



# TEST REPORT

**Test Report No. : UL-RPT-RP-13326679-619-FCC**

**Applicant** : Vitec Imaging Solutions spa

**Model No.** : WAVO PRO

**FCC ID** : 2AQK5-WAVOPRO

**Technology** : Bluetooth – Low Energy

**Test Standard(s)** : FCC Parts 15.207, 15.209(a) & 15.247

For details of applied tests refer to test result summary

1. This test report shall not be reproduced in full or partial, without the written approval of UL International Germany GmbH.

2. The results in this report apply only to the sample tested.

3. The test results in this report are traceable to the national or international standards.

4. **Test Report Version 1.1 supersede Version 1.0 with immediate effect**

Test Report No. UL-RPT-RP-13326679-619-FCC Version 1.1, Issue Date 17 MAY 2021 replaces

Test Report No. UL-RPT-RP-13326679-619-FCC Version 1.0, Issue Date 11 JANUARY 2021 which is no longer valid.

5. Result of the tested sample: **PASS**

*Krume Ivanov*

Prepared by: Krume, Ivanov

Title: Laboratory Engineer

Date: 17 May 2021

*Ajit Phadtare*

Approved by: Ajit, Phadtare

Title: Lead Test Engineer

Date: 17 May 2021



Deutsche  
Akkreditierungsstelle  
D-PL-19381-02-00

This laboratory is accredited by DAkkS.  
The tests reported herein have been performed in  
accordance with its' terms of accreditation.

This page has been left intentionally blank.

## Table of Contents

|                                                                    |           |
|--------------------------------------------------------------------|-----------|
| <b>1. Customer Information.....</b>                                | <b>4</b>  |
| 1.1. Applicant Information                                         | 4         |
| 1.2. Manufacturer Information                                      | 4         |
| <b>2. Summary of Testing.....</b>                                  | <b>5</b>  |
| 2.1. General Information                                           | 5         |
| Applied Standards                                                  | 5         |
| Location                                                           | 5         |
| Date information                                                   | 5         |
| 2.2. Summary of Test Results                                       | 6         |
| 2.3. Methods and Procedures                                        | 6         |
| 2.4. Deviations from the Test Specification                        | 6         |
| <b>3. Equipment Under Test (EUT) .....</b>                         | <b>7</b>  |
| 3.1. Identification of Equipment Under Test (EUT)                  | 7         |
| 3.2. Description of EUT                                            | 7         |
| 3.3. Modifications Incorporated in the EUT                         | 7         |
| 3.4. Additional Information Related to Testing                     | 8         |
| 3.5. Support Equipment                                             | 8         |
| A. Support Equipment (In-house)                                    | 8         |
| B. Support Equipment (Manufacturer supplied)                       | 8         |
| <b>4. Operation and Monitoring of the EUT during Testing .....</b> | <b>9</b>  |
| 4.1. Operating Modes                                               | 9         |
| 4.2. Configuration and Peripherals                                 | 9         |
| <b>5. Measurements, Examinations and Derived Results .....</b>     | <b>10</b> |
| 5.1. General Comments                                              | 10        |
| 5.2. Test Results                                                  | 11        |
| 5.2.1. Transmitter AC Conducted Spurious Emissions                 | 11        |
| 5.2.2. Transmitter 6 dB Bandwidth                                  | 17        |
| 5.2.3. Transmitter Duty Cycle                                      | 19        |
| 5.2.4. Transmitter Power Spectral Density                          | 21        |
| 5.2.5. Transmitter Maximum Peak Output Power                       | 23        |
| 5.2.6. Transmitter Radiated Emissions                              | 26        |
| 5.2.7. Transmitter Band Edge Radiated Emissions                    | 35        |
| <b>6. Measurement Uncertainty .....</b>                            | <b>39</b> |
| <b>7. Used equipment.....</b>                                      | <b>40</b> |
| <b>8. Report Revision History .....</b>                            | <b>41</b> |

## **1. Customer Information**

### **1.1.Applicant Information**

|                                |                                                |
|--------------------------------|------------------------------------------------|
| <b>Company Name:</b>           | Vitec Imaging Solutions spa                    |
| <b>Company Address:</b>        | Via Valsugana, 100 - 36022 Cassola (VI), Italy |
| <b>Company Phone No.:</b>      | +39 0424555855                                 |
| <b>Company E-Mail:</b>         | info-imaging@vitecgroup.com                    |
| <b>Contact Person:</b>         | Diego Selmin                                   |
| <b>Contact E-Mail Address:</b> | diego.selmin@vitecgroup.com                    |
| <b>Contact Phone No.:</b>      | +39 0424 555815                                |

### **1.2.Manufacturer Information**

|                                |                                                                                              |
|--------------------------------|----------------------------------------------------------------------------------------------|
| <b>Company Name:</b>           | Comyo El.Tech.Co.,Ltd                                                                        |
| <b>Company Address:</b>        | Third Floor, Building 5, No.680, Fenggong Road ,Malu Town, Jiading District, Shanghai, China |
| <b>Company Phone No.:</b>      | +39 3457482453                                                                               |
| <b>Company E-Mail:</b>         | lucycaoyang@nextosrl.com                                                                     |
| <b>Contact Person:</b>         | Lucy Caoyang                                                                                 |
| <b>Contact E-Mail Address:</b> | lucycaoyang@nextosrl.com                                                                     |
| <b>Contact Phone No.:</b>      | +39 3457482453                                                                               |

## **2. Summary of Testing**

### **2.1. General Information**

#### **Applied Standards**

|                                 |                                                                                                                                    |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| <b>Specification Reference:</b> | 47CFR15.247                                                                                                                        |
| <b>Specification Title:</b>     | Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Section 15.247             |
| <b>Specification Reference:</b> | 47CFR15.207 and 47CFR15.209                                                                                                        |
| <b>Specification Title:</b>     | Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Sections 15.207 and 15.209 |

#### **Location**

|                                |                                                                                    |
|--------------------------------|------------------------------------------------------------------------------------|
| <b>Location of Testing:</b>    | UL International Germany GmbH<br>Hedelfinger Str. 61<br>70327 Stuttgart<br>Germany |
| <b>Test Firm Registration:</b> | 399704                                                                             |

#### **Date information**

|                      |                                      |
|----------------------|--------------------------------------|
| <b>Order Date:</b>   | 21 April 2020                        |
| <b>EUT arrived:</b>  | 10 September 2020                    |
| <b>Test Dates:</b>   | 15 September 2020 to 29 October 2020 |
| <b>EUT returned:</b> | -/-                                  |

## 2.2. Summary of Test Results

| Clause                   | Measurement                              | Complied                            | Did not comply           | Not performed            | Not applicable           |
|--------------------------|------------------------------------------|-------------------------------------|--------------------------|--------------------------|--------------------------|
| Part 15.207              | Transmitter AC Conducted Emissions       | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
| Part 15.247(a)(2)        | Transmitter Minimum 6 dB Bandwidth       | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
| Part 15.35(c)            | Transmitter Duty Cycle <sup>(1)</sup>    | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
| Part 15.247(e)           | Transmitter Power Spectral Density       | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
| Part 15.247(b)(3)        | Transmitter Maximum Peak Output Power    | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
| Part 15.247(d)/15.209(a) | Transmitter Radiated Emissions           | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
| Part 15.247(d)/15.209(a) | Transmitter Band Edge Radiated Emissions | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |

### Note(s):

1. The measurement was performed to assist in the calculation of the level of average emissions.

## 2.3. Methods and Procedures

|            |                                                                                                                                                                                          |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference: | ANSI C63.10-2013                                                                                                                                                                         |
| Title:     | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices                                                                                           |
| Reference: | KDB 558074 D01 DTS Meas Guidance v05r02 April 2, 2019                                                                                                                                    |
| Title:     | Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules |
| Reference: | KDB 174176 D01 Line Conducted FAQ v01r01 June 3, 2015                                                                                                                                    |
| Title:     | AC Power-Line Conducted Emissions Frequently Asked Questions                                                                                                                             |

## 2.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

### **3. Equipment Under Test (EUT)**

#### **3.1. Identification of Equipment Under Test (EUT)**

|                                   |                              |
|-----------------------------------|------------------------------|
| <b>Brand Name:</b>                | Joby                         |
| <b>Model Name or Number:</b>      | WAVO PRO                     |
| <b>Test Sample Serial Number:</b> | 00012 (Radiated Test Sample) |
| <b>Hardware Version Number:</b>   | Version 4                    |
| <b>Firmware Version Number:</b>   | v6.11_v0022D                 |
| <b>FCC ID:</b>                    | 2AQK5-WAVOPRO                |

|                                   |                               |
|-----------------------------------|-------------------------------|
| <b>Brand Name:</b>                | Joby                          |
| <b>Model Name or Number:</b>      | WAVO PRO                      |
| <b>Test Sample Serial Number:</b> | 00006 (Conducted Test Sample) |
| <b>Hardware Version Number:</b>   | Version 4                     |
| <b>Firmware Version Number:</b>   | v6.11_v0022D                  |
| <b>FCC ID:</b>                    | 2AQK5-WAVOPRO                 |

#### **3.2. Description of EUT**

The equipment under test was a microphone Model: WAVO PRO, supporting Bluetooth Low Energy operations in 2.4- 2.4835 GHz ISM band.

#### **3.3. Modifications Incorporated in the EUT**

No modifications were applied to the EUT during testing.

### **3.4. Additional Information Related to Testing**

|                                                 |                                                    |                       |                         |  |  |
|-------------------------------------------------|----------------------------------------------------|-----------------------|-------------------------|--|--|
| <b>Technology Tested:</b>                       | Bluetooth Low Energy (Digital Transmission System) |                       |                         |  |  |
| <b>Type of Unit:</b>                            | Transceiver                                        |                       |                         |  |  |
| <b>Channel Spacing:</b>                         | 2 MHz                                              |                       |                         |  |  |
| <b>Modulation:</b>                              | GFSK                                               |                       |                         |  |  |
| <b>Data Rate:</b>                               | 1 Mbps                                             |                       |                         |  |  |
| <b>Power Supply Requirement(s):</b>             | Nominal                                            | 4.2 V DC / Max. 20 mA |                         |  |  |
| <b>Maximum measured Conducted Output Power:</b> | 2.33 dBm                                           |                       |                         |  |  |
| <b>Maximum Antenna Gain:</b>                    | 0 dBi (Peak Gain)                                  |                       |                         |  |  |
| <b>Antenna Type:</b>                            | Passive antenna on PCB                             |                       |                         |  |  |
| <b>Antenna Details:</b>                         | Manufacturer: Comyo   Part number: Y000-056-000040 |                       |                         |  |  |
| <b>Transmit Frequency Range:</b>                | 2402 MHz to 2480 MHz                               |                       |                         |  |  |
| <b>Transmit Channels Tested:</b>                | Channel ID                                         | RF Channel            | Channel Frequency (MHz) |  |  |
|                                                 | Bottom                                             | 37                    | 2402                    |  |  |
|                                                 | Middle                                             | 17                    | 2440                    |  |  |
|                                                 | Top                                                | 39                    | 2480                    |  |  |

### **3.5. Support Equipment**

The following support equipment was used to exercise the EUT during testing:

#### **A. Support Equipment (In-house)**

| Item | Description                                                 | Brand Name | Model Name or Number | Serial Number  |
|------|-------------------------------------------------------------|------------|----------------------|----------------|
| 1    | Test Laptop with Qualcomm Bluesuite software Version: 3.2.3 | HP         | HP Probook 650 G1    | 5CG614419V     |
| 2    | AC/DC Power Adapter                                         | Samsung    | EP-TA20EWE           | R37J62G2F64DK3 |

#### **B. Support Equipment (Manufacturer supplied)**

| Item | Description                               | Brand Name           | Model Name or Number | Serial Number        |
|------|-------------------------------------------|----------------------|----------------------|----------------------|
| 1    | USB extension cable (USB A to USB C   1m) | Not Marked or stated | Not Marked or stated | Not marked or stated |

## 4. Operation and Monitoring of the EUT during Testing

### 4.1. Operating Modes

The EUT was tested in the following operating mode(s):

- Continuous transmissions at maximum power (+2 dBm), Bluetooth LE mode with modulation, maximum possible data length available and Pseudorandom Bit Sequence 9 (PRBS9)

### 4.2. Configuration and Peripherals

#### EUT Power Supply:

- For AC conducted line emissions measurements the EUT with discharged battery was powered via AC/DC power adapter. The measurements were carried out with 120 VAC /60 Hz & 240 VAC/60 Hz.
- All other tests were carried out with the EUT powered via fully charged internal battery.

#### Test Mode Activation:

- The following documents containing the setup instructions were supplied by the customer
  - VITEC -Radio Instructions.docx
  - "80-ct507-1\_ar\_bluetest3\_user\_guide.pdf" Version: 80-CT507-1 Rev. AR from January 29, 2020
- The test modes were activated using USB Type C Programming Cable and Qualcomm Bluesuite application supplied by the customer.
- The Qualcomm Bluesuite software Version: 3.2.3 was used to enable continuous transmission or reception mode and to select the test channels as required.
- The transmitter test modes were configured to maximum power settings 2 dBm.

#### Conducted Measurements:

- All conducted measurements were carried out by using conducted samples with SMA (Female) RF Cable soldered on PCB by the customer.
- The SMA (Female) RF Cable soldered on PCB with maximum 0.5 dB at tested frequencies was added to a reference level offset to each of the conducted plots.

#### Radiated Measurements:

- The EUT radiated sample was used for AC conducted emissions, radiated spurious emission & radiated band edge measurements.
- Before starting final radiated spurious emission measurements "worst case verification" with the EUT in Standing-position & Laying-position was performed by Lab.
- The EUT in Laying-position was found to be the worst case therefore this report includes relevant results.
- Radiated measurements above 30 MHz were performed with the EUT positioned on the turn table and rotating 360 degrees while the antenna height varies from 1 to 4 m over the measurement frequency range.
- EMC32 V10.1.0 Software was used for the Radiated spurious emission measurements.
- \*\*As the EUT was transmitting continuously with a duty cycle of 85.37 % a duty Cycle Correction factor of 0.69 dB was added to all average measurements.

## **5. Measurements, Examinations and Derived Results**

### **5.1. General Comments**

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to Section 6 *Measurement Uncertainty* for details.

In accordance with DAkkS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

## **5.2. Test Results**

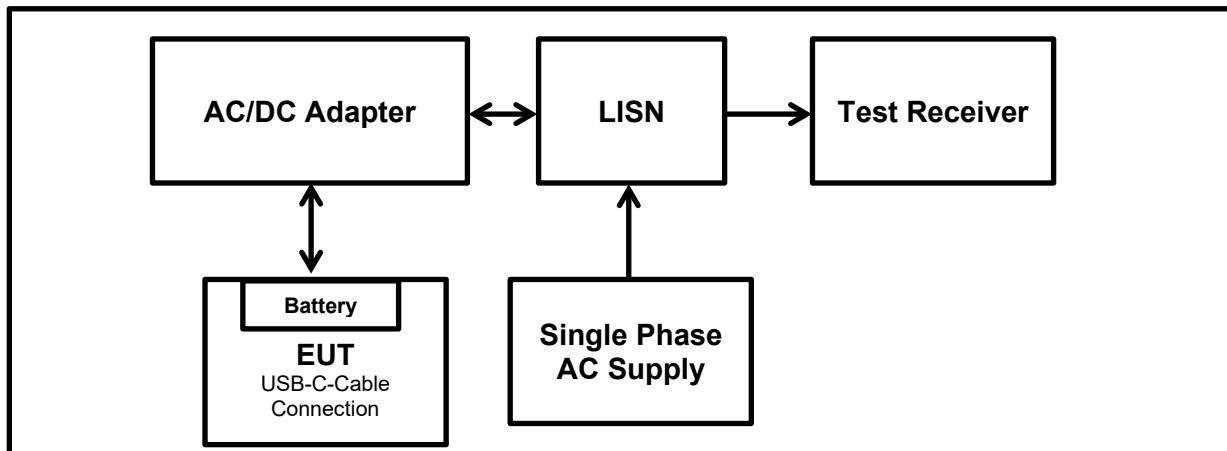
### **5.2.1. Transmitter AC Conducted Spurious Emissions**

#### **Test Summary:**

|                                   |                              |                   |                 |
|-----------------------------------|------------------------------|-------------------|-----------------|
| <b>Test Engineer:</b>             | Asim Shahzad                 | <b>Test Date:</b> | 29 October 2020 |
| <b>Test Sample Serial Number:</b> | 00012 (Radiated Test Sample) |                   |                 |
| <b>Test Site Identification</b>   | SR 7/8                       |                   |                 |

|                          |                                                          |
|--------------------------|----------------------------------------------------------|
| <b>FCC Reference:</b>    | Part 15.207                                              |
| <b>Test Method Used:</b> | ANSI C63.10 Section 6.2 / FCC KDB 174176 and notes below |

#### **Environmental Conditions:**


|                               |    |
|-------------------------------|----|
| <b>Temperature (°C):</b>      | 24 |
| <b>Relative Humidity (%):</b> | 35 |

#### **Settings of the Instrument**

|                 |                          |
|-----------------|--------------------------|
| <b>Detector</b> | Quasi Peak/ Average Peak |
|-----------------|--------------------------|

#### **Note(s):**

1. For AC conducted line emissions measurements the EUT with discharged battery was powered via a USB-Type C cable to an AC/DC power adapter. This AC/DC power adapter was connected to 120 VAC / 60 Hz single phase supply via a LISN.
2. In accordance with FCC KDB 174176 Q4, tests were performed with a 240 VAC 60 Hz single phase supply as this was within the voltage range marked on the 100-240 VAC~50/60 Hz power supply.
3. The EUT was configured on Top channel BT-LE test mode with maximum power settings 2 dBm.
4. Pre-scans were performed and markers placed on the highest live and neutral measured levels. Final measurements were performed on the marker frequencies and the results entered into the tables below.
5. The final measured value, for the given emission, in the table below incorporates the cable loss.
6. All other emissions shown on the pre-scan plot were investigated. Only the highest 6 emissions have been reported in the tables below in accordance with ANSI C63.10 section 6.2.5.
7. Measurements were performed in shielded room (SR7/ 8 Asset Number 1603671). The EUT was placed at a height of 80 cm above the reference ground plane and at distance of 40 cm from the vertical ground plane at the edge of the table.
8. Measurement software used: Toyo EMI Software; CE measurement software EP5/CE Ver 4.0.1.

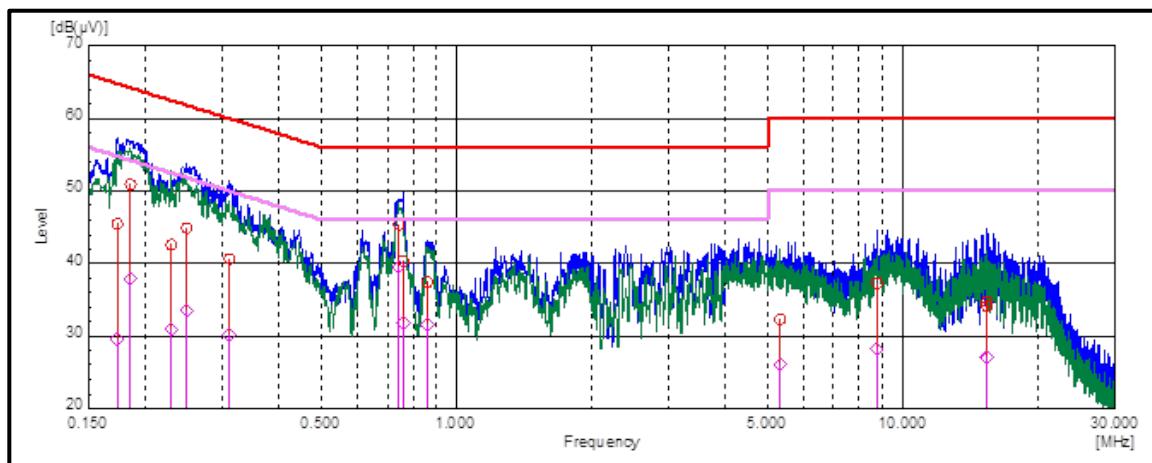
**Transmitter AC Conducted Spurious Emissions (continued)****Test Setup:**

**Transmitter AC Conducted Spurious Emissions (continued)****Results: Live / Quasi Peak / 120 VAC 60 Hz**

| Frequency (MHz) | Line | Level (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Result   |
|-----------------|------|--------------------|--------------------|-------------|----------|
| 0.1855          | Live | 50.90              | 64.20              | 13.30       | Complied |
| 0.2291          | Live | 42.50              | 62.50              | 20.00       | Complied |
| 0.7436          | Live | 45.30              | 56.00              | 10.70       | Complied |
| 0.8619          | Live | 37.50              | 56.00              | 18.50       | Complied |
| 5.3116          | Live | 32.20              | 60.00              | 27.80       | Complied |
| 15.4068         | Live | 34.20              | 60.00              | 25.80       | Complied |

**Results: Live / Average / 120 VAC 60 Hz**

| Frequency (MHz) | Line | Level (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Result   |
|-----------------|------|--------------------|--------------------|-------------|----------|
| 0.1855          | Live | 37.80              | 54.20              | 16.40       | Complied |
| 0.2291          | Live | 31.00              | 52.50              | 21.50       | Complied |
| 0.7436          | Live | 39.50              | 46.00              | 6.50        | Complied |
| 0.8619          | Live | 31.50              | 46.00              | 14.50       | Complied |
| 5.3116          | Live | 26.10              | 50.00              | 23.90       | Complied |
| 15.4068         | Live | 27.00              | 50.00              | 23.00       | Complied |


**Results: Neutral / Quasi Peak / 120 VAC 60 Hz**

| Frequency (MHz) | Line    | Level (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Result   |
|-----------------|---------|--------------------|--------------------|-------------|----------|
| 0.1740          | Neutral | 45.50              | 64.80              | 19.30       | Complied |
| 0.2487          | Neutral | 44.90              | 61.8               | 16.90       | Complied |
| 0.3093          | Neutral | 40.50              | 60.00              | 19.50       | Complied |
| 0.7607          | Neutral | 40.30              | 56.00              | 15.70       | Complied |
| 8.7535          | Neutral | 37.20              | 60.00              | 22.80       | Complied |
| 15.4368         | Neutral | 34.70              | 60.00              | 25.30       | Complied |

**Results: Neutral / Average / 120 VAC 60 Hz**

| Frequency (MHz) | Line    | Level (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Result   |
|-----------------|---------|--------------------|--------------------|-------------|----------|
| 0.1740          | Neutral | 29.50              | 54.80              | 25.30       | Complied |
| 0.2487          | Neutral | 33.50              | 51.80              | 18.30       | Complied |
| 0.3093          | Neutral | 30.10              | 50.00              | 19.90       | Complied |
| 0.7607          | Neutral | 31.90              | 46.00              | 14.10       | Complied |
| 8.7535          | Neutral | 28.10              | 50.00              | 21.90       | Complied |
| 15.4368         | Neutral | 27.10              | 50.00              | 22.90       | Complied |

**Result: Pass**

**Transmitter AC Conducted Spurious Emissions (continued)****Plot: Live and Neutral Line / 120 VAC 60 Hz**

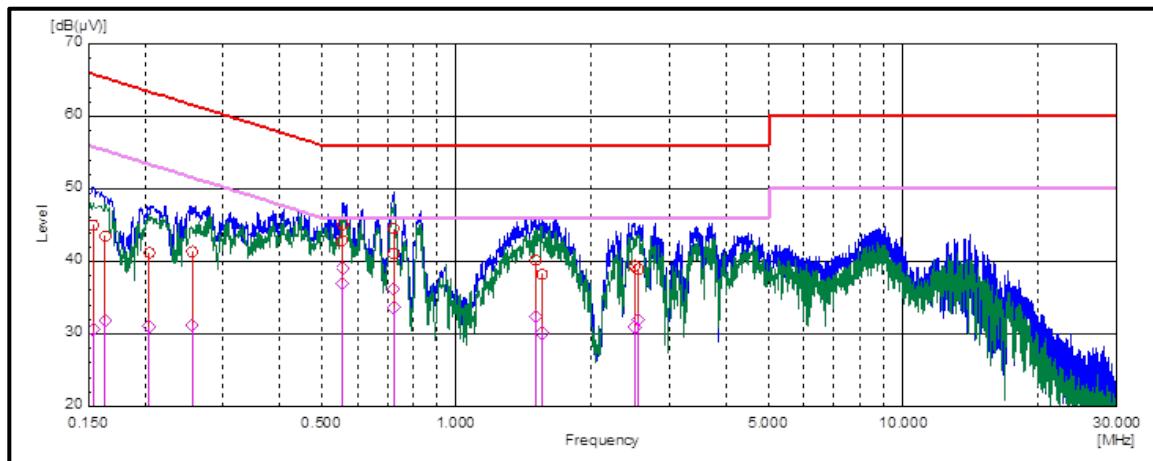
*Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.*

**Transmitter AC Conducted Spurious Emissions (continued)****Results: Live / Quasi Peak / 240 VAC 60 Hz**

| Frequency (MHz) | Line | Level (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Result   |
|-----------------|------|--------------------|--------------------|-------------|----------|
| 0.1630          | Live | 43.50              | 65.30              | 21.80       | Complied |
| 0.2046          | Live | 41.20              | 63.40              | 22.20       | Complied |
| 0.5533          | Live | 42.90              | 56.00              | 13.10       | Complied |
| 0.7236          | Live | 41.10              | 56.00              | 14.90       | Complied |
| 1.5503          | Live | 38.20              | 56.00              | 17.80       | Complied |
| 2.5370          | Live | 38.90              | 56.00              | 17.10       | Complied |

**Results: Live / Average / 240 VAC 60 Hz**

| Frequency (MHz) | Line | Level (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Result   |
|-----------------|------|--------------------|--------------------|-------------|----------|
| 0.1630          | Live | 31.80              | 55.30              | 23.50       | Complied |
| 0.2046          | Live | 31.10              | 53.40              | 22.30       | Complied |
| 0.5533          | Live | 36.90              | 46.00              | 9.10        | Complied |
| 0.7236          | Live | 33.60              | 46.00              | 12.40       | Complied |
| 1.5503          | Live | 30.10              | 46.00              | 15.90       | Complied |
| 2.5370          | Live | 32.00              | 46.00              | 14.00       | Complied |


**Results: Neutral / Quasi Peak / 240 VAC 60 Hz**

| Frequency (MHz) | Line    | Level (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Result   |
|-----------------|---------|--------------------|--------------------|-------------|----------|
| 0.1535          | Neutral | 44.90              | 65.80              | 20.90       | Complied |
| 0.2562          | Neutral | 41.40              | 61.60              | 20.20       | Complied |
| 0.5573          | Neutral | 45.20              | 56.00              | 10.80       | Complied |
| 0.7216          | Neutral | 44.60              | 56.00              | 11.40       | Complied |
| 1.5040          | Neutral | 40.10              | 56.00              | 15.90       | Complied |
| 2.4969          | Neutral | 39.50              | 56.00              | 16.50       | Complied |

**Results: Neutral / Average / 240 VAC 60 Hz**

| Frequency (MHz) | Line    | Level (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Result   |
|-----------------|---------|--------------------|--------------------|-------------|----------|
| 0.1535          | Neutral | 30.60              | 55.80              | 25.20       | Complied |
| 0.2562          | Neutral | 31.20              | 51.60              | 20.40       | Complied |
| 0.5573          | Neutral | 39.00              | 46.00              | 7.00        | Complied |
| 0.7216          | Neutral | 36.20              | 46.00              | 9.80        | Complied |
| 1.5040          | Neutral | 32.50              | 46.00              | 13.50       | Complied |
| 2.4969          | Neutral | 30.90              | 46.00              | 15.10       | Complied |

**Result: Pass**

**Transmitter AC Conducted Spurious Emissions (continued)****Plot: Live and Neutral Line / 240 VAC 60 Hz**

*Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.*

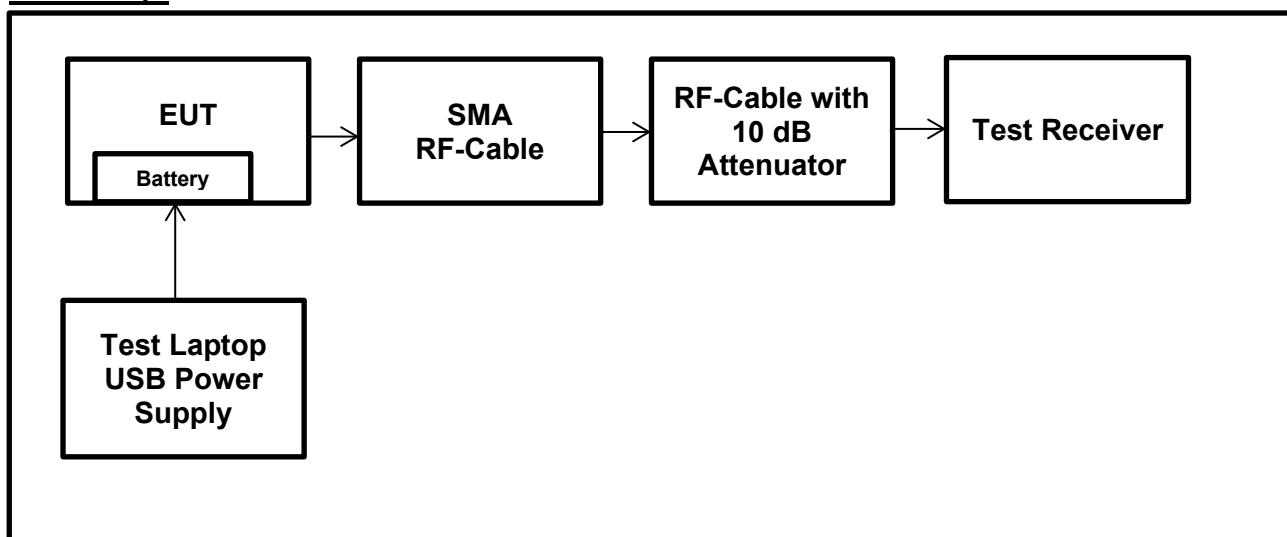
## 5.2.2. Transmitter 6 dB Bandwidth

### Test Summary:

|                            |                               |            |                 |
|----------------------------|-------------------------------|------------|-----------------|
| Test Engineer:             | Krume Ivanov                  | Test Date: | 13 October 2020 |
| Test Sample Serial Number: | 00006 (Conducted Test Sample) |            |                 |
| Test Site Identification   | SR 9                          |            |                 |

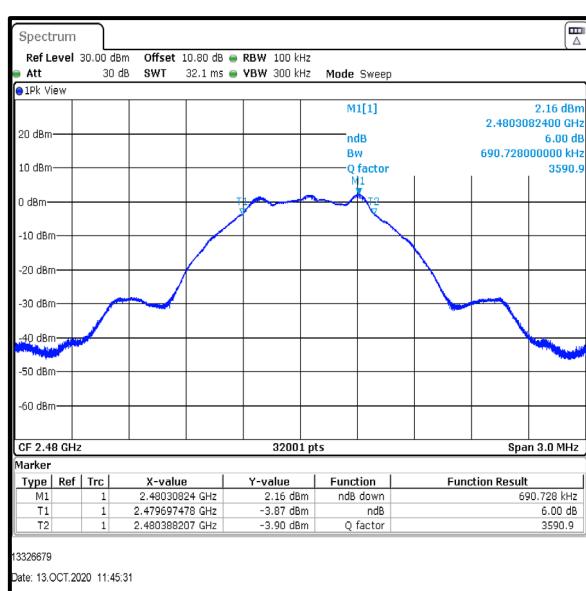
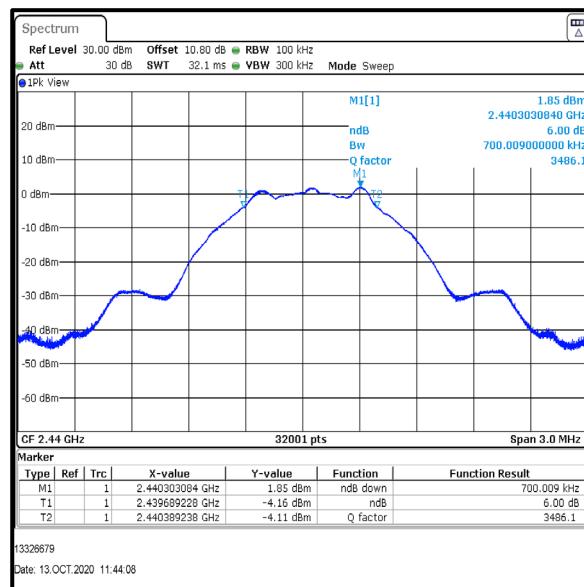
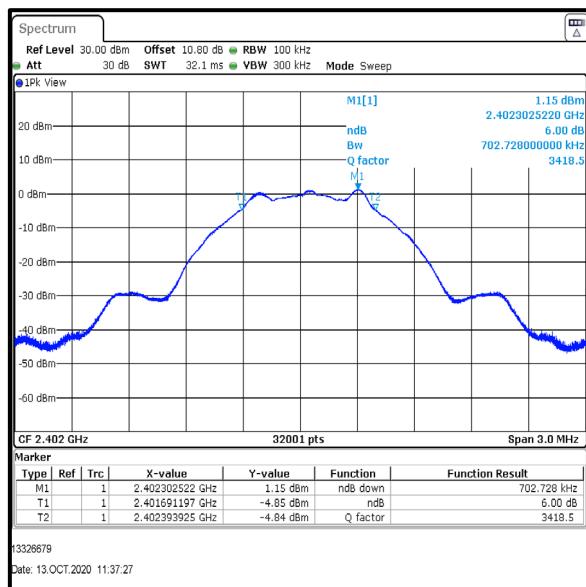
|                   |                                                                                 |
|-------------------|---------------------------------------------------------------------------------|
| FCC Reference:    | Part 15.247(a)(2)                                                               |
| Test Method Used: | FCC KDB 558074 Section 8.2 referencing ANSI C63.10:2013 Section 11.8.1 Option 1 |

### Environmental Conditions:


|                        |    |
|------------------------|----|
| Temperature (°C):      | 22 |
| Relative Humidity (%): | 42 |

### Note(s):

1. The measurements were performed using the above configurations on the bottom, middle and top channels in accordance FCC KDB 558074 Section 8.2 referencing ANSI C63.10 Section 11.8 (11.8.1 Option 1 measurement procedure).
2. The spectrum analyser resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The DTS bandwidth was measured at 6 dB down from the peak of the signal.
3. The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values take into consideration the external attenuation correction factors.
  - o The SMA (Female) RF Cable soldered on PCB with maximum attenuation of 0.5 dB at the tested frequencies.
  - o The RF cable from the EUT to Analyzer with maximum attenuation of 0.3 dB at the tested frequencies including the 10 dB attenuator at the input of Spectrum Analyzer




Therefore, total a reference level offset 10.8 dB was added to each of the at the tested frequencies conducted plots.

### Test Setup:



**Transmitter Minimum 6 dB Bandwidth (continued)****Results:**

| Channel | 6 dB Bandwidth (kHz) | Limit (kHz) | Margin (kHz) | Result   |
|---------|----------------------|-------------|--------------|----------|
| Bottom  | 702.728              | ≥500        | 202.728      | Complied |
| Middle  | 700.009              | ≥500        | 200.009      | Complied |
| Top     | 690.728              | ≥500        | 190.728      | Complied |

**Result: Pass**

### 5.2.3. Transmitter Duty Cycle

#### **Test Summary:**

|                                   |                               |                   |                 |
|-----------------------------------|-------------------------------|-------------------|-----------------|
| <b>Test Engineer:</b>             | Krume Ivanov                  | <b>Test Date:</b> | 13 October 2020 |
| <b>Test Sample Serial Number:</b> | 00006 (Conducted Test Sample) |                   |                 |
| <b>Test Site Identification</b>   | SR 9                          |                   |                 |

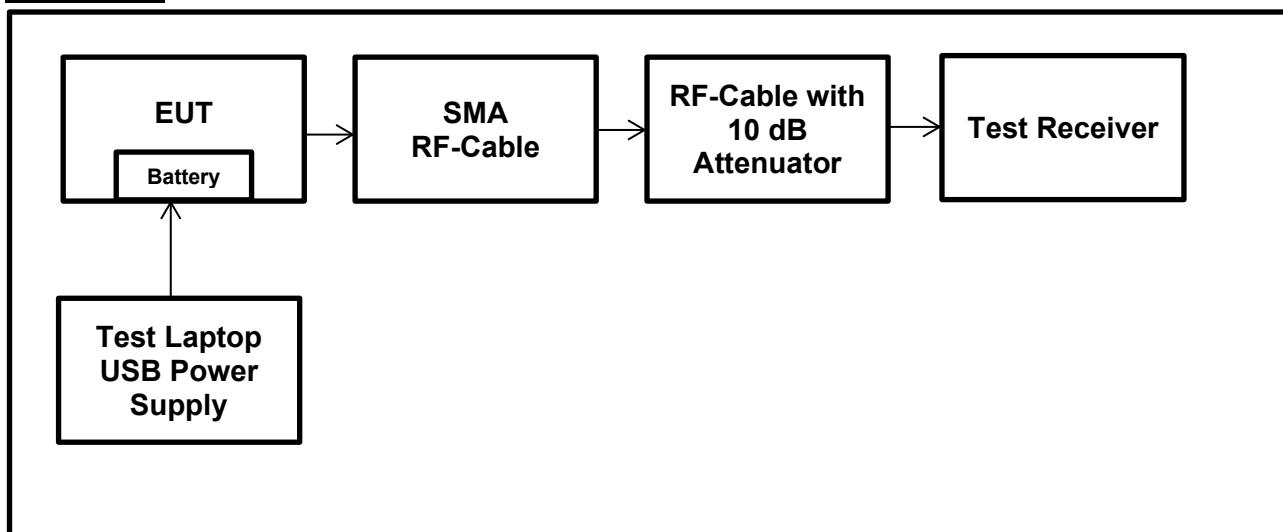
|                          |                            |
|--------------------------|----------------------------|
| <b>FCC Reference:</b>    | Part 15.35(c)              |
| <b>Test Method Used:</b> | FCC KDB 558074 Section 6.0 |

#### Environmental Conditions:

|                               |    |
|-------------------------------|----|
| <b>Temperature (°C):</b>      | 22 |
| <b>Relative Humidity (%):</b> | 42 |

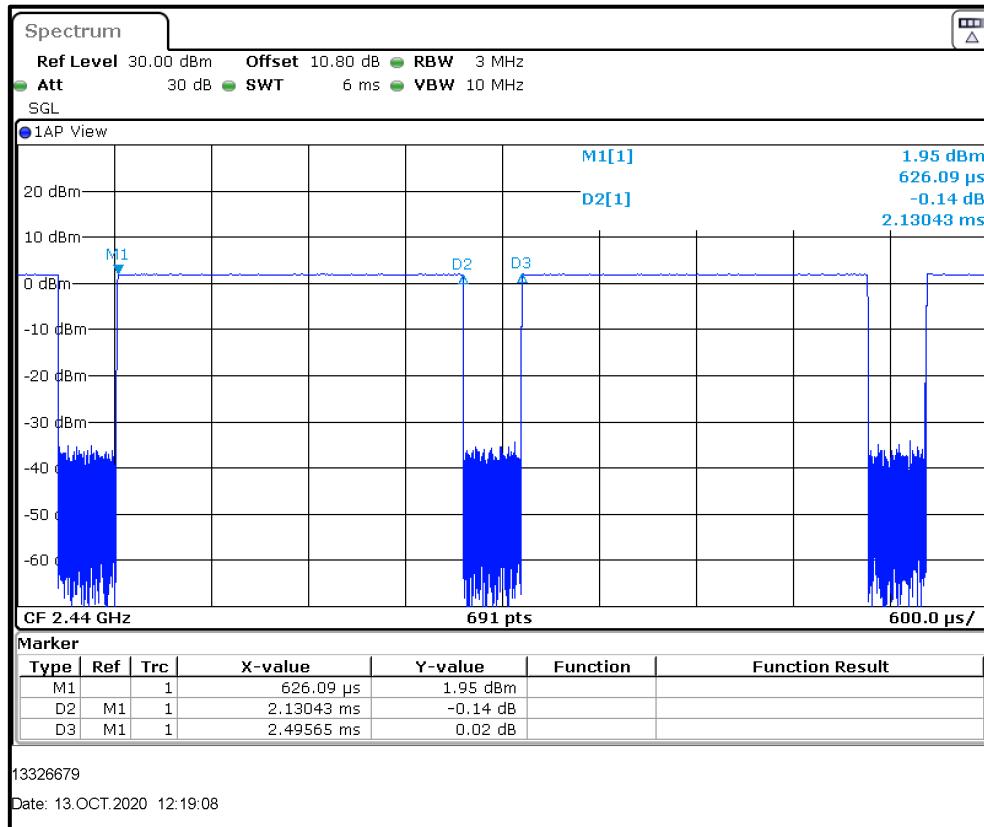
#### Note:

1. The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by using the following calculation:
 
$$\text{Duty Cycle (\%)} = 100 \times [\text{On Time (T}_{\text{ON}})] / [\text{Period}(\text{T}_{\text{ON}} + \text{T}_{\text{OFF}}) \text{ or } 100\text{ms whichever is the lesser}]$$


$$\text{Duty Cycle Correction Factor} = 10 \log 1 / [\text{On Time (T}_{\text{ON}})] / [\text{Period}(\text{T}_{\text{ON}} + \text{T}_{\text{OFF}}) \text{ or } 100\text{ms whichever is the lesser}]$$

$$10 \times \log (1 / (\text{On Time} / [\text{Period or } 100 \text{ ms whichever is the lesser}]))$$

$$\text{BLE Duty Cycle Correction Factor: } 10 \log (1 / (2.130 \text{ ms} / 2.495 \text{ ms})) = 0.686 \text{ dB}$$
2. The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values take into consideration the external attenuation correction factors.
  - o The SMA (Female) RF Cable soldered on PCB with maximum attenuation of 0.5 dB at the tested frequencies.
  - o The RF cable from the EUT to Analyzer with maximum attenuation of 0.3 dB at the tested frequencies including the 10 dB attenuator at the input of Spectrum Analyzer


Therefore, total a reference level offset 10.8 dB was added to each of the at the tested frequencies conducted plots.

#### Test Setup:



**Transmitter Duty Cycle (continued)****Results:**

| Pulse On Time (T <sub>ON</sub> ) (ms) | Pulse Period (T <sub>ON</sub> + T <sub>OFF</sub> ) (ms) | Duty Cycle (%) | Duty Cycle Correction Factor (dB) |
|---------------------------------------|---------------------------------------------------------|----------------|-----------------------------------|
| 2.130                                 | 2.495                                                   | 85.37          | 0.686                             |



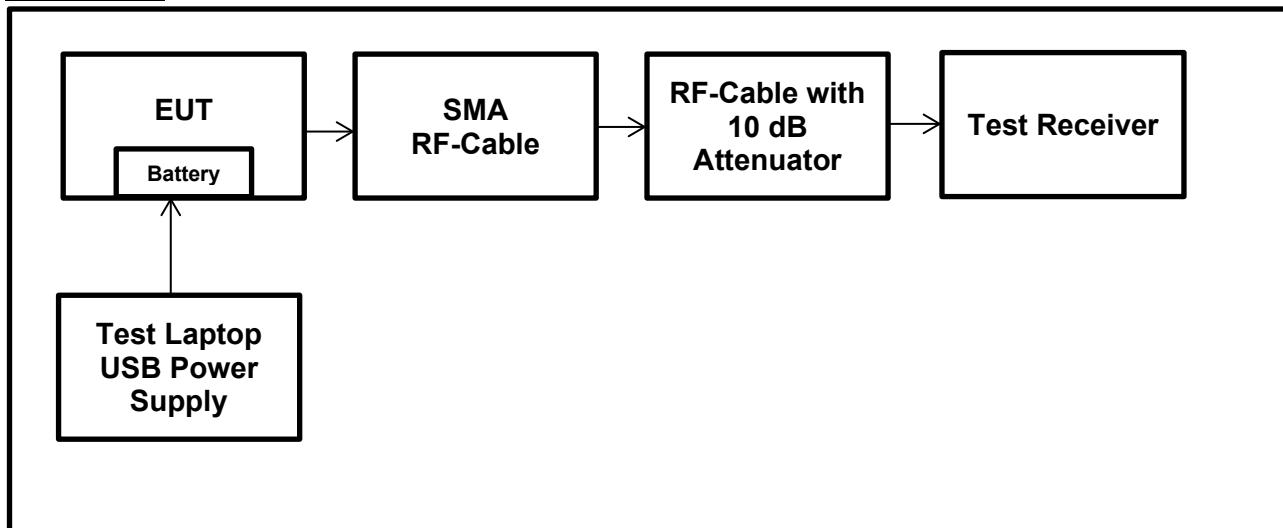
### **5.2.4. Transmitter Power Spectral Density**

#### **Test Summary:**

|                                   |                               |                   |                 |
|-----------------------------------|-------------------------------|-------------------|-----------------|
| <b>Test Engineer:</b>             | Krume Ivanov                  | <b>Test Date:</b> | 13 October 2020 |
| <b>Test Sample Serial Number:</b> | 00006 (Conducted Test Sample) |                   |                 |
| <b>Test Site Identification</b>   | SR 9                          |                   |                 |

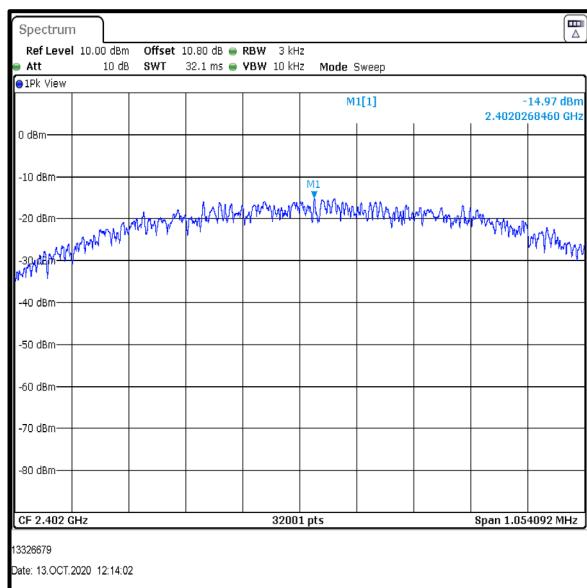
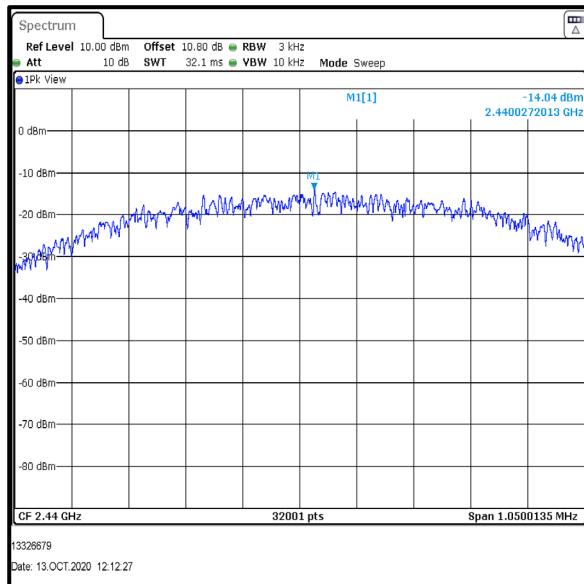
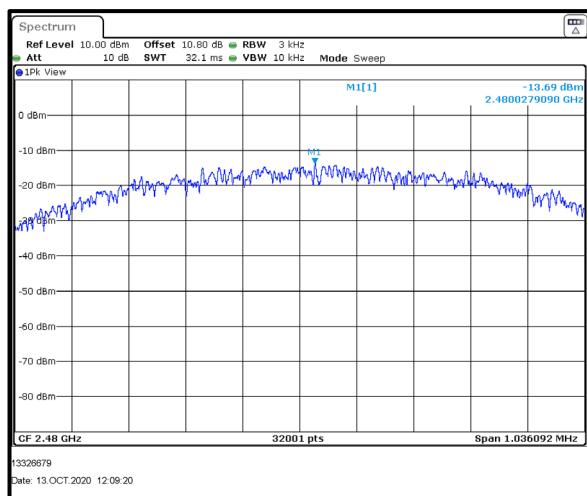
|                          |                                                                     |
|--------------------------|---------------------------------------------------------------------|
| <b>FCC Reference:</b>    | Part 15.247(e)                                                      |
| <b>Test Method Used:</b> | FCC KDB 558074 Section 8.4 referencing ANSI C63.10 Sections 11.10.2 |

#### **Environmental Conditions:**


|                               |    |
|-------------------------------|----|
| <b>Temperature (°C):</b>      | 22 |
| <b>Relative Humidity (%):</b> | 42 |

#### **Notes:**

- Conducted power spectral density tests were performed using PKPSD (peak PSD) method in accordance with FCC KDB 558074 Section 8.4 referencing ANSI C63.10 section 11.10.2. This procedure should be used, if maximum peak conducted output power was used to determine compliance.
- The signal analyser resolution bandwidth was set to 3 kHz and video bandwidth of 10 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 1.5 times OBW. A marker was placed at the peak of the signal and the results recorded in the table below.
- The highest peak of the measured signal was recorded. The calculated duty cycle in section 5.2.3 was added to the measured average power spectral density in order to compute the average power spectral density during the actual transmission time.
- The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values take into consideration the external attenuation correction factors.
  - The SMA (Female) RF Cable soldered on PCB with maximum attenuation of 0.5 dB at the tested frequencies.
  - The RF cable from the EUT to Analyzer with maximum attenuation of 0.3 dB at the tested frequencies including the 10 dB attenuator at the input of Spectrum Analyzer




Therefore, total a reference level offset 10.8 dB was added to each of the at the tested frequencies conducted plots.

#### **Test Setup:**



**Transmitter Power Spectral Density (continued)****Results:**

| Channel | Output Power (dBm/3 kHz) | Limit (dBm/3 kHz) | Margin (dB) | Result   |
|---------|--------------------------|-------------------|-------------|----------|
| Bottom  | -14.97                   | 8.0               | 22.97       | Complied |
| Middle  | -14.04                   | 8.0               | 22.04       | Complied |
| Top     | -13.69                   | 8.0               | 21.69       | Complied |

**Bottom Channel****Middle Channel****Top Channel****Result: Pass**

### 5.2.5. Transmitter Maximum Peak Output Power

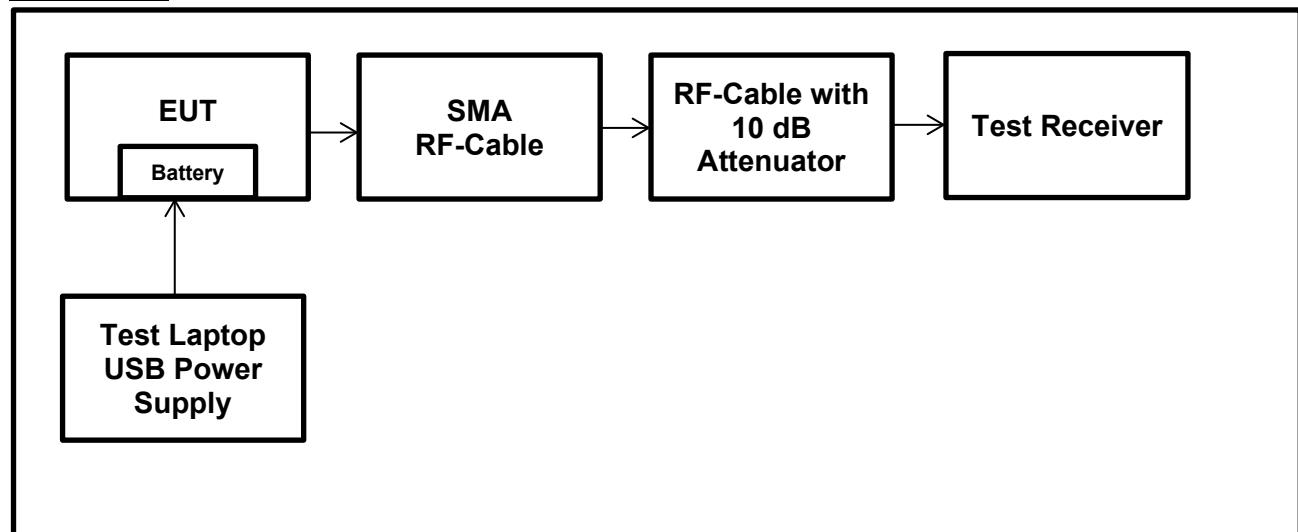
#### **Test Summary:**

|                                   |                               |                   |                 |
|-----------------------------------|-------------------------------|-------------------|-----------------|
| <b>Test Engineer:</b>             | Krume Ivanov                  | <b>Test Date:</b> | 13 October 2020 |
| <b>Test Sample Serial Number:</b> | 00006 (Conducted Test Sample) |                   |                 |
| <b>Test Site Identification</b>   | SR 9                          |                   |                 |

|                          |                                                                         |
|--------------------------|-------------------------------------------------------------------------|
| <b>FCC Reference:</b>    | Part 15.247(b)(3)                                                       |
| <b>Test Method Used:</b> | FCC KDB 558074 Section 8.3.1.1 referencing ANSI C63.10 Section 11.9.1.1 |

#### Environmental Conditions:

|                               |    |
|-------------------------------|----|
| <b>Temperature (°C):</b>      | 22 |
| <b>Relative Humidity (%):</b> | 42 |

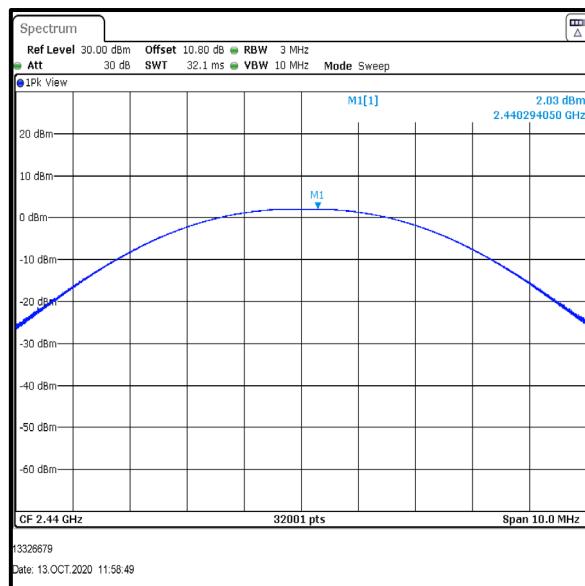
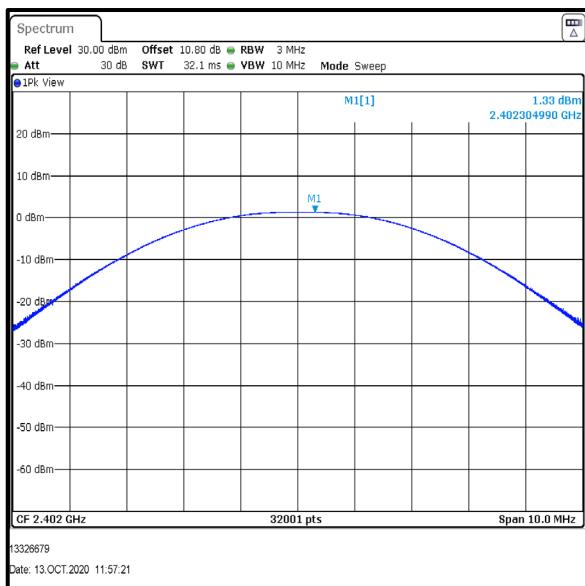
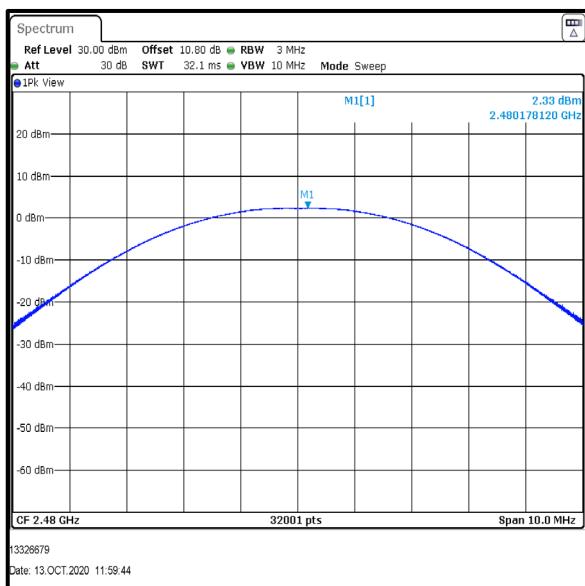

#### Notes:

- Conducted power tests were performed using a spectrum analyser in accordance with FCC KDB 558074 Section 8.3.1.1 with the  $RBW \geq DTS$  bandwidth referencing ANSI C63.10 Section 11.9.1.1.
- The signal analyser resolution bandwidth was set to 3 MHz and video bandwidth of 10 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 10 MHz. A marker was placed at the peak of the signal and the results recorded in the table below.
- The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values take into consideration the external attenuation correction factors.
  - The SMA (Female) RF Cable soldered on PCB with maximum attenuation of 0.3 dB at the tested frequencies.
  - The RF cable from the EUT to Analyzer with maximum attenuation of 0.5 dB at the tested frequencies including the 10 dB attenuator at the input of Spectrum Analyzer.

Therefore, total a reference level offset 10.8 dB was added to each of the at the tested frequencies conducted plots.

- The declared antenna gain was added to conducted power to obtain the EIRP.

#### Test Setup:


**Transmitter Maximum Peak Output Power (continued)****Results:**

| Channel | Conducted Peak Power (dBm) | Conducted Peak Power Limit (dBm) | Margin (dB) | Result   |
|---------|----------------------------|----------------------------------|-------------|----------|
| Bottom  | 1.33                       | 30.00                            | 28.67       | Complied |
| Middle  | 2.03                       | 30.00                            | 27.97       | Complied |
| Top     | 2.33                       | 30.00                            | 27.67       | Complied |

| Channel | Conducted Peak Power (dBm) | Declared Antenna Gain (dBi) | EIRP (dBm) | De Facto EIRP Limit (dBm) | Margin (dB) | Result   |
|---------|----------------------------|-----------------------------|------------|---------------------------|-------------|----------|
| Bottom  | 1.33                       | 0.0                         | 1.33       | 36.00                     | 34.67       | Complied |
| Middle  | 2.03                       | 0.0                         | 2.03       | 36.00                     | 33.97       | Complied |
| Top     | 2.33                       | 0.0                         | 2.33       | 36.00                     | 33.67       | Complied |

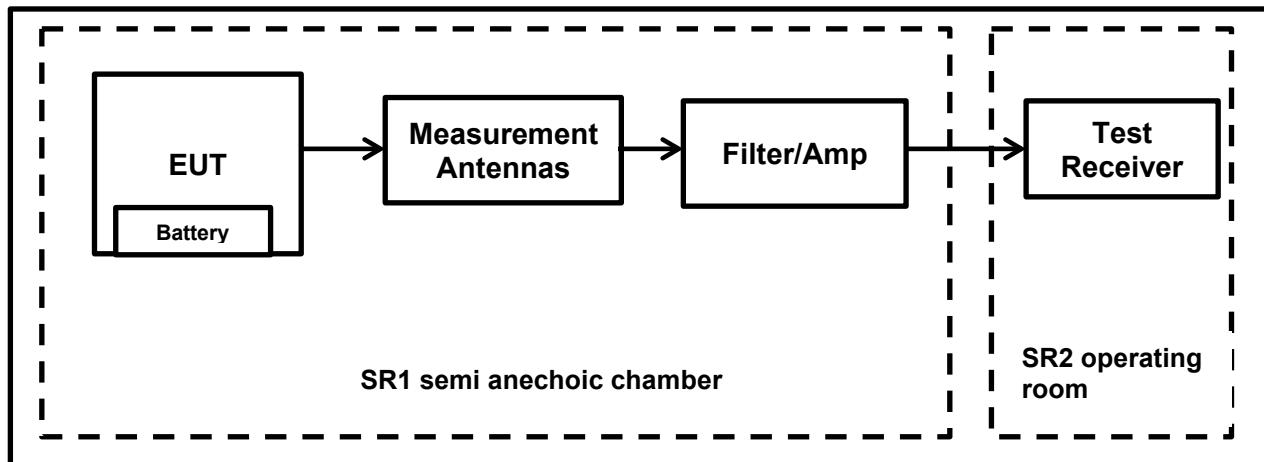
**Result: Pass**

**Transmitter Maximum Peak Output Power (continued)****Results:****Bottom Channel****Middle Channel****Top Channel**

## **5.2.6. Transmitter Radiated Emissions**

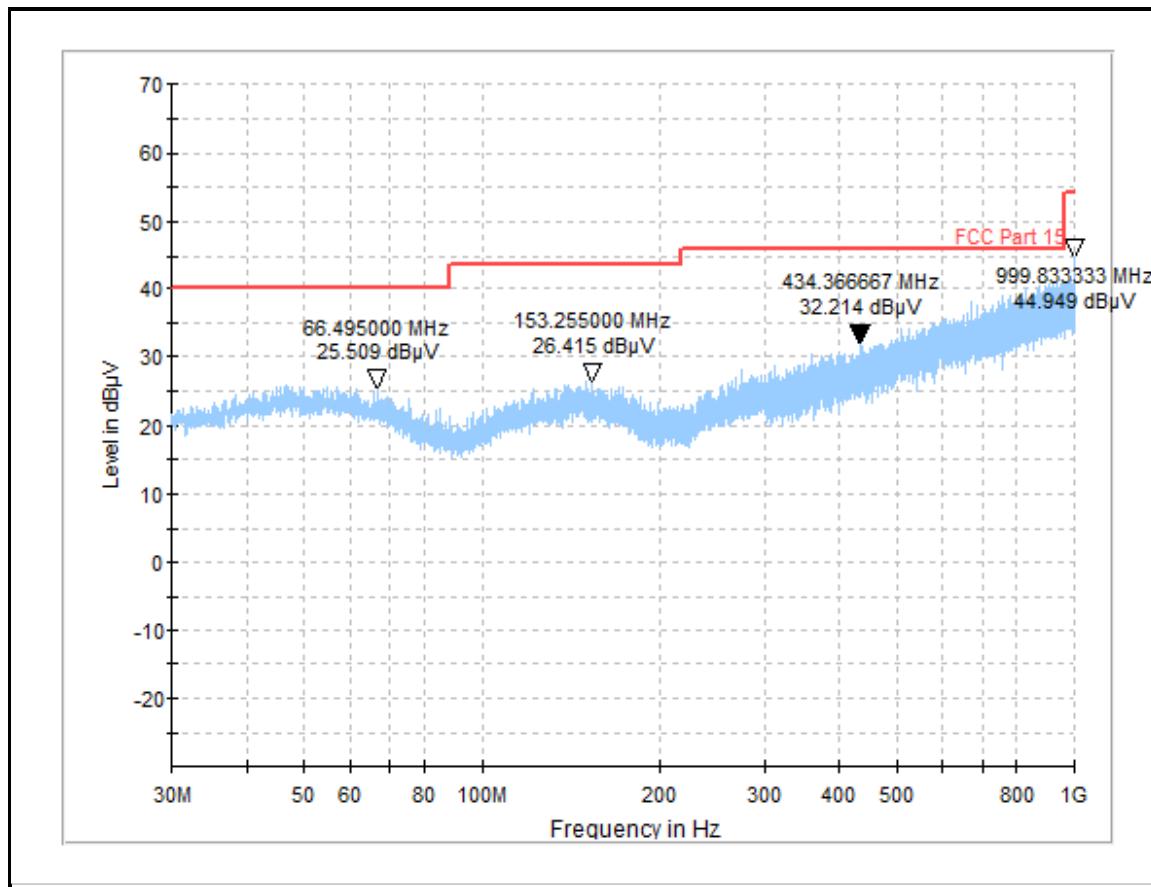
### **Test Summary:**

|                                   |                              |                   |                   |
|-----------------------------------|------------------------------|-------------------|-------------------|
| <b>Test Engineer:</b>             | Sercan Usta                  | <b>Test Date:</b> | 15 September 2020 |
| <b>Test Sample Serial Number:</b> | 00012 (Radiated Test Sample) |                   |                   |
| <b>Test Site Identification</b>   | SR 1/2                       |                   |                   |


|                          |                                                                                                                        |
|--------------------------|------------------------------------------------------------------------------------------------------------------------|
| <b>FCC Reference:</b>    | Parts 15.247(d) & 15.209(a)                                                                                            |
| <b>Test Method Used:</b> | FCC KDB 558074 Sections 8.5 & 8.6 referencing<br>ANSI C63.10 Sections 11.11 & 11.12,<br>ANSI C63.10 Sections 6.3 & 6.5 |
| <b>Frequency Range</b>   | 30 MHz to 1000 MHz                                                                                                     |

### **Environmental Conditions:**

|                               |    |
|-------------------------------|----|
| <b>Temperature (°C):</b>      | 23 |
| <b>Relative Humidity (%):</b> | 60 |


### **Notes:**

1. Measurements below 1 GHz were performed in a semi-anechoic chamber SR1/ 2 (Asset Number 1603665) at a distance of 3 m. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 m to 4 m.
2. Pre-scans were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.
3. The preliminary scans showed similar emission levels below 1 GHz, for each channel of operation. Therefore final radiated emissions measurements were performed with the EUT set to the Top channel only.
4. All emissions shown on the pre-scan plot were investigated and found to be below the system noise floor.

**Transmitter Radiated Emissions (continued)****Test Setup:**

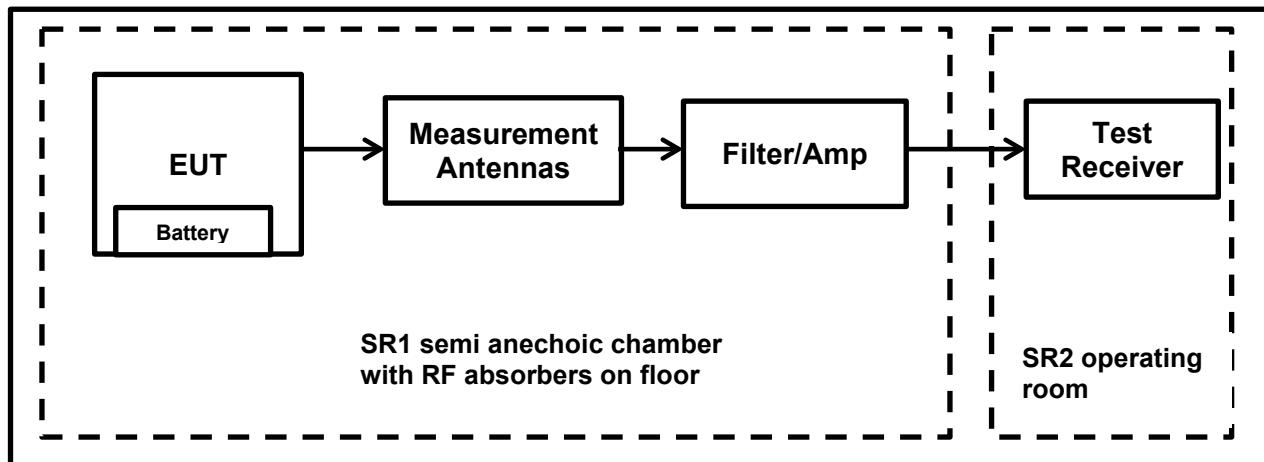
**Transmitter Radiated Emissions (continued)****Results: Top Channel**

| Frequency (MHz)                              | Antenna Polarization | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Result |
|----------------------------------------------|----------------------|----------------------|----------------------|-------------|--------|
| No critical spurious emissions were detected |                      |                      |                      |             |        |

**Plot: 30 MHz-1 GHz: Top Channel****Result: Pass**

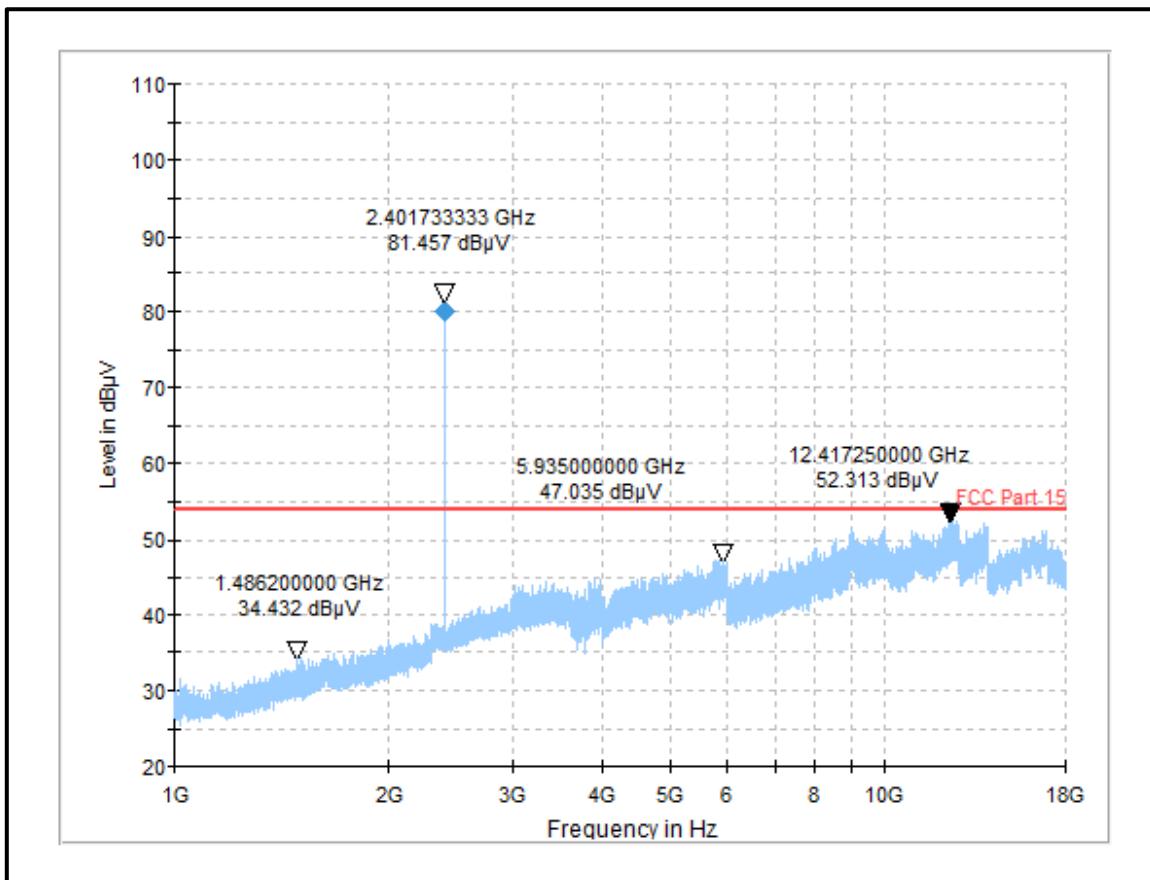
**Transmitter Radiated Emissions (continued)****Test Summary:**

|                                   |                              |                   |                                        |
|-----------------------------------|------------------------------|-------------------|----------------------------------------|
| <b>Test Engineer:</b>             | Sercan Usta                  | <b>Test Date:</b> | 15 September 2020<br>& 13 October 2020 |
| <b>Test Sample Serial Number:</b> | 00012 (Radiated Test Sample) |                   |                                        |
| <b>Test Site Identification</b>   | SR 1/2                       |                   |                                        |


|                          |                                                                                                                       |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------|
| <b>FCC Reference:</b>    | Parts 15.247(d) & 15.209(a)                                                                                           |
| <b>Test Method Used:</b> | FCC KDB 558074 Sections 8.5 & 8.6 referencing<br>ANSI C63.10 Sections 11.11 & 11.12<br>ANSI C63.10 Sections 6.3 & 6.6 |
| <b>Frequency Range</b>   | 1 GHz to 25 GHz                                                                                                       |

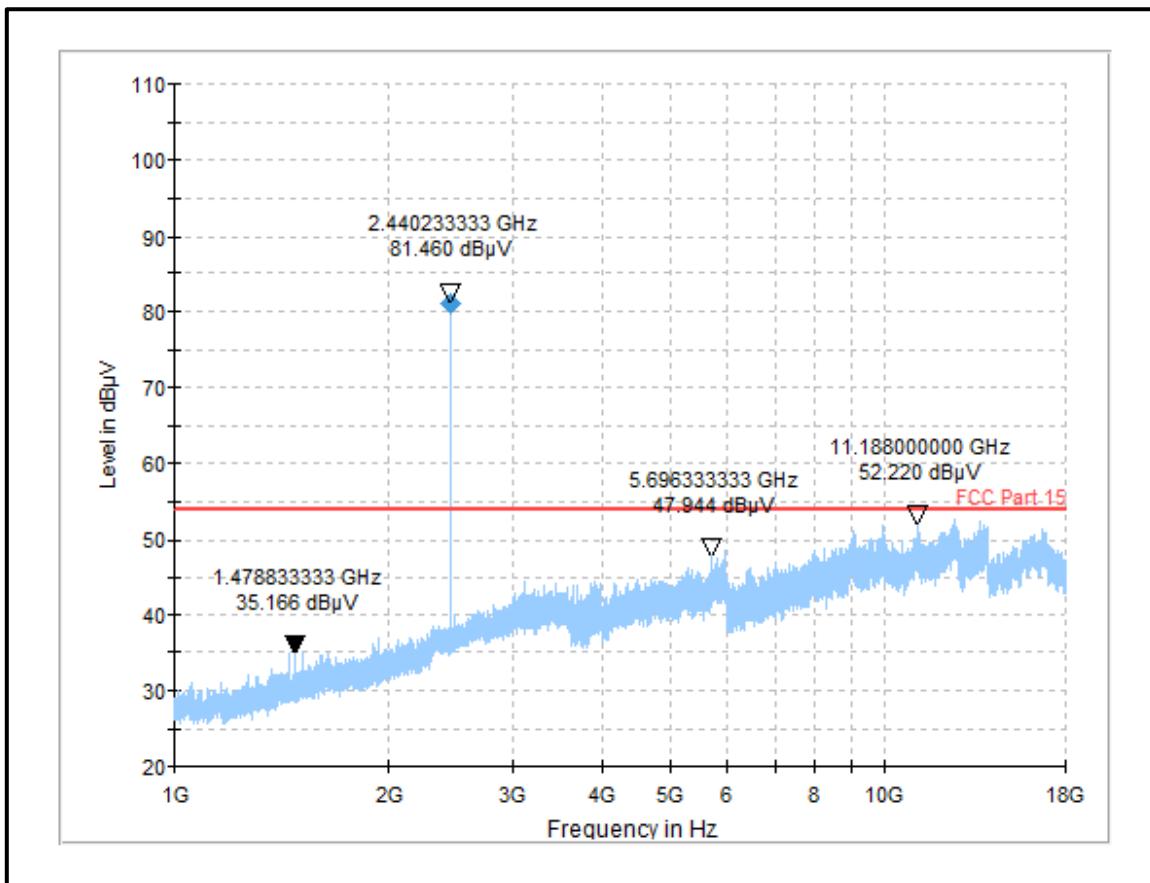
**Environmental Conditions:**

|                               |         |
|-------------------------------|---------|
| <b>Temperature (°C):</b>      | 22 & 23 |
| <b>Relative Humidity (%):</b> | 42 & 60 |


**Note(s):**

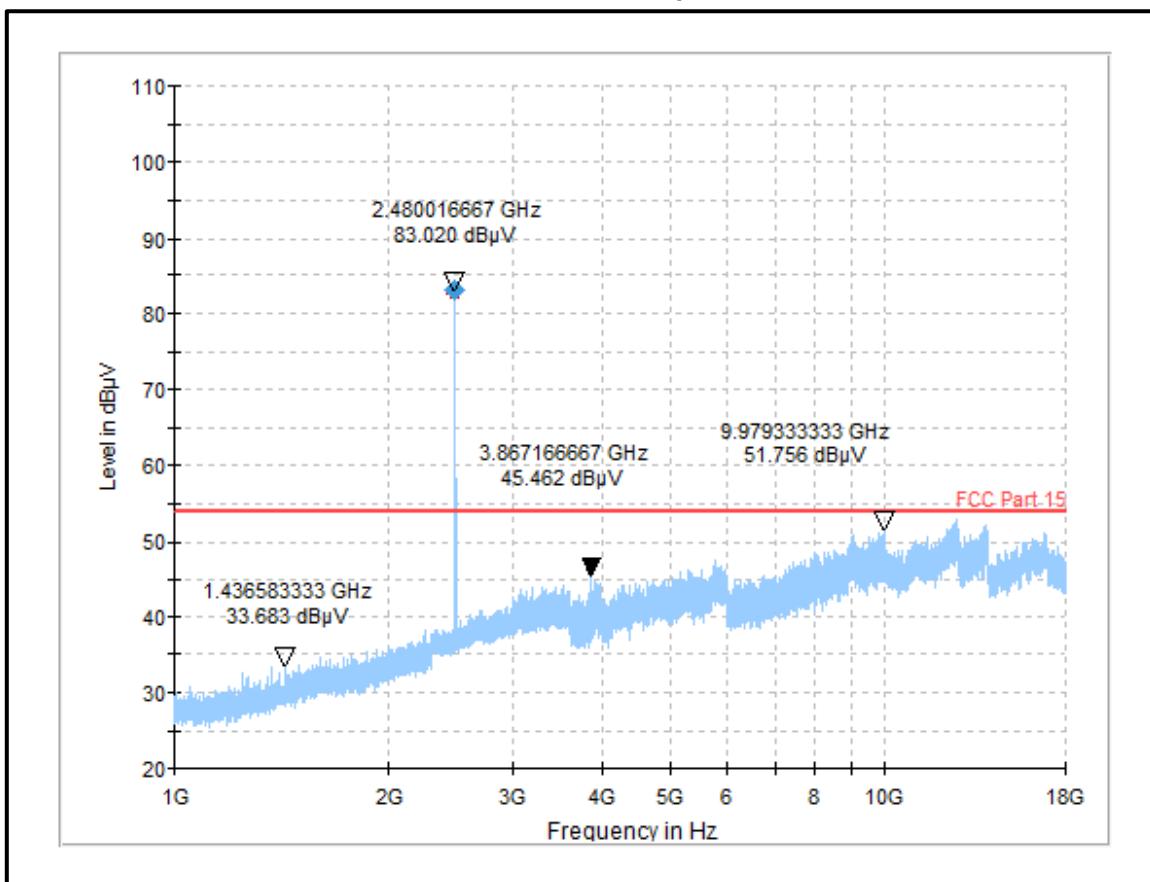
1. The emissions shown at frequencies approximately 2.4 GHz to 2.4835 GHz on the 1 GHz to 18 GHz plots are the EUT fundamental for the tested channel.
2. Pre-scans above 1 GHz were performed in a semi-anechoic chamber SR1/ 2 (Asset Number 1603665) with absorber on the floor at a distance of 3 m. The EUT was placed at a height of 1.5 m above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 m above the test chamber floor, in line with the EUT. Final measurements above 1 GHz were performed in a semi-anechoic chamber SR1/ 2 (Asset Number 1603665) with absorber on the floor at a distance of 3 m. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 m to 4 m.
3. Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto.
4. All emissions shown on the pre-scans were investigated and found to be below the noise floor of the measurement system.
5. The preliminary scans showed similar emission levels above 18 GHz, for each channel & modes of operation. Therefore final radiated emissions measurements were performed with the EUT set to the Top channel only.
6. All emissions shown on the pre-scans were investigated and found to be below the noise floor of the measurement system.
7. \*In accordance with ANSI C63.10 Section 6.6.4.3 (Note 1), if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.
8. \*\*As the EUT was transmitting continuously with a duty cycle of 85.37 % a duty Cycle Correction factor of 0.69 dB was added to all average measurements.

**Transmitter Radiated Emissions (continued)****Test Setup:**


**Transmitter Radiated Emissions (continued)****Results: Bottom Channel**

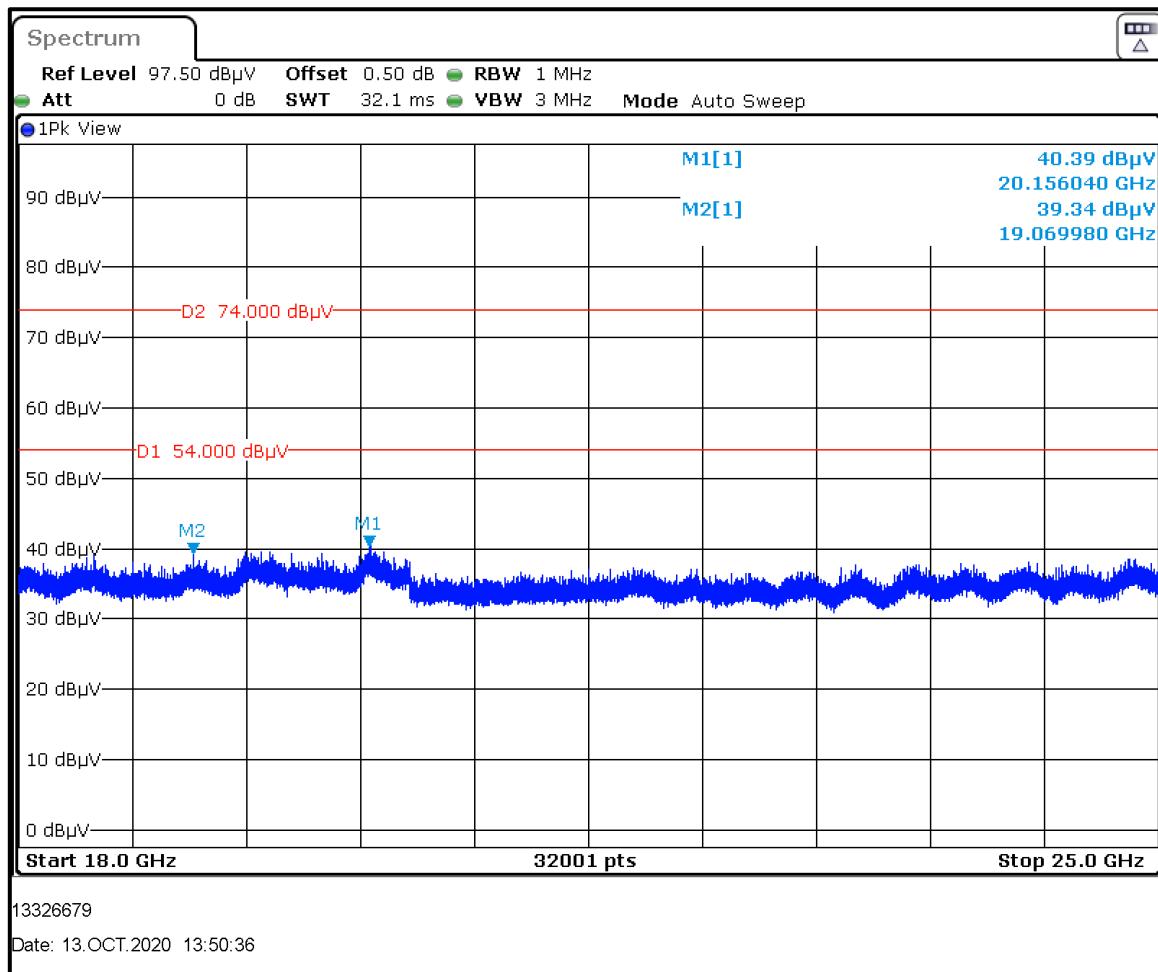
| Frequency (MHz)                              | Antenna Polarization | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Result |
|----------------------------------------------|----------------------|----------------------|----------------------|-------------|--------|
| No critical spurious emissions were detected |                      |                      |                      |             |        |

**Plot: 1 GHz – 18 GHz: Bottom Channel****Result: Pass**


**Transmitter Radiated Emissions (continued)****Results: Middle Channel**

| Frequency (MHz)                              | Antenna Polarization | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Result |
|----------------------------------------------|----------------------|----------------------|----------------------|-------------|--------|
| No critical spurious emissions were detected |                      |                      |                      |             |        |

**Plot: 1 GHz – 18 GHz: Middle Channel****Result: Pass**


**Transmitter Radiated Emissions (continued)****Results: Top Channel**

| Frequency (MHz)                              | Antenna Polarization | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Result |
|----------------------------------------------|----------------------|----------------------|----------------------|-------------|--------|
| No critical spurious emissions were detected |                      |                      |                      |             |        |

**Plot: 1 GHz – 18 GHz: Top Channel****Result: Pass**

**Transmitter Radiated Emissions (continued)****Results: Top Channel**

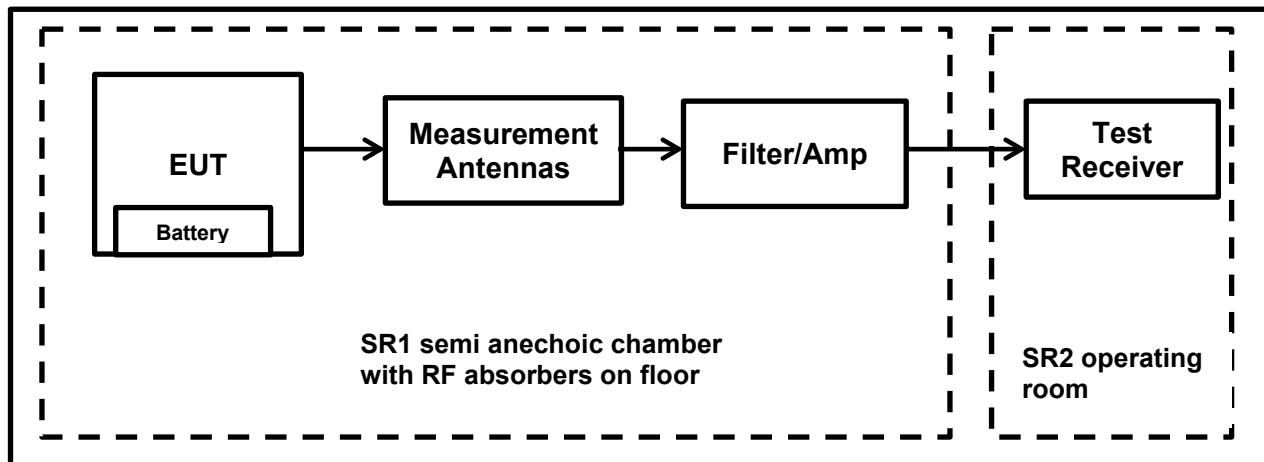
| Frequency (MHz)                              | Antenna Polarization | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Result |
|----------------------------------------------|----------------------|----------------------|----------------------|-------------|--------|
| No critical spurious emissions were detected |                      |                      |                      |             |        |

**Plot: 18 GHz – 25 GHz: Top Channel****Result: Pass**

## **5.2.7. Transmitter Band Edge Radiated Emissions**

### **Test Summary:**

|                                   |                              |                   |                   |
|-----------------------------------|------------------------------|-------------------|-------------------|
| <b>Test Engineer:</b>             | Sercan Usta                  | <b>Test Date:</b> | 15 September 2020 |
| <b>Test Sample Serial Number:</b> | 00012 (Radiated Test Sample) |                   |                   |
| <b>Test Site Identification</b>   | SR 1/2                       |                   |                   |


|                          |                                                                                                                             |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| <b>FCC Reference:</b>    | Part 15.247(d) & 15.209(a)                                                                                                  |
| <b>Test Method Used:</b> | FCC KDB 558074 Sections 8.7 referencing<br>ANSI C63.10 Sections 11.11,11.12 &11.13,<br>ANSI C63.10 Sections 6.10.4 & 6.10.5 |

### **Environmental Conditions:**

|                               |    |
|-------------------------------|----|
| <b>Temperature (°C):</b>      | 23 |
| <b>Relative Humidity (%):</b> | 60 |

### **Note(s):**

1. The measurements were in a semi-anechoic chamber SR1/ 2 (Asset Number 1603665) with absorber on the floor at a distance of 3 m. The EUT was placed at a height of 1.5 m above the test chamber floor in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 m to 4 m.
2. As the maximum peak conducted output power was previously measured. In accordance with FCC KDB 558074 Section 8.7 lower band edge measurement was performed with a peak detector and the -20 dBc limit applied.
3. As the lower band edge falls within a non-restricted band, only peak measurements are required. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. Marker frequencies and levels were recorded.
4. As the upper band edge falls within a restricted band both peak and average measurements were recorded by placing a marker at the edge of the band. For peak measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. For average measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. A RMS detector in power averaging mode was used. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent restricted band of operation (where a higher level emission was present). Marker frequencies and levels were recorded.
5. There is a restricted band 10 MHz below the lower band edge. The test receiver was set up as follows: the RBW set to 1 MHz, the VBW set to 3 MHz, with the sweep time set to auto couple. Peak and average measurements were performed with their respective detectors. Markers were placed on the highest point on each trace.
6. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
7. \*\*As the EUT was transmitting continuously with a duty cycle of 85.37 % a duty Cycle Correction factor of 0.69 dB was added to all average measurements.

**Transmitter Band Edge Radiated Emissions (Continued)****Test Setup:**

**Transmitter Band Edge Radiated Emissions (continued)****Results: Bluetooth Low Energy / Lower Band Edge / Peak****Results: Lower Band Edge / Peak**

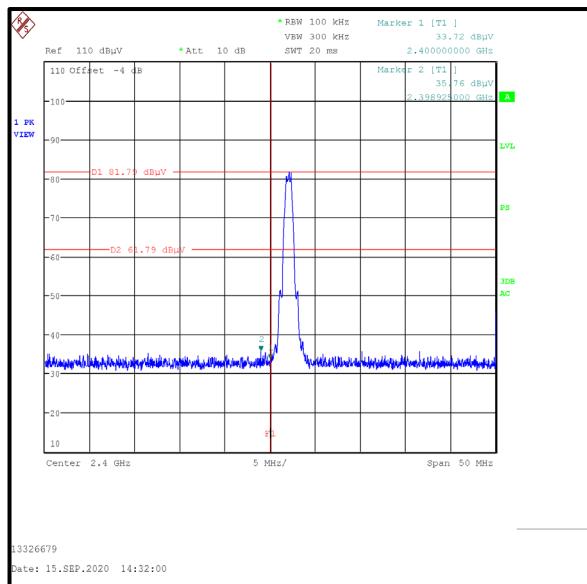
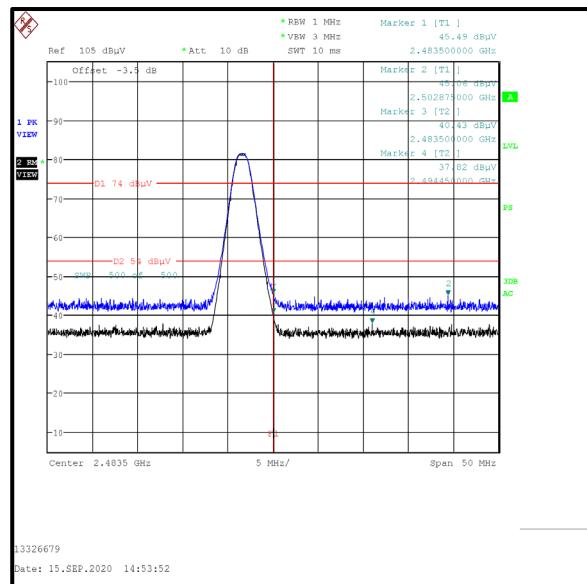
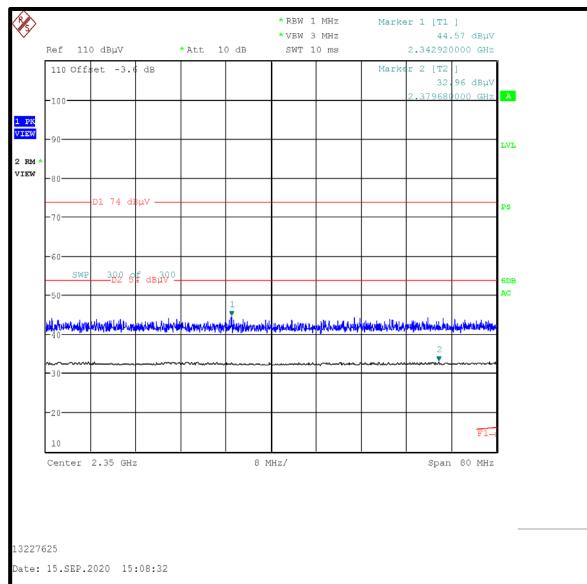
| Frequency (MHz) | Peak Level (dB $\mu$ V/m) | -20 dBc Limit (dB $\mu$ V/m) | Margin (dB) | Result   |
|-----------------|---------------------------|------------------------------|-------------|----------|
| 2398.92         | 35.76                     | 61.79                        | 26.03       | Complied |
| 2400.00         | 33.72                     | 61.79                        | 28.07       | Complied |

**Results: 2310 to 2390 MHz Restricted Band / Peak**

| Frequency (MHz) | Peak Level (dB $\mu$ V/m) | Peak Limit (dB $\mu$ V/m) | Margin (dB) | Result   |
|-----------------|---------------------------|---------------------------|-------------|----------|
| 2342.90         | 44.57                     | 74.0                      | 29.43       | Complied |

**Results: 2310 to 2390 MHz Restricted Band / Average**

| Frequency (MHz) | Average Level (dB $\mu$ V/m) | Duty Cycle Correction (dB) | Corrected Avarage Level** (dB $\mu$ V/m) | Average Limit (dB $\mu$ V/m) | Margin (dB) | Result   |
|-----------------|------------------------------|----------------------------|------------------------------------------|------------------------------|-------------|----------|
| 2379.68         | 32.96                        | 0.69                       | 33.65                                    | 54.0                         | 20.35       | Complied |




**Results: Upper Band Edge / Peak**

| Frequency (MHz) | Peak Level (dB $\mu$ V/m) | Peak Limit (dB $\mu$ V/m) | Margin (dB) | Result   |
|-----------------|---------------------------|---------------------------|-------------|----------|
| 2483.50         | 45.49                     | 74.0                      | 28.51       | Complied |
| 2502.87         | 45.06                     | 74.0                      | 28.94       | Complied |

**Results: Upper Band Edge / Average**

| Frequency (MHz) | Average Level (dB $\mu$ V/m) | Duty Cycle Correction (dB) | Corrected Avarage Level** (dB $\mu$ V/m) | Average Limit (dB $\mu$ V/m) | Margin (dB) | Result   |
|-----------------|------------------------------|----------------------------|------------------------------------------|------------------------------|-------------|----------|
| 2483.50         | 40.43                        | 0.69                       | 41.12                                    | 54.0                         | 12.88       | Complied |
| 2494.45         | 37.82                        | 0.69                       | 38.51                                    | 54.0                         | 15.49       | Complied |

**Result: Pass**

**Transmitter Band Edge Radiated Emissions (continued)****Plots: Bluetooth Low Energy / Lower Band Edge / Peak****Lower Band Edge Peak Measurement****Upper Band Edge Peak & Average Measurement****2310 MHz to 2390 MHz Restricted Band****Result: Pass**

## **6. Measurement Uncertainty**

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

| Measurement Type                    | Confidence Level (%) | Calculated Uncertainty |
|-------------------------------------|----------------------|------------------------|
| Conducted Maximum Peak Output Power | 95%                  | ±0.59 dB               |
| Transmitter Duty Cycle              | 95%                  | ±3.4%                  |
| Spectral Power Density              | 95%                  | ±0.59 dB               |
| Conducted Maximum Peak Output Power | 95%                  | ±0.59 dB               |
| Radiated Spurious Emissions         | 95%                  | ±3.10 dB               |
| Band Edge Radiated Emissions        | 95%                  | ±3.10 dB               |
| Minimum 6 dB Bandwidth              | 95%                  | ±0.87 %                |

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

## 7. Used equipment

### Test site: SR 1/2

| ID      | Manufacturer                  | Type                            | Model        | Serial            | Calibration Date | Cal. Cycle (months) |
|---------|-------------------------------|---------------------------------|--------------|-------------------|------------------|---------------------|
| 1       | Rohde & Schwarz               | Antenna, Loop                   | HFH2-Z2      | 831247/012        | 10/07/2020       | 36                  |
| 377     | BONN Elektronik               | Amplifier, Low Noise Pre        | BLMA 0118-1A | 025294B           | 08/07/2020       | 12                  |
| 460     | Deisl                         | Turntable                       | DT 4250 S    | n/a               | n/a              | n/a                 |
| 465     | Schwarzbeck                   | Antenna, Trilog Broadband       | VULB 9168    | 9168-240          | 02/09/2020       | 24                  |
| 496     | Rohde & Schwarz               | Antenna, log. - periodical      | HL050        | 100297            | 05/08/2020       | 36                  |
| 587     | Maturo                        | antenna mast, tilting           | TAM 4.0-E    | 011/7180311       | n/a              | n/a                 |
| 588     | Maturo                        | Controller                      | NCD          | 029/7180311       | n/a              | n/a                 |
| 591     | Rohde & Schwarz               | Receiver                        | ESU 40       | 100244/040        | 07/07/2020       | 12                  |
| 608     | Rohde & Schwarz               | Switch Matrix                   | OSP 120      | 101227            | lab verification | n/a                 |
| 628     | Maturo                        | Antenna mast                    | CAM 4.0-P    | 224/19590716      | n/a              | n/a                 |
| 629     | Maturo                        | Kippeinrichtung                 | KE 2.5-R-M   | MAT002            | n/a              | n/a                 |
| -/-     | Testo                         | Thermo-Hygrometer               | 608-H1       | 01                | lab verification | n/a                 |
| 328     | SPS                           | AC/DC power distribution system | PAS 5000     | A2464 00/2 0200   | lab verification | n/a                 |
| 1603665 | Siemens Matsushita Components | semi-anechoic chamber SR1/ 2    | -/-          | B83117-A1421-T161 | n/a              | n/a                 |

### Test site: SR 7/8

| ID  | Manufacturer    | Type                            | Model     | Serial          | Calibration Date | Cal. Cycle (months) |
|-----|-----------------|---------------------------------|-----------|-----------------|------------------|---------------------|
| 23  | Rohde & Schwarz | Artificial Mains                | ESH3-Z5   | 831767/013      | 07/07/2020       | 12                  |
| 28  | Rohde & Schwarz | Passive Probe                   | ESH2-Z3   | none            | 11/07/2020       | 12                  |
| 349 | Rohde & Schwarz | Receiver, EMI Test              | ESIB7     | 836697/009      | 09/07/2020       | 12                  |
| 351 | Rohde & Schwarz | network, Artificial Mains       | ESH3-Z5   | 862770/018      | 07/07/2020       | 12                  |
| 616 | Rohde & Schwarz | ISN                             | ENY81-CA6 | 101656          | 07/07/2020       | 12                  |
| -/- | Testo           | Thermo-Hygrometer               | 608-H1    | 08              | lab verification | n/a                 |
| 327 | SPS             | AC/DC power distribution system | PAS 5000  | A2464 00/1 0200 | lab verification | n/a                 |

### Test site: SR 9

| ID      | Manufacturer                  | Type                   | Model      | Serial            | Calibration Date | Cal. Cycle (months) |
|---------|-------------------------------|------------------------|------------|-------------------|------------------|---------------------|
| 445     | Huber & Suhner                | RF Attenuator (10dB)   | 6810.17.AC | --                | lab verification | 12                  |
| 637     | Rohde & Schwarz               | Spectrum Analyzer      | FSV40      | 101587            | 08/07/2020       | 12                  |
| -/-     | Testo                         | Thermo-Hygrometer      | 608-H1     | 07                | lab verification | n/a                 |
| -/-     | Huber & Suhner                | RF Cable ( upto 18GHz) | -/-        | -/-               | lab verification | n/a                 |
| 1603668 | Siemens Matsushita Components | shielded room          |            | B83117-B1422-T161 | n/a              | n/a                 |

## **8. Report Revision History**

| Version Number                                                                                               | Revision Details |          |                                                                                                        |
|--------------------------------------------------------------------------------------------------------------|------------------|----------|--------------------------------------------------------------------------------------------------------|
|                                                                                                              | Page No (s)      | Clause   | Details                                                                                                |
| 1.0                                                                                                          | -                | -        | Initial Version                                                                                        |
| <b>Test Report Version 1.1 supersede Version 1.0 with immediate effect</b>                                   |                  |          |                                                                                                        |
| Test Report No. UL-RPT-RP-13326679-619-FCC Version 1.1, Issue Date 17 MAY 2021 replaces                      |                  |          |                                                                                                        |
| Test Report No. UL-RPT-RP-13326679-619-FCC Version 1.0, Issue Date 11 JANUARY 2021 which is no longer valid. |                  |          |                                                                                                        |
| 1.1                                                                                                          | as below         | as below | Current Version                                                                                        |
|                                                                                                              | 1                | -        | Model No. corrected from WAVOPRO to WAVO PRO                                                           |
|                                                                                                              | 7                | 3.1      | Model No. corrected from WAVOPRO to WAVO PRO                                                           |
|                                                                                                              | 7                | 3.2      | Model No. corrected from WAVOPRO to WAVO PRO                                                           |
|                                                                                                              | 9                | 4.2      | Reference Note to Radiated Emission Measurements below 30 MHz was removed                              |
|                                                                                                              | 26-28            | 5.2.6    | Reference Notes, Test Setup & Test Results to Radiated Emission Measurements below 30 MHz were removed |