

Page 1 of 19 FCC ID: 2AQI5-CD317A

RF Exposure Evaluation

Report No.: LCSA03175117EB

For

Ugreen Group Limited
2-in-1 Magnetic Wireless Charger

Test Model: CD317

Prepared for : Ugreen Group Limited

Address Ugreen Building, Longcheng Industrial Park, Longguanxi Road,

Longhua, Shenzhen, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei,

Shajing Street, Baoan District, Shenzhen, 518000, China

Tel : (+86)755-82591330
Fax : (+86)755-82591332
Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : March 18, 2025

Number of tested samples : 2

Sample No. : A250314074-1, A250314074-2

Serial number : Prototype

Date of Test : March 18, 2025 ~ April 08, 2025

Date of Report : April 09, 2025

Shenzhen LCS Compliance Testing Laboratory Ltd.

Page 2 of 19

FCC ID: 2AQI5-CD317A

RF Exposure Evaluation

Report Reference No.: LCSA03175117EB

Date of Issue..... : April 09, 2025

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei,

Testing Location/ Procedure.....: Full application of Harmonised standards ■

Applicant's Name.....: Ugreen Group Limited

Ugreen Building, Longcheng Industrial Park, Longguanxi Road,

Longhua, Shenzhen, China

Test Specification

Standard.....: FCC KDB publication 680106 D01 RF Exposure Wireless Charging

Apps v03

FCC CFR 47 part1 1.1310 FCC CFR 47 part2 2.1091 FCC CFR 47 part 18.107

Test Report Form No.....: : TRF-4-E-214 A/0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

EUT Description.....: 2-in-1 Magnetic Wireless Charger

Trade Mark.....: UGREEN

Test Model : CD317

Ratings.....: USB-C (IN) Input: 5.0V= 3.0A/9.0V= 3.0A

Wireless Charging Total Output Power: 20.0W Max (iPhone: 7.5W,

AirPods: 5.0W)

Result Positive

Compiled by: Supervised by:

Approved by:

Report No.: LCSA03175117EB

Li Huan/ Administrator

Jack Liu/ Technique principal

Gavin Liang/ Manager

Report No.: LCSA03175117EB

FCC -- TEST REPORT

Test Report No. :	LCSA03175117EB	April 09, 2025 Date of issue

: 2-in-1 Magnetic Wireless Charger Test Model..... : CD317 Applicant..... : Ugreen Group Limited Address..... : Ugreen Building, Longcheng Industrial Park, Longguanxi Road, Longhua, Shenzhen, China Telephone..... Fax..... Manufacturer..... : Ugreen Group Limited : Ugreen Building, Longcheng Industrial Park, Longguanxi Road, Address..... Longhua, Shenzhen, China Telephone..... Fax..... : Shenzhen Powerqi Technology Co., Ltd. Factory..... : Room 201, 302, 401 of A4 Building, Block A, Fangxin Science and Address..... Technology Park, No.13 of Baonan Road, Longgang Community, Longgang Street, Longgang District, Shenzhen City, Guangdong Province, P.R.C Telephone..... Fax.....: : /

And the second s	
Test Result:	Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 4 of 19

FCC ID: 2AQI5-CD317A

Report Version	Issue Date	Revision Content	Revised By
000	April 09, 2025	Initial Issue	一一一一
I LCS TOST	15 LCS Tee	181 CSTON	Mar Ica Lean

LCS Tosting Lab

TELLES TOSTING Lab

LCS Tosting Lab

Report No.: LCSA03175117EB

LEST TOSTING Lab

154 立洲植洲股份

LCS Testing Lab

TEL THA 测版的

Report No.: LCSA03175117EB

TABLE OF CONTENTS

Description			Page
1. PRODUCT INFORMA	TION		6
3. EVALUATION LIMIT.	•••••		10
4. TEST SETUP DIAGR	AM		11
5. TEST EQUIPMENT			11
6. MEASUREMENT PRO	OCEDURE		11
7. EQUIPMENT APPRO	VAL CONSIDERATIONS		12
8. E AND H FIELD STR	ENGTH	10 mm 1 m	13
9. TEST SETUP PHOTO)S	Testins	16
10. CONCLUSION			19
11. DESCRIPTION OF 1	EST FACILITY		19
12. MEASUREMENT UN	NCERTAINTY		19

Page 6 of 19

FCC ID: 2AQI5-CD317A

Report No.: LCSA03175117EB

roduct Information

EUT : 2-in-1 Magnetic Wireless Charger

Test Model : CD317

Ratings : USB-C (IN) Input: 5.0V-- 3.0A/9.0V-- 3.0A

Wireless Charging Total Output Power: 20.0W Max (iPhone: 7.5W,

AirPods: 5.0W)

Hardware Version : A1

Software Version : A1

Wireless Charging

Operating Frequency: 110.1-148.5KHz

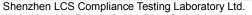
Modulation Type : ASK

: Coil Antenna Antenna Type

Exposure category : General population/uncontrolled environment

EUT Type : Production Unit

Device Type : Mobile Device


Note: For a more detailed antenna description, please refer to the antenna specifications or the antenna report provided by the customer.

Remark:

- P/N code in the below table, for marketing purpose, will be marked on the marking plate

90668	90668P	90668X	90668A	90668B	90668U	90668JP	90668ZD	90668T

Evaluation Method

FCC ID: 2AQI5-CD317A Report No.: LCSA03175117EB

Per KDB 680106 D01 Section 3. RF Exposure Requirements;

- 1) Wireless power transfer devices must comply with RF exposure requirements for all design configurations in which they can operate. At a minimum, RF exposure must be evaluated for the worst-case scenario, typically when the transmitter, while delivering energy to a client device, is operating at maximum output power. RF exposure compliance for equipment authorization must be determined following the guidance of KDB447498, which includes consideration of the different test requirements for *Mobile Device* and *Portable Device* exposure categories, as defined in §§ 2.1091 and 2.1093 of the Rules.
- 2) The RF exposure limits, as set forth in § 1.1310, do not cover the frequency range below 100 kHz for Specific Absorption Rate (SAR) and below 300 kHz for Maximum Permitted Exposure (MPE). In addition, present limitations of RF exposure evaluation systems prevent an accurate evaluation of SAR below 4 MHz. For these reasons, a specific MPE-based RF Exposure compliance procedure for devices operating in the aforementioned low-frequency ranges has been set in place. This procedure is applicable to Equipment Authorization of all RF devices, thus including, but not limited to, Part 18 and WPT devices. Accordingly, for § 2.1091-*Mobile* devices, the MPE limits between 100 kHz to 300 kHz are to be considered the same as those at 300 kHz in Table 1 of § 1.1310, that is, 614 V/m and 1.63 A/m, for the electric field and magnetic field, respectively. For § 2.1093-*Portable* devices below 4 MHz and down to 100 kHz, the MPE limits in § 1.1310 (with the 300 kHz limit applicable all the way down to 100 kHz) can be used for the purpose of equipment authorization in lieu of SAR evaluations.

Furthermore, consistent with FCC's equipment authorization RF exposure guidance, any device (both portable and mobile) operating at frequencies below 100 kHz is considered compliant for the purpose of equipment authorization when the external (unperturbed) temporal peak field strengths do not exceed the following reference levels:

83 V/m for the electric field strength (E)

and 90 A/m for the magnetic field strength (H)

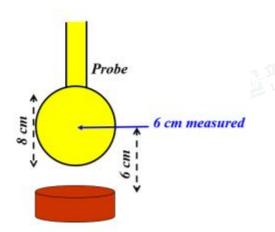
These data may be provided through measurements and/or numerical simulations, and for all the positions in space relevant for any possible body exposure.

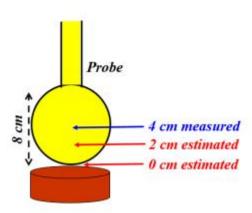
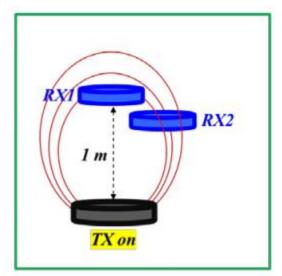
3) "Large size" probes may prevent the measurement of E- and/or H-fields near the surface of the radiating structure (e.g., a WPT source coil), as in the example shown in Figure 1.

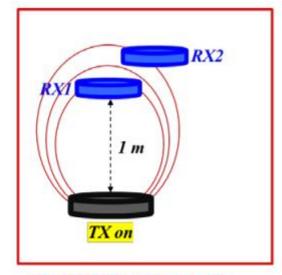
If the center of the probe sensing element is located more than 5 mm from the probe outer surface, the field strengths need to be estimated through modeling for those positions that are not reachable. The estimates may be done either via numerical calculation, or via analytic model: e.g., approximated formulas for circular coils, dipoles, etc., may be acceptable if it is shown that the model is applicable for the design parameters considered. A typical example is the use of a quasi-static approximation formula for a low-frequency magnetic field source. These estimates shall include points spaced no more than 2 cm from each other. Thus, in the example of

Figure 1, at least the estimates at 0 cm2 and 2 cm are required, while only one point would not be sufficient. In addition, the model needs to be validated through the probe measurements for the two closest points to the device surface, and with 2-cm increments, as indicated in Figure 1. In that example, the same model must also be applied to the 4 cm and 6 cm positions, and then compared with the measured data, for validation purposes. The validation is considered sufficient if a 30% agreement between the model and the (E- and/or H-field) probe measurements is demonstrated. If such a level of agreement cannot be shown, a more accurate model (and/or a smaller probe) shall be used.






Figure 1. Example of probe (in yellow) measurements in points close to the WPT device (in red/brown). The probe radius is 4 cm, thus the closest point to the device where the field can be measured is at 4 cm from the surface (this example assumes that the probe calibration refers to the center of the sensing element structure, in this case a sphere of 4 cm radius). Data at 0 cm and 2 cm must be estimated through a model, and then the same model must be validated via comparison with the actual measurements at 4 cm and 6 cm, where the probe center can be positioned and collect valid data.

4) Part 18 Wireless Power Transfer up to One-Meter Distance. This section applies only to WPT transmitters that, by design, can provide power to a load located at a distance no greater than one meter. This distance shall be measured between the closest points between the transmitter and the receiver enclosure surfaces. For instance, two coils positioned as in Figure 2-a may be operated and considered under the provisions of this section, because both receivers are within one-meter distance from the transmitter. However, the case in Figure 2-b cannot be considered in the same way, and it is treated according to the prescription of Section 5.3.

For WPT designs with more than one radiating structure the distance to the load shall be considered as in Figure 3, thus measured between the receiver and the closest transmitting structure.

a) Not considered as WPT "at-a-distance"

b) WPT "at-a-distance" because RX2 position

Shenzhen LCS Compliance Testing Laboratory Ltd.

Report No.: LCSA03175117EB

Figure 2-a) For multiple-receiver systems (here shown with two receivers, indicated with RX1 and RX2) the one-meter distance limit must apply for all the receivers that are engaged in the charging process. b) The WPT system is considered "at-a-distance" because it can function when the RX2 is further away than one meter from the transmitter.

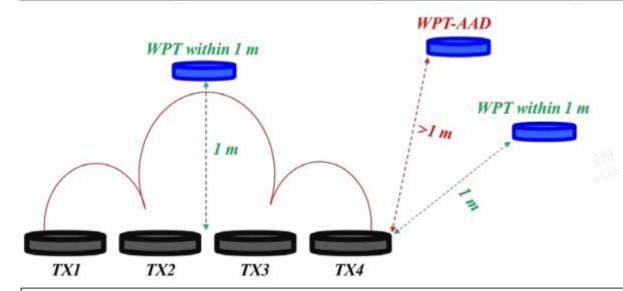


Figure 3. For multiple-coil transmitter systems, the one-meter distance limit is measured from the closest coil edge. A WPT within one meter operates with loads configured as those labeled in green font, if a load can be powered beyond one meter (in red), then it shall be considered "at-a-distance"

There might be situations where the WPT RF emissions are limited enough that even operations in a "crowded" environment, where many similar WPT devices are present, do not pose significant EMC and RF exposure concerns. In this scenario, and for devices operating within a one-meter distance from the receiver, as defined above, a manufacturer will not have to submit an "Equipment Compliance Review" KDB, and receive FCC concurrence before proceeding with equipment authorization. This exception to the requirement of submitting the ECR to obtain FCC concurrence only applies when all the following criteria (1) through (6) are met:

- (1) The power transfer frequency is below 1 MHz.
- (2) The output power from each transmitting element (e.g., coil) is less than or equal to 15 watts.
- (3) A client device providing the maximum permitted load is placed in physical contact with the transmitter (i.e., the surfaces of the transmitter and client device enclosures need to be in physical contact)
- (4) Only § 2.1091- Mobile exposure conditions apply (i.e., this provision does not cover § 2.1093 Portable exposure conditions).
- (5) The E-field and H-field strengths, at and beyond 20 cm surrounding the device surface, are demonstrated to be less than 50% of the applicable MPE limit, per KDB 447498, Table 1. These measurements shall be taken along the principal axes of the device, with one axis oriented along the direction of the estimated maximum field strength, and for three points per axis or until a 1/d (inverse distance from the emitter structure) field strength decay is observed. Symmetry considerations may be used for test reduction purposes. The device shall be operated in documented worst-case compliance scenarios (i.e., the ones that lead to the maximum field components), and while all the radiating structures (e.g., coils or antennas) that by design can simultaneously transmit are energized at their nominal maximum power.
- 6) For systems with more than one radiating structure, the conditions specified in (5) must be met when the system is fully loaded (i.e., clients absorbing maximum power available), and with all the radiating structures operating at maximum power at the same time, as per design conditions. If the design allows one or more radiating structures to be powered at a higher level while other radiating structures are not powered, then those cases must be tested as well. For instance, a

Shenzhen LCS Compliance Testing Laboratory Ltd.

Page 10 of 19 FCC ID: 2AQI5-CD317A Report No.: LCSA03175117EB

device may use three RF coils powered at 5 W, or one coil powered at 15 W: in this case, both scenarios shall be tested

3. Evaluation Limit

3.1 Refer evaluation method

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

FCC KDB publication 680106 D01 RF Exposure Wireless Charging Apps v03: RF Exposure Considerations for Low Power Consumer Wireless Power Transfer Applications

FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits.

FCC CFR 47 part2 2.1091: Radiofrequency radiation exposure evaluation: mobile devices

FCC CFR 47 part 18.107: Indusial, Scientific, and Medical Equipment

3.2 Limit

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

- The state of the		28_ W. C. JA189 1	
Electric Field	Magnetic Field	Power Density	Averaging Time
Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)
Limits for Oc	ccupational/Controlle	ed Exposure	
614	1.63	*100	6
1842/f	4.89/f	*900/f ²	6
61.4	0.163	1.0	6
1	1	f/300	6
Lange (B	1	(5	6
	Strength(V/m) Limits for Oc 614 1842/f	Strength(V/m) Strength(A/m) Limits for Occupational/Controlle 614 1.63 1842/f 4.89/f	Strength(V/m) Strength(A/m) (mW/cm²) Limits for Occupational/Controlled Exposure 614 1.63 *100 1842/f 4.89/f *900/f² 61.4 0.163 1.0 / / f/300

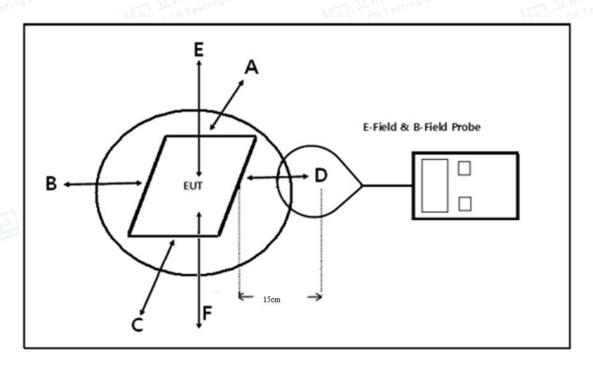
Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

	A Mariane	The state of the s	'	
Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)
	Limits for Genera	al Population/Uncon	trolled Exposure	
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500	1	1	f/1500	30
1,500-100,000	1		1.0	30

F=frequency in MHz

According to FCC KDB 680106 D01 Section 3. RF Exposure Requirements clause 3 the Emission-Limits in the frequency range from 100 KHz to 300 KHz should be assessed versus the limits at 300 KHz in Table 1 of CFR 47 – Section1.310 as following (measured distance shall be 15cm from the center of the probe to the edge of the device):

	E-Field	*/*	B-Field
Frequency	V/m	A/m	uT
0.3 MHz – 3.0 MHz	614	1.613	2.0 05 (05)
3.0 MHz – 30 MHz	824/f (=27.5 _{30MHz})	2.19/f (=0.073 _{30MHz})	-


Shenzhen LCS Compliance Testing Laboratory Ltd.

^{*=}Plane-wave equivalent power density

Report No.: LCSA03175117EB

A KDB inquire was required to determine/confirm the applicable limits below 100 KHz.

4. Test Setup Diagram

5. Test Equipment

The state of the s	100 KH L 100	5_0/			367 1573 57
Equipment	Manufacturer	Model	Serial no.	Calibrated date	Calibrated Due
Exposure Level Tester	Narda	ELT-400	N-0713	2024-11-11	2025-11-10
B-Field Probe	Narda	ELT-400	M-1154	2024-10-08	2025-10-07
Electric field probe	Narda	EP601	611WX70332	N/A	N/A

6. Measurement Procedure

- a) The RF exposure test was performed on 360 degree turn table in anechoic chamber.
- b) The measurement probe was placed at test distance (15cm and 20cm) which is between the edges of the charger and the geometric center of probe.
- c) The turn table was rotated 360d degree to search of highest strength.
- d) The highest emission level was recorded and compared with limit as soon as measurement of each points (A, B, C, D, E) were completed.
- e) The EUT were measured according to the dictates of KDB 680106D01v03.

Shenzhen LCS Compliance Testing Laboratory Ltd.

7. Equipment Approval Considerations

The EUT does comply with item 5.2 of KDB 680106 D01v04 as follows table:

Requirements of KDB 680106 D01	Yes / No	Description
Power transfer frequency is less than 1 MHz	Yes	The device operates in the frequency range 110.1 KHz - 148.5KHz
The output power from each transmitting element (e.g., coil) is less than or equal to 15 watts.	Yes	For iPhoneThe maximum output power of the primary coil is 7.5W. For AirPodsThe maximum output power of the primary coil is 5W.
A client device providing the maximum permitted load is placed in physical contact with the transmitter (i.e., the surfaces of the transmitter and client device enclosures need to be in physical contact)	Yes	Client device is placed directly in contact with the transmitter.
Only § 2.1091- Mobile exposure conditions apply (i.e., this provision does not cover § 2.1093-Portable exposure conditions).	Yes	Mobile exposure conditions only
The E-field and H-field strengths, at and beyond 20 cm surrounding the device surface, are demonstrated to be less than 50% of the applicable MPE limit, per KDB 447498, Table 1. These measurements shall be taken along the principal axes of the device, with one axis oriented along the direction of the estimated maximum field strength, and for three points per axis or until a 1/d (inverse distance from the emitter structure) field strength decay is observed. Symmetry considerations may be used for test reduction purposes. The device shall be operated in documented worst-case compliance scenarios (i.e., the ones that lead to the maximum field components), and while all the radiating structures (e.g., coils or antennas) that by design can simultaneously transmit are energized at their nominal maximum power.	Yes	The EUT H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.
For systems with more than one radiating structure, the conditions specified in (5) must be met when the system is fully loaded (i.e., clients absorbing maximum power available), and with all the radiating structures operating at maximum power at the same time, as per design conditions. If the design allows one or more radiating structures to be powered at a higher level while other radiating structures are not powered, then those cases must be tested as well.	Yes	Only two radiating structure and tested at maximum Output Power

Page 13 of 19 FCC ID: 2AQI5-CD317A Report No.: LCSA03175117EB

For instance, a device may use three RF coils		
powered at 5 W, or one coil powered at 15 W: in this	(f)	
case, both scenarios shall be tested	是 10 mm Lab	

There might be situations where the WPT RF emissions are limited enough that even operations in a "crowded" environment, where many similar WPT devices are present, do not pose significant EMC and RF exposure concerns. In this scenario, and for devices operating within a one-meter distance from the receiver, as defined above, a manufacturer will not have to submit an "Equipment Compliance Review" KDB, and receive FCC concurrence before proceeding with equipment authorization. This exception to the requirement of submitting the ECR to obtain FCC concurrence only applies when all the following criteria (1) through (6) are met.

Test Mod	H field Strength	200 T T T T T T T T T T T T T T T T T T	2 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15
Mode 1	N Poa	one + TWS Earphone (Battery Status: <1%)	Record
Mode 2		one + TWS Earphone (Battery Status: <50%)	Record
Mode 3	AC/DC Adapter (9V/3A) + EUT + Pho	one + TWS Earphone (Battery Status: 100%)	Record
Mode 4	AC/DC Adapter (5V/3A) + EUT + Pho	one + TWS Earphone (Battery Status: <1%)	Pre-tested
Mode 5	AC/DC Adapter (5V/3A) + EUT + Pho	one + TWS Earphone (Battery Status: <50%)	Pre-tested
Mode 6	AC/DC Adapter (5V/3A) + EUT + Pho	one + TWS Earphone (Battery Status: 100%)	Pre-tested
Mode 7	AC/DC Adapter (5V/3A) + EUT + Pho	one (Battery Status: <1%)	Pre-tested
Mode 8	AC/DC Adapter (5V/3A) + EUT + Pho	one (Battery Status: <50%)	Pre-tested
Mode 9	AC/DC Adapter (5V/3A) + EUT + Pho	one (Battery Status: 100%)	Pre-tested
Mode 10	AC/DC Adapter (5V/3A) + TWS Earp	phone (Battery Status: <1%)	Pre-tested
Mode 11	AC/DC Adapter (5V/3A) + TWS Earp	phone (Battery Status: <50%)	Pre-tested
Mode 12	AC/DC Adapter (5V/3A) + TWS Earp	phone (Battery Status: 100%)	Pre-tested
Mode 13	AC/DC Adapter (9V/3A) + EUT + Pho	one (Battery Status: <1%)	Pre-tested
Mode 14	AC/DC Adapter (9V/3A) + EUT + Pho	one (Battery Status: <50%)	Pre-tested
Mode 15	AC/DC Adapter (9V/3A) + EUT + Pho	one (Battery Status: 100%)	Pre-tested
Mode 16	AC/DC Adapter (9V/3A) + EUT + TW	/S Earphone (Battery Status: <1%)	Pre-tested
Mode 17	AC/DC Adapter (9V/3A) + EUT + TW	/S Earphone (Battery Status: <50%)	Pre-tested
Mode 18	AC/DC Adapter (9V/3A) + EUT + TW	/S Earphone (Battery Status: 100%)	Pre-tested

Field Strength at 15 cm from the edges surrounding the EUT and 15cm from the top surface of the EUT

	Frequency Range (kHz)		Measured Field Strength Values						
Load mode		Field Strength	Test Position	Test Position	Test Position	Test Position	Test Position	50% Limits	Limits
			Α	В	С	D	E		
Mode 1	110.1~148.5	uT	0.126	0.138	0.136	0.131	0.149		
Mode 1	110.1~148.5	A/m	0.100	0.110	0.109	0.105	0.119	0.815	1.63
Mode 1	110.1~148.5	V/m	37.746	41.388	40.958	39.425	44.745	307.0	614.0
Mode 2	110.1~148.5	uT	0.122	0.136	0.136	0.129	0.146		
Mode 2	110.1~148.5	A/m	0.097	0.109	0.108	0.103	0.117	0.815	1.63
Mode 2	110.1~148.5	V/m	36.559	40.964	40.746	38.651	43.840	307.0	614.0
Mode 3	110.1~148.5	uT	0.121	0.132	0.135	0.126	0.141	issting Lo	
Mode 3	110.1~148.5	A/m	0.097	0.106	0.108	0.101	0.113	0.815	1.63
Mode 3	110.1~148.5	V/m	36.364	39.808	40.652	37.782	42.477	307.0	614.0

For TWS Earphone

	Range		Measured Field Strength Values						
Load mode		Field Strength	Test Position A	Test Position B	Test Position C	Test Position D	Test Position E	50% Limits	Limits
Mode 1	110.1~148.5	uT	0.130	0.139	0.139	0.134	0.149	- 41	A AST THE REAL
Mode 1	110.1~148.5	A/m	0.104	0.111	0.111	0.107	0.119	0.815	1.63
Mode 1	110.1~148.5	V/m	38.949	41.675	41.723	40.322	44.687	307	614
Mode 2	110.1~148.5	uT	0.126	0.138	0.138	0.127	0.142		
Mode 2	110.1~148.5	A/m	0.101	0.110	0.111	0.101	0.114	0.815	1.63
Mode 2	110.1~148.5	V/m	37.911	41.370	41.539	38.134	42.786	307	614
Mode 3	110.1~148.5	uT A/m	0.126	0.133	0.139	0.126	0.139		
Mode 3	110.1~148.5		0.101	0.106	0.111	0.101	0.111	0.815	1.63
Mode 3	110.1~148.5	V/m	37.801	39.914	41.819	37.787	41.654	307	614

Field Strength at 15 cm from the edges surrounding the EUT and 15cm from the top surface of the EUT

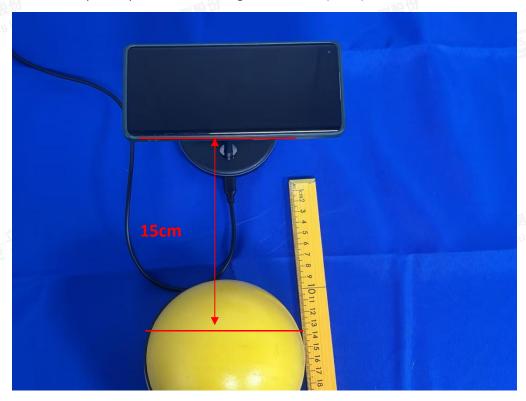
			Measured Field		
Load Frequency Range		Field	Strength Values	50% Limits	Limits
mode	(kHz)	Strength	Test	30 % Littlis	Liiiito
			Position E		
Mode 1	110.1~148.5	uT	0.149		
Mode 1	110.1~148.5	A/m	0.119	0.815	1.63
Mode 1	110.1~148.5	V/m	44.678	307	614
Mode 2	110.1~148.5	uT	0.145		
Mode 2	110.1~148.5	A/m	0.116	0.815	1.63
Mode 2	110.1~148.5	V/m	43.530	307	614
Mode 3	110.1~148.5	uΤ	0.142		
Mode 3	110.1~148.5	A/m	0.114	0.815	1.63
Mode 3	110.1~148.5	V/m	42.693	307	614

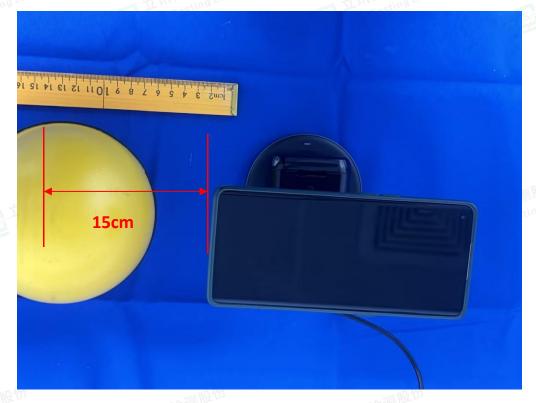
For TWS Earphone

or TWO Lar			Measured Field		
			ivieasureu Fielu		
Load	Frequency Range	Field	Strength Values	50% Limits	Limits
mode	(kHz)	Strength	Test	30 % LITTIES	Liiiilis
			Position E		
Mode 1	110.1~148.5	uT	0.148	1	AST CSTOST
Mode 1	110.1~148.5	A/m	0.118	0.815	1.63
Mode 1	110.1~148.5	V/m	44.497	307	614
Mode 2	110.1~148.5	uT	0.144		
Mode 2	110.1~148.5	A/m	0.115	0.815	1.63
Mode 2	110.1~148.5	V/m	43.333	307	614
Mode 3	110.1~148.5	uT	0.139		
Mode 3	110.1~148.5	A/m	0.112	0.815	1.63
Mode 3	110.1~148.5	V/m	41.918	307	614

Note:V/m=10(((20lg(A/m*10^6)+51.5)-120)/20)

Note:A/m=uT/1.25


Shenzhen LCS Compliance Testing Laboratory Ltd.


rest Setup Photos

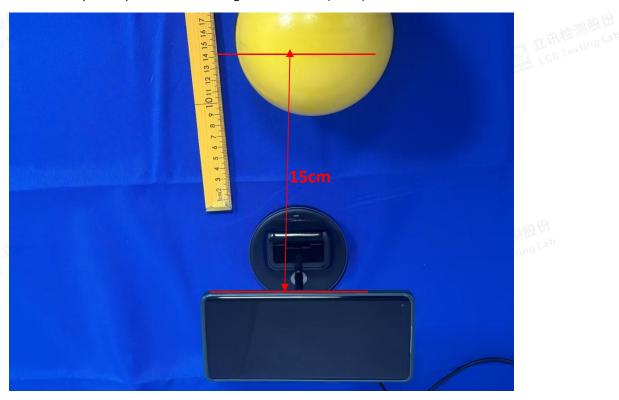
9.1. Test Position A - Exposure photo from side edge surface-Rear(15cm)

(TM1)

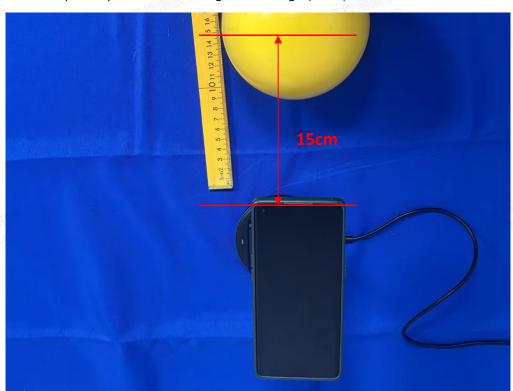
9.2. Test Position B - Exposure photo from side edge surface-Left(15cm)

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China


Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Page 17 of 19 FCC ID: 2AQI5-CD

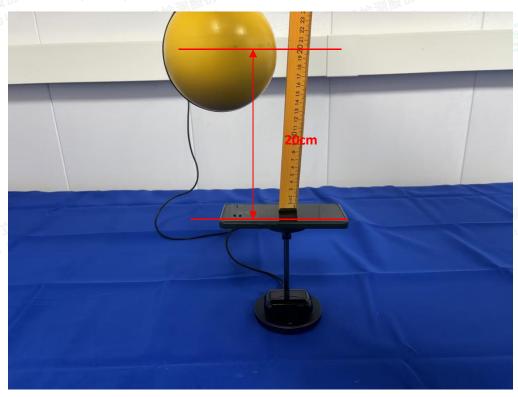

FCC ID: 2AQI5-CD317A Report No.: LCSA03175117EB

9.3. Test Position C - Exposure photo from side edge surface-Front(15cm)

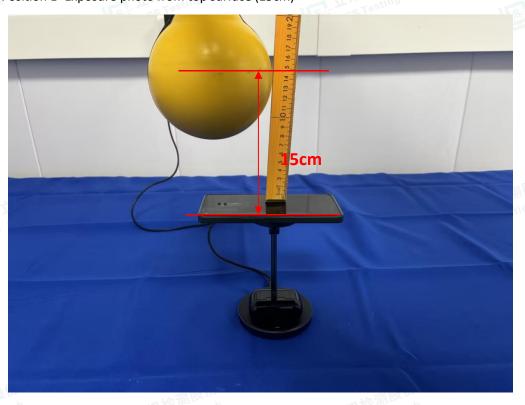
(TM1)

9.4. Test Position D - Exposure photo from side edge surface-Right(15cm)

Shenzhen LCS Compliance Testing Laboratory Ltd.



Report No.: LCSA03175117EB



9.5. Test Position E - Exposure photo from top surface (20cm)

(TM1)

9.6. Test Position E- Exposure photo from top surface (15cm)

(TM1)

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

10. Conclusion

A minimum safety distance of at 15 cm surrounding the device and 20 cm above the top surface of the device is required when the device is charging a smart phone. The detected emissions with a distance of 15 cm surrounding the device and 20 cm above the top surface of the device are below the limitations according to FCC KDB 680106 D01 Section 3. RF Exposure Requirement Clause 3.

11. Description of Test Facility

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

Test Firm Registration Number: 254912.

12. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
Field Strength Uncertainty	:	1Hz~400KHz	1%	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

 END OF REPORT	·····································

