</td> <td style="text-align: center;">-12.81 QP</td> </tr> <tr> <td style="text-align: center;">5</td> <td style="text-align: center;">455.906</td> <td style="text-align: center;">41.63</td> <td style="text-align: center;">16.70</td> <td style="text-align: center;">3.25</td> <td style="text-align: center;">28.88</td> <td style="text-align: center;">32.70</td> <td style="text-align: center;">46.00</td> <td style="text-align: center;">-13.30 QP</td> </tr> <tr> <td style="text-align: center;">6</td> <td style="text-align: center;">782.345</td> <td style="text-align: center;">39.77</td> <td style="text-align: center;">21.22</td> <td style="text-align: center;">4.35</td> <td style="text-align: center;">28.29</td> <td style="text-align: center;">37.05</td> <td style="text-align: center;">46.00</td> <td style="text-align: center;">-8.95 QP</td> </tr> </tbody> </table>								Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		1	56.991	40.69	11.51	1.37	29.79	23.78	40.00	-16.22 QP	2	166.068	48.08	9.49	2.63	29.08	31.12	43.50	-12.38 QP	3	264.746	43.91	12.99	2.85	28.51	31.24	46.00	-14.76 QP	4	327.887	44.50	14.17	3.03	28.51	33.19	46.00	-12.81 QP	5	455.906	41.63	16.70	3.25	28.88	32.70	46.00	-13.30 QP	6	782.345	39.77	21.22	4.35	28.29	37.05	46.00	-8.95 QP
Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark																																																																							
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB																																																																								
1	56.991	40.69	11.51	1.37	29.79	23.78	40.00	-16.22 QP																																																																							
2	166.068	48.08	9.49	2.63	29.08	31.12	43.50	-12.38 QP																																																																							
3	264.746	43.91	12.99	2.85	28.51	31.24	46.00	-14.76 QP																																																																							
4	327.887	44.50	14.17	3.03	28.51	33.19	46.00	-12.81 QP																																																																							
5	455.906	41.63	16.70	3.25	28.88	32.70	46.00	-13.30 QP																																																																							
6	782.345	39.77	21.22	4.35	28.29	37.05	46.00	-8.95 QP																																																																							
<p>Remark:</p> <ol style="list-style-type: none"> 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor. 2. The emission levels of other frequencies are very lower than the limit and not show in test report. 																																																																															

Product Name:	Karie Connectivity Module	Product Model:	AceAge1A
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

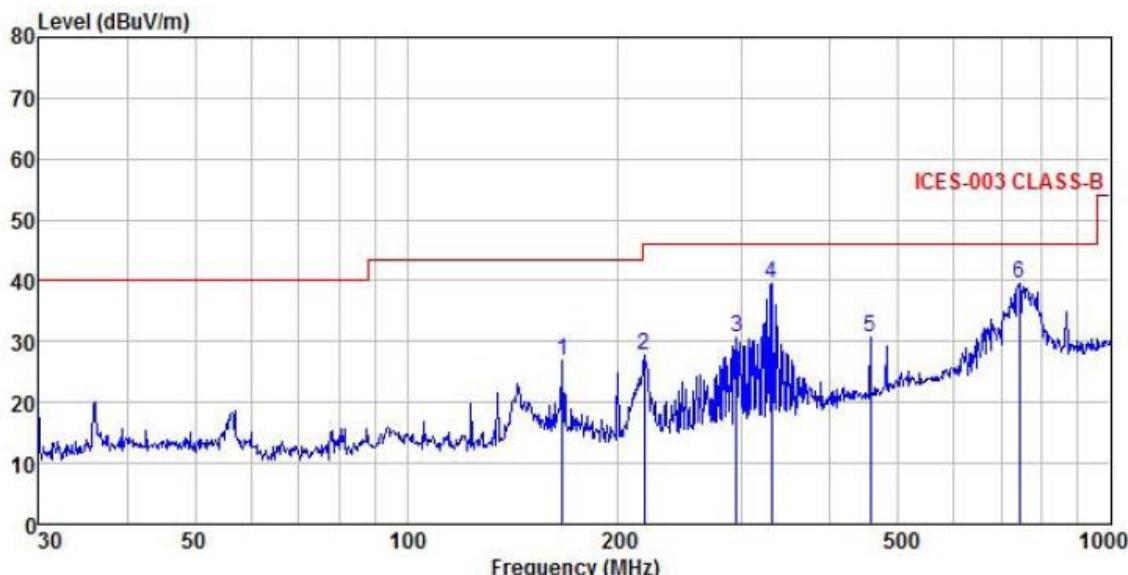


Freq MHz	Read	Antenna Level Factor	Cable Loss Factor	Preamp Factor	Limit Level dBuV/m	Line Limit dBuV/m	Over Limit dB	Remark
	Antenna Level dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 166.651	43.73	9.52	2.64	29.08	26.81	43.50	-16.69	QP
2 217.544	42.27	11.39	2.85	28.72	27.79	46.00	-18.21	QP
3 294.114	42.65	13.52	2.92	28.46	30.63	46.00	-15.37	QP
4 330.195	50.84	14.22	3.04	28.52	39.58	46.00	-6.42	QP
5 455.906	39.71	16.70	3.25	28.88	30.78	46.00	-15.22	QP
6 742.259	43.08	20.58	4.33	28.51	39.48	46.00	-6.52	QP

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.
2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Karie Connectivity Module	Product Model:	AceAge1A
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



Freq MHz	Read	Antenna Level Factor	Cable Loss Factor	Preamp Level dB	Limit Line dBuV/m	Over Line dBuV/m	Over Limit dB	Over Remark
	MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
1 56.991	40.69	11.51	1.37	29.79	23.78	40.00	-16.22	QP
2 166.068	48.08	9.49	2.63	29.08	31.12	43.50	-12.38	QP
3 264.746	43.91	12.99	2.85	28.51	31.24	46.00	-14.76	QP
4 327.887	44.50	14.17	3.03	28.51	33.19	46.00	-12.81	QP
5 455.906	41.63	16.70	3.25	28.88	32.70	46.00	-13.30	QP
6 782.345	39.77	21.22	4.35	28.29	37.05	46.00	-8.95	QP

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.
2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Karie Connectivity Module	Product Model:	AceAge1A
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Freq MHz	Read	Antenna Level Factor	Cable Loss Factor	Preamp Factor	Level dBuV/m	Limit Line dBuV/m	Over Limit dB	Remark
	Antenna Level dBuV	dB/m	dB	dB		dBuV/m	dB	
1 166.651	43.73	9.52	2.64	29.08	26.81	43.50	-16.69	QP
2 217.544	42.27	11.39	2.85	28.72	27.79	46.00	-18.21	QP
3 294.114	42.65	13.52	2.92	28.46	30.63	46.00	-15.37	QP
4 330.195	50.84	14.22	3.04	28.52	39.58	46.00	-6.42	QP
5 455.906	39.71	16.70	3.25	28.88	30.78	46.00	-15.22	QP
6 742.259	43.08	20.58	4.33	28.51	39.48	46.00	-6.52	QP

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.
2. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 EUT Constructional Details

Reference to the test report No. CCISE1108001

-----End of report-----