

Shenzhen Global Test Service Co.,Ltd.
No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road,
Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No......: GTS20200303006-1-11

FCC ID......: 2AQAA-EZPADGO

Compiled by

(position+printed name+signature) ..: File administrators Peter Xiao

Supervised by

(position+printed name+signature) ..: Test Engineer Moon Tan

Approved by

(position+printed name+signature) ..: Manager Simon Hu

Peter Xiao
GLOBAL TEST SERVICE CO.
GTS
Moon Tan
Simon Hu

Date of issue.....: Apr. 20, 2020

Representative Laboratory Name. ..: **Shenzhen Global Test Service Co.,Ltd.**

Address.....: No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative
Garden, No.98, Pingxin North Road, Shangmugu Community,
Pinghu Street, Longgang District, Shenzhen, Guangdong

Applicant's name.....: **SHENZHEN JUMPER TECHNOLOGY CO.,LTD**

Address: 101, 102, 201, 301 No.13-2 Pingxi South Rd., Pingxi Community,
Pingdi Street, Longgang District, Shenzhen, GuangDong

Test specification

Standard: **FCC Part 15.247**

TRF Originator: Shenzhen Global Test Service Co.,Ltd.

Master TRF: Dated 2014-12

Shenzhen Global Test Service Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: **Portable computer**

Trade Mark: N/A

Manufacturer: **SHENZHEN JUMPER TECHNOLOGY CO.,LTD**

Model/Type reference.....: EZpad GO

Listed Models: N/A

Operation Frequency.....: From 2412MHz to 2462MHz

Rating: DC 7.6V by battery

Result.....: **PASS**

TEST REPORT

Test Report No. :	GTS20200303006-1-11	Apr. 20, 2020
		Date of issue

Equipment under Test : Portable computer

Model /Type : EZpad GO

Listed model : N/A

Applicant : **SHENZHEN JUMPER TECHNOLOGY CO.,LTD**

Address : 101, 102, 201, 301 No.13-2 Pingxi South Rd., Pingxi Community, Pingdi Street, Longgang District, Shenzhen, GuangDong

Manufacturer : **SHENZHEN JUMPER TECHNOLOGY CO.,LTD**

Address : 101, 102, 201, 301 No.13-2 Pingxi South Rd., Pingxi Community, Pingdi Street, Longgang District, Shenzhen, GuangDong

Test Result:	PASS
---------------------	-------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	4
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	5
2.3. Equipment Under Test	6
2.4. Short description of the Equipment under Test (EUT)	6
2.5. EUT operation mode	7
2.6. Block Diagram of Test Setup	7
2.7. Related Submittal(s) / Grant (s)	7
2.8. Special Accessories	7
2.9. Modifications	7
3. TEST ENVIRONMENT	8
3.1. Address of the test laboratory	8
3.2. Test Facility	8
3.3. Environmental conditions	8
3.4. Test Description	9
3.5. Statement of the measurement uncertainty	10
3.6. Equipments Used during the Test	11
4. TEST CONDITIONS AND RESULTS	12
4.1. AC Power Conducted Emission	12
4.2. Radiated Emission	15
4.3. Maximum Peak Output Power	22
4.4. Power Spectral Density	23
4.5. 6dB Bandwidth	28
4.6. Band Edge Compliance of RF Emission	33
4.7. Antenna Requirement	40
5. TEST SETUP PHOTOS OF THE EUT	41
6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	41

1. TEST STANDARDS

The tests were performed according to following standards:

[FCC Rules Part 15.247](#): Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

[ANSI C63.10-2013](#): American National Standard for Testing Unlicensed Wireless Devices

[KDB558074 D01 DTS Meas Guidance v05r02](#): Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247.

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Mar.24,2020
Testing commenced on	:	Mar.24,2020
Testing concluded on	:	Apr. 20, 2020

2.2. Product Description

Product Name:	Portable computer
Trade Mark:	N/A
Model/Type reference:	EZpad GO
List Model:	N/A
Power supply:	DC 7.6V form battery
WIFI	
WLAN	Supported 802.11 a/b/g/n/ac
Modulation Type	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11ac20/40/80: OFDM(256QAM,64QAM, 16QAM, QPSK, BPSK)
Operation frequency	IEEE 802.11a:5180-5240MHz 5745-5825MHz IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz IEEE 802.11n HT20:2412-2462MHz, 5180-5240MHz 5745-5825MHz IEEE 802.11n HT40:2422-2452MHz, 5190-5230MHz 5755-5795MHz IEEE 802.11ac20:5180-5240MHz 5745-5825MHz IEEE 802.11ac40:5190-5230MHz 5755-5795MHz IEEE 802.11ac80:5210MHz 5775MHz
Channel number	11 Channels for WIFI 20MHz Bandwidth(802.11b/g/n-HT20) 7 Channels for WIFI 40MHz Bandwidth(802.11n-HT40) 4 channels for 20MHz bandwidth(5180-5240MHz) 2 channels for 40MHz bandwidth(5190~5230MHz) 1 channels for 80MHz bandwidth(5210MHz) 5 channels for 20MHz bandwidth(5745-5825MHz) 2 channels for 40MHz bandwidth(5755~5795MHz) 1 channels for 80MHz bandwidth(5775MHz)
BT	
Operation frequency	2402-2480MHz
Channel Number	79 channels for Bluetooth (DSS) 40 channels for Bluetooth (DTS)
Channel Spacing	1MHz for Bluetooth (DSS) 2MHz for Bluetooth (DTS)
Modulation Type	GFSK, $\pi/4$ DQPSK, 8DPSK for Bluetooth (DSS) GFSK for Bluetooth (DTS)
Antenna Description	Two same FPC Antenna, but not support MIMO technology ANT0 used for BT / WIFI TX/RX, 2.34dBi(Max.) for 2.4G Band and 2.46dBi (Max.) for 5G Band ANT1 used for WIFI TX/RX, 2.34dBi(Max.) for 2.4G Band and 2.46dBi(Max.) for 5G Band

The difference between Ezpad GO is show in the below table:

	Ezpad GO (with GPU version)		Ezpad GO (without GPU version)
Main board	The same	The same	Delete GPU chip and related components
Frequency bands	The same, support Wi-Fi 2.4G&5G support BT;	The same, support Wi-Fi 2.4G&5G support BT;	The same, support Wi-Fi 2.4G&5G support BT;
BT/ Wi-Fi module	The same	The same	The same
BT/ Wi-Fi antenna	The same	The same	The same
Appearance	The same	The same	The same
Dimension	The same	The same	The same
CPU	Intel i7-8565U, Support max4.6GHz	Intel i5-8265U, Support max3.9GHz	Not support
GPU	support	support	Not support
Memory	2G/4G/8G	2G/4G/8G	2G/4G/8G
SSD/EMMC	32G/64G/128G/256G/180G	32G/64G/128G/256G/180G	32G/64G/128G/256G/180G
Rear camera	The same	The same	The same
Front camera	The same	The same	The same
Adapter	The same	The same	The same
Battery	The same	The same	The same
Accessories	The same, Docking Station	The same, Docking Station	The same, Docking Station

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	<input type="radio"/>	230V / 50 Hz	<input type="radio"/>	120V / 60Hz
		<input type="radio"/>	12 V DC	<input type="radio"/>	24 V DC
		<input checked="" type="radio"/>	Other (specified in blank below)		

DC 7.6V form battery

2.4. Short description of the Equipment under Test (EUT)

This is a Portable computer.

For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

The application provider specific test software to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement.

NOTE:

Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used.

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

2.6. Block Diagram of Test Setup

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID:2AQAA-EZPADGO** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
Shenzhen Jihongda Power Co.,Ltd.	Adapter	JHD-AP024U-120200BA-A	--	SDOC

2.9. Modifications

No modifications were implemented to meet testing criteria.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Test Description

Test Specification clause	Test case	Test Mode	Test Channel	Recorded In Report		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	802.11b	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	802.11b	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.247(e)	Power spectral density	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/> <input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.247(b)(1)	Maximum output power	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.247(d)	Band edge compliance conducted	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/> <input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.205	Band edge compliance radiated	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.247(d)	TX spurious emissions conducted	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/> <input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.247(d)	TX spurious emissions radiated	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	complies
§15.209(a)	TX spurious Emissions radiated < 30 MHz	802.11b	-/-	802.11b	-/-	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	802.11b	-/-	802.11b	-/-	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies

Remark:

1. The measurement uncertainty is not included in the test result.
2. NA = Not Applicable; NP = Not Performed

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Peak Conducted Output Power Power Spectral Density 6dB Bandwidth Spurious RF conducted emission Radiated Emission 9kHz~1GHz& Radiated Emission 1GHz~10 th Harmonic	11b/DSSS	1 Mbps	1/7/11
	11g/OFDM	6 Mbps	1/7/11
	11n(20MHz)/OFDM	6.5Mbps	1/7/11
	11n(40MHz)/OFDM	13.5Mbps	3/7/11
Band Edge	11b/DSSS	1 Mbps	1/11
	11g/OFDM	6 Mbps	1/11
	11n(20MHz)/OFDM	6.5Mbps	1/11
	11n(40MHz)/OFDM	13.5Mbps	3/9

3.5. Statement of the measurement uncertainty

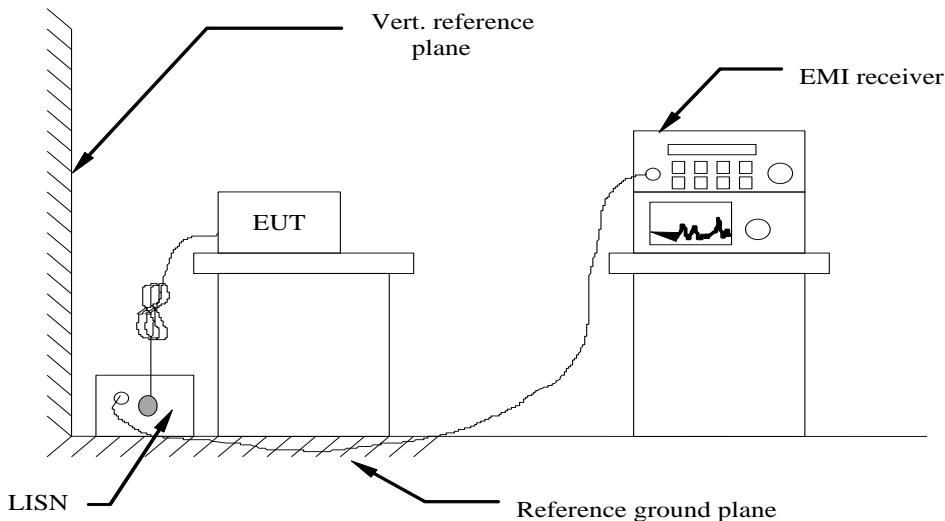
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 „Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements“ and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test


Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2019/09/20	2020/09/19
LISN	R&S	ESH2-Z5	893606/008	2019/09/20	2020/09/19
EMI Test Receiver	R&S	ESPI3	101841-cd	2019/09/20	2020/09/19
EMI Test Receiver	R&S	ESCI7	101102	2019/09/20	2020/09/19
Spectrum Analyzer	Agilent	N9020A	MY48010425	2019/09/20	2020/09/19
Spectrum Analyzer	R&S	FSV40	100019	2019/09/20	2020/09/19
Vector Signal generator	Agilent	N5181A	MY49060502	2019/09/20	2020/09/19
Signal generator	Agilent	E4421B	3610AO1069	2019/09/20	2020/09/19
Climate Chamber	ESPEC	EL-10KA	A20120523	2019/09/20	2020/09/19
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2019/09/23	2020/09/22
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2019/10/12	2020/10/11
Bilog Antenna	Schwarzbeck	VULB9163	000976	2019/05/26	2020/05/25
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2019/09/20	2020/09/19
Amplifier	Schwarzbeck	BBV 9743	#202	2019/09/20	2020/09/19
Amplifier	Schwarzbeck	BBV9179	9719-025	2019/09/20	2020/09/19
Amplifier	EMCI	EMC051845B	980355	2019/09/20	2020/09/19
Temperature/Humidit y Meter	Gangxing	CTH-608	02	2019/09/20	2020/09/19
High-Pass Filter	K&L	9SH10-2700/X12750-O/O	KL142031	2019/09/20	2020/09/19
High-Pass Filter	K&L	41H10-1375/U12750-O/O	KL142032	2019/09/20	2020/09/19
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2019/09/20	2020/09/19
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2019/09/20	2020/09/19
Data acquisition card	Agilent	U2531A	TW53323507	2019/09/20	2020/09/19
Power Sensor	Agilent	U2021XA	MY5365004	2019/09/20	2020/09/19
Test Control Unit	Tonscend	JS0806-1	178060067	2019/06/20	2020/06/19
Automated filter bank	Tonscend	JS0806-F	19F8060177	2019/06/20	2020/06/19
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	/	/
EMI Test Software	Tonscend	JS1120-3	Ver 2.5.77.0418	/	/
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	/	/
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	/	/

Note: The Cal.Interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

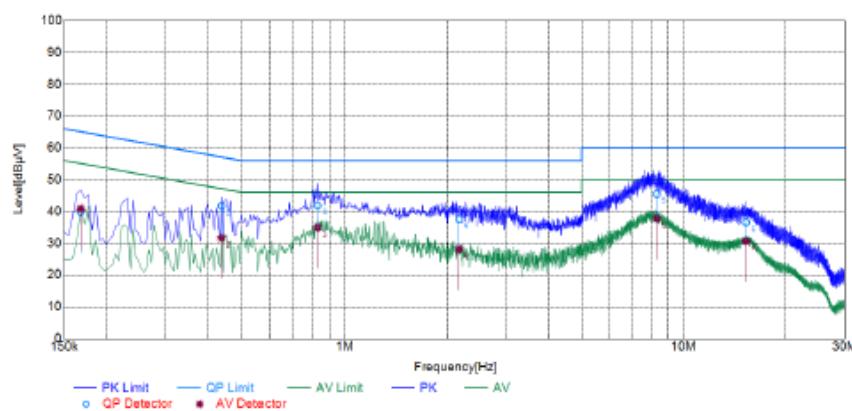
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency range (MHz)	Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST RESULTS

Remark: We measured Conducted Emission at 802.11b/802.11g/802.11n HT20/802.11n HT40 mode in AC 120V/60Hz , the worst case was recorded .


With GPU Version:

Power supply:	AC 120V/60Hz	Polarization	L									
Test Graph												
NO.	Frequency [MHz]	QP Reading [dB μ V]	AVG. Reading [dB μ V]	Factor	QP Result [dB μ V]	AVG. Result [dB μ V]	QP Limit [dB μ V]	AVG. Limit [dB μ V]	QP Margin [dB]	AVG. Margin [dB]	Line	Remark
1	0.4374	31.54	21.47	10.20	41.74	31.67	57.11	47.11	15.37	15.44	L1	PASS
2	0.8302	31.57	24.66	10.24	41.81	34.90	56.00	46.00	14.19	11.10	L1	PASS
3	1.2229	31.86	23.81	10.22	42.08	34.03	56.00	46.00	13.92	11.97	L1	PASS
4	2.1727	27.24	17.86	10.28	37.52	28.14	56.00	46.00	18.48	17.86	L1	PASS
5	8.3435	34.93	27.21	10.56	45.49	37.77	60.00	50.00	14.51	12.23	L1	PASS
6	15.2989	25.51	19.62	11.08	36.59	30.70	60.00	50.00	23.41	19.30	L1	PASS
Power supply:	AC 120V/60Hz	Polarization	N									
Test Graph												
NO.	Frequency [MHz]	QP Reading [dB μ V]	AVG. Reading [dB μ V]	Factor	QP Result [dB μ V]	AVG. Result [dB μ V]	QP Limit [dB μ V]	AVG. Limit [dB μ V]	QP Margin [dB]	AVG. Margin [dB]	Line	Remark
1	0.4196	32.70	20.76	10.18	42.88	30.94	57.46	47.46	14.58	16.52	N	PASS
2	0.8390	30.34	25.15	10.24	40.58	35.39	56.00	46.00	15.42	10.61	N	PASS
3	1.0964	26.68	20.09	10.21	36.89	30.30	56.00	46.00	19.11	15.70	N	PASS
4	1.8845	22.87	15.44	10.26	33.13	25.70	56.00	46.00	22.87	20.30	N	PASS
5	8.7578	28.00	19.40	10.55	38.55	29.95	60.00	50.00	21.45	20.05	N	PASS
6	15.1712	27.20	21.51	11.07	38.27	32.58	60.00	50.00	21.73	17.42	N	PASS

Without GPU Version:

Power supply: AC 120V/60Hz Polarization L

Test Graph

Final Data List

NO.	Frequency [MHz]	QP Reading [dB μ V]	AVG. Reading [dB μ V]	Factor [dB]	QP Result [dB μ V]	AVG. Result [dB μ V]	QP Limit [dB μ V]	AVG. Limit [dB μ V]	QP Margin [dB]	AVG. Margin [dB]	Line	Remark
1	0.1680	29.57	30.58	10.27	39.84	40.85	65.06	55.06	25.22	14.21	L1	PASS
2	0.4374	31.54	21.47	10.20	41.74	31.67	57.11	47.11	15.37	15.44	L1	PASS
3	0.8302	31.57	24.66	10.24	41.81	34.90	56.00	46.00	14.19	11.10	L1	PASS
4	2.1727	27.24	17.86	10.28	37.52	28.14	56.00	46.00	18.48	17.86	L1	PASS
5	8.3435	34.93	27.21	10.56	45.49	37.77	60.00	50.00	14.51	12.23	L1	PASS
6	15.2989	25.51	19.62	11.08	36.69	30.70	60.00	50.00	23.41	19.30	L1	PASS

Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

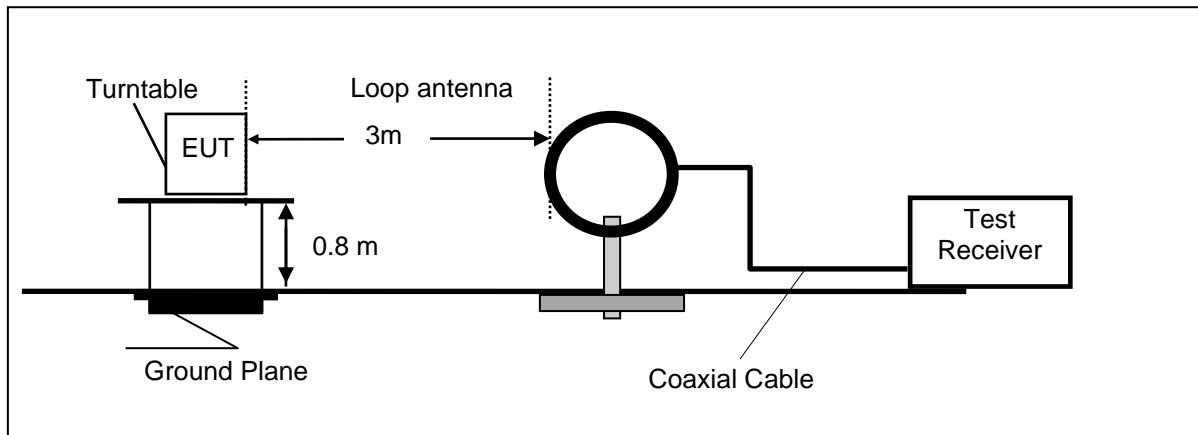
2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Power supply: AC 120V/60Hz Polarization N

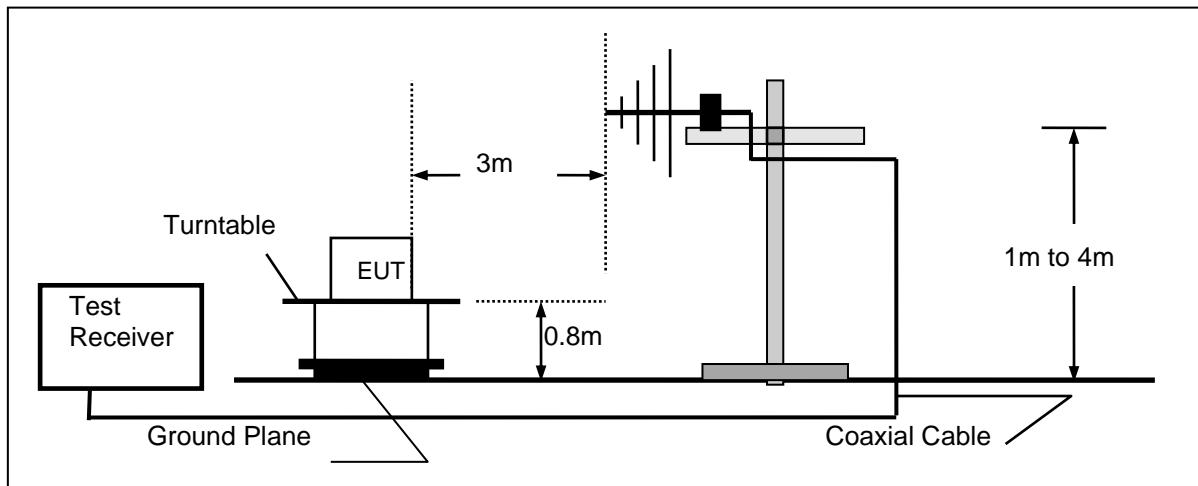
Test Graph

Final Data List

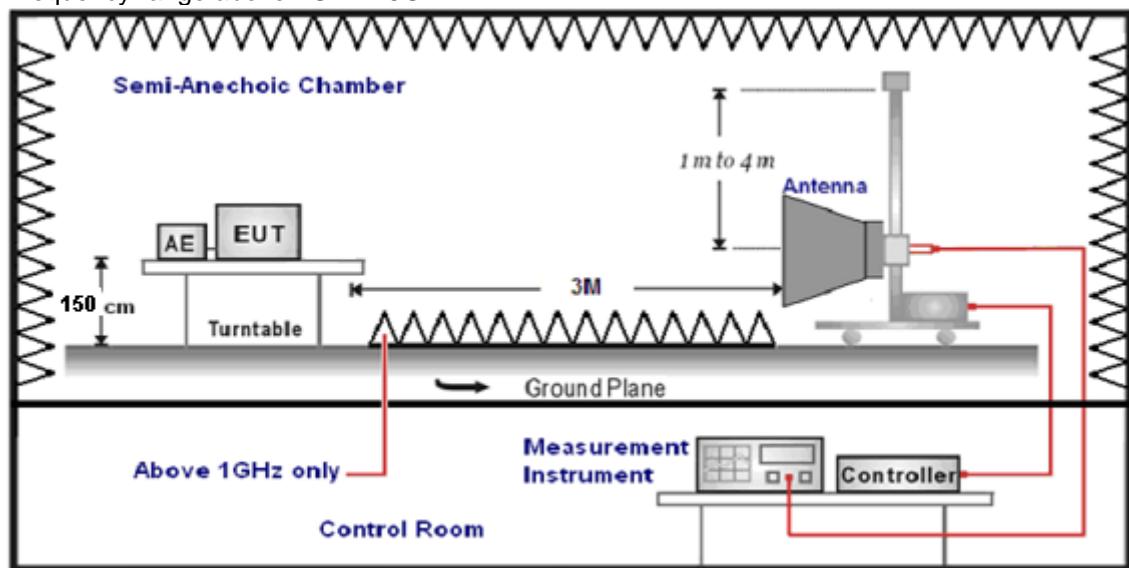
NO.	Frequency [MHz]	QP Reading [dB μ V]	AVG. Reading [dB μ V]	Factor [dB]	QP Result [dB μ V]	AVG. Result [dB μ V]	QP Limit [dB μ V]	AVG. Limit [dB μ V]	QP Margin [dB]	AVG. Margin [dB]	Line	Remark
1	0.4196	32.70	20.76	10.18	42.88	30.94	57.46	47.46	14.58	16.52	N	PASS
2	0.8390	30.34	25.15	10.24	40.58	35.39	56.00	46.00	15.42	10.61	N	PASS
3	1.0964	26.68	20.09	10.21	36.89	30.30	56.00	46.00	19.11	15.70	N	PASS
4	1.8845	22.87	15.44	10.26	33.13	25.70	56.00	46.00	22.87	20.30	N	PASS
5	8.7578	28.00	19.40	10.55	38.55	29.95	60.00	50.00	21.45	20.05	N	PASS
6	15.1712	27.20	21.51	11.07	38.27	32.58	60.00	50.00	21.73	17.42	N	PASS


Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 30MHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
4. Repeat above procedures until all frequency measurements have been completed.
5. Radiated emission test frequency band from 30MHz to 25GHz.
6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

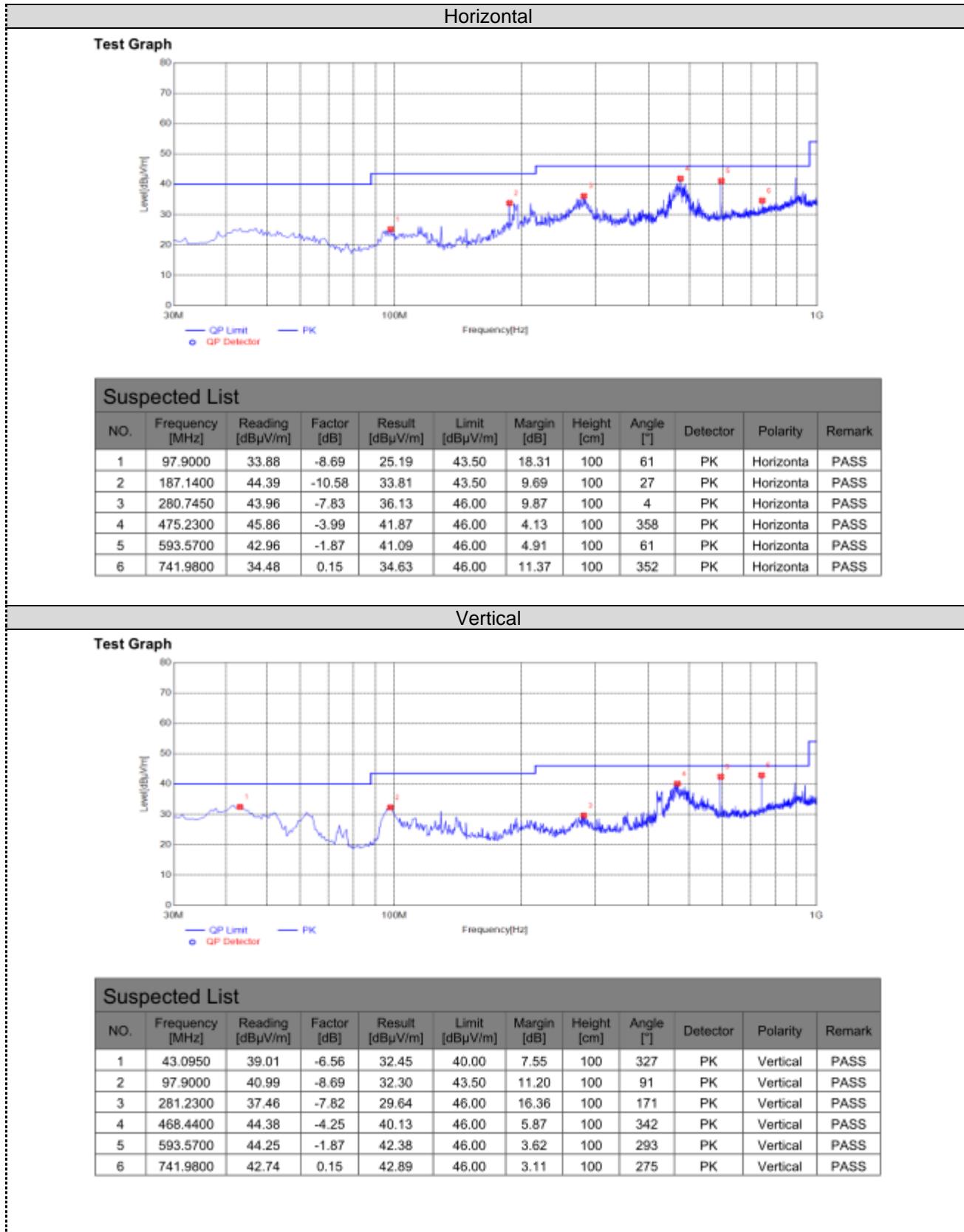
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

$$Transd=AF + CL - AG$$

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

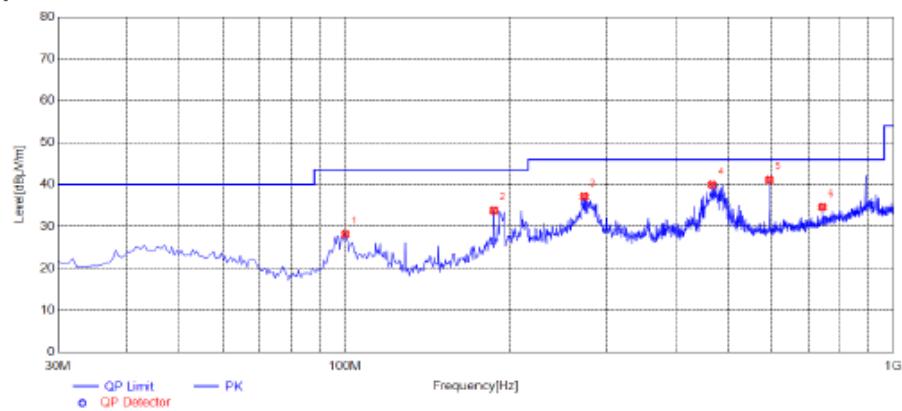

Frequency (MHz)	Distance (Meters)	Radiated (dB μ V/m)	Radiated (μ V/m)
0.009-0.49	3	$20\log(2400/F(\text{KHz}))+40\log(300/3)$	$2400/F(\text{KHz})$
0.49-1.705	3	$20\log(24000/F(\text{KHz}))+40\log(30/3)$	$24000/F(\text{KHz})$
1.705-30	3	$20\log(30)+40\log(30/3)$	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark: We measured Radiated Emission at 802.11b/802.11g/802.11n HT20/802.11n HT40 mode from 30 MHz to 25GHz in AC 120V/60Hz and the worst case was recorded.

With GPU Version:

For 30MHz-1GHz



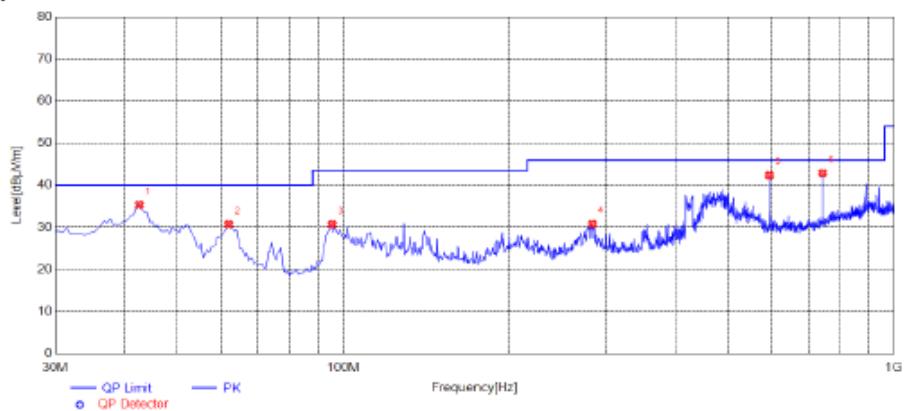
Without GPU Version:

For 30MHz-1GHz

Horizontal

Test Graph

Suspected List


N.O.	Frequency [MHz]	Reading [dB μ V/m]	Factor [dB]	Result [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	100.3250	36.70	-8.53	28.17	43.50	15.33	100	253	PK	Horizontal	PASS
2	187.1400	44.39	-10.58	33.81	43.50	9.69	100	27	PK	Horizontal	PASS
3	272.9850	44.98	-7.86	37.12	46.00	8.88	100	45	PK	Horizontal	PASS
4	467.4700	44.24	-4.27	39.97	46.00	6.03	100	358	PK	Horizontal	PASS
5	593.5700	42.96	-1.87	41.09	46.00	4.91	100	61	PK	Horizontal	PASS
6	741.9800	34.48	0.15	34.63	46.00	11.37	100	352	PK	Horizontal	PASS

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

Test Graph

Suspected List

N.O.	Frequency [MHz]	Reading [dB μ V/m]	Factor [dB]	Result [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	42.6100	42.00	-6.65	35.35	40.00	4.65	100	345	PK	Vertical	PASS
2	62.0100	39.57	-8.85	30.72	40.00	9.28	100	2	PK	Vertical	PASS
3	95.4750	39.98	-9.28	30.70	43.50	12.80	100	135	PK	Vertical	PASS
4	283.1700	38.57	-7.78	30.79	46.00	15.21	100	128	PK	Vertical	PASS
5	593.5700	44.25	-1.87	42.38	46.00	3.62	100	293	PK	Vertical	PASS
6	741.9800	42.74	0.15	42.89	46.00	3.11	100	275	PK	Vertical	PASS

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

NOTE:the worst case was ant 0.

For 1GHz to 25GHz

IEEE 802.11b

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	49.79	32.44	30.25	7.95	59.93	74.00	-14.07	Peak	Horizontal
4824.00	36.06	32.44	30.25	7.95	46.20	54.00	-7.80	Average	Horizontal
4824.00	51.71	32.44	30.25	7.95	61.85	74.00	-12.15	Peak	Vertical
4824.00	36.28	32.44	30.25	7.95	46.42	54.00	-7.58	Average	Vertical

Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	50.38	32.52	30.31	8.12	60.71	74.00	-13.29	Peak	Horizontal
4874.00	35.72	32.52	30.31	8.12	46.05	54.00	-7.95	Average	Horizontal
4874.00	52.65	32.52	30.31	8.12	62.98	74.00	-11.02	Peak	Vertical
4874.00	36.17	32.52	30.31	8.12	46.50	54.00	-7.50	Average	Vertical

Channel 11 / 2462 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	50.92	32.68	30.27	7.88	61.21	74.00	-12.79	Peak	Horizontal
4924.00	36.45	32.68	30.27	7.88	46.74	54.00	-7.26	Average	Horizontal
4924.00	51.45	32.68	30.27	7.88	61.74	74.00	-12.26	Peak	Vertical
4924.00	35.72	32.68	30.27	7.88	46.01	54.00	-7.99	Average	Vertical

IEEE 802.11g

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	50.64	32.44	30.25	7.95	60.78	74.00	-13.22	Peak	Horizontal
4824.00	36.71	32.44	30.25	7.95	46.85	54.00	-7.15	Average	Horizontal
4824.00	50.83	32.44	30.25	7.95	60.97	74.00	-13.03	Peak	Vertical
4824.00	35.96	32.44	30.25	7.95	46.10	54.00	-7.90	Average	Vertical

Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	49.44	32.52	30.31	8.12	59.77	74.00	-14.23	Peak	Horizontal
4874.00	35.49	32.52	30.31	8.12	45.82	54.00	-8.18	Average	Horizontal
4874.00	52.23	32.52	30.31	8.12	62.56	74.00	-11.44	Peak	Vertical
4874.00	35.73	32.52	30.31	8.12	46.06	54.00	-7.94	Average	Vertical

Channel 11 / 2462 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	50.14	32.68	30.27	7.88	60.43	74.00	-13.57	Peak	Horizontal
4924.00	35.97	32.68	30.27	7.88	46.26	54.00	-7.74	Average	Horizontal
4924.00	50.62	32.68	30.27	7.88	60.91	74.00	-13.09	Peak	Vertical
4924.00	35.37	32.68	30.27	7.88	45.66	54.00	-8.34	Average	Vertical

IEEE802.11 n HT20

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	50.41	32.44	30.25	7.95	60.55	74.00	-13.45	Peak	Horizontal
4824.00	35.96	32.44	30.25	7.95	46.10	54.00	-7.90	Average	Horizontal
4824.00	50.55	32.44	30.25	7.95	60.69	74.00	-13.31	Peak	Vertical
4824.00	35.70	32.44	30.25	7.95	45.84	54.00	-8.16	Average	Vertical

Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	49.95	32.52	30.31	8.12	60.28	74.00	-13.72	Peak	Horizontal
4874.00	36.45	32.52	30.31	8.12	46.78	54.00	-7.22	Average	Horizontal
4874.00	52.40	32.52	30.31	8.12	62.73	74.00	-11.27	Peak	Vertical
4874.00	36.24	32.52	30.31	8.12	46.57	54.00	-7.43	Average	Vertical

Channel 11 / 2462 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	51.93	32.68	30.27	7.88	62.22	74.00	-11.78	Peak	Horizontal
4924.00	35.39	32.68	30.27	7.88	45.68	54.00	-8.32	Average	Horizontal
4924.00	51.35	32.68	30.27	7.88	61.64	74.00	-12.36	Peak	Vertical
4924.00	36.32	32.68	30.27	7.88	46.61	54.00	-7.39	Average	Vertical

IEEE802.11 n HT40

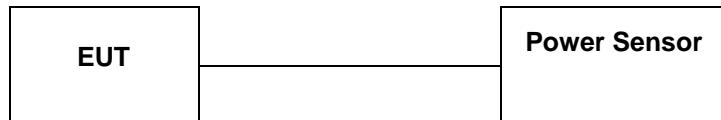
Channel 3 / 2422 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4844.00	49.62	32.44	30.25	7.95	59.76	74.00	-14.24	Peak	Horizontal
4844.00	36.35	32.44	30.25	7.95	46.49	54.00	-7.51	Average	Horizontal
4844.00	50.63	32.44	30.25	7.95	60.77	74.00	-13.23	Peak	Vertical
4844.00	35.07	32.44	30.25	7.95	45.21	54.00	-8.79	Average	Vertical

Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	49.46	32.52	30.31	8.12	59.79	74.00	-14.21	Peak	Horizontal
4874.00	35.25	32.52	30.31	8.12	45.58	54.00	-8.42	Average	Horizontal
4874.00	52.25	32.52	30.31	8.12	62.58	74.00	-11.42	Peak	Vertical
4874.00	35.56	32.52	30.31	8.12	45.89	54.00	-8.11	Average	Vertical

Channel 9 / 2452 MHz


Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4904.00	51.10	32.68	30.27	7.88	61.39	74.00	-12.61	Peak	Horizontal
4904.00	36.69	32.68	30.27	7.88	46.98	54.00	-7.02	Average	Horizontal
4904.00	50.69	32.68	30.27	7.88	60.98	74.00	-13.02	Peak	Vertical
4904.00	35.52	32.68	30.27	7.88	45.81	54.00	-8.19	Average	Vertical

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m)
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) - Pre-amplifier Factor
3. Margin value = Limit value - Emission level.
4. -- Mean the PK detector measured value is below average limit.
5. The other emission levels were very low against the limit.

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power, 9.1.2. and Average conducted output power, 9.2.3.1.

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The maximum Average conducted output power may be measured using a wideband RF power meter with a thermocouple detector or equivalent. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

LIMIT

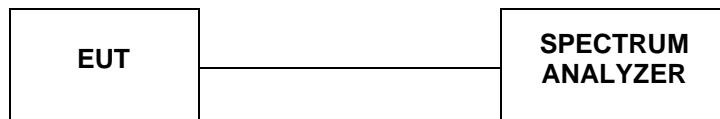
The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

Antenna 0:

Type	Channel	Output power PK (dBm)	Output power AV (dBm)	Limit (dBm)	Result
802.11b	01	17.20	14.57	30.00	Pass
	06	17.13	14.53		
	11	17.06	14.44		
802.11g	01	17.28	14.61	30.00	Pass
	06	17.24	14.56		
	11	17.19	14.37		
802.11n(HT20)	01	17.29	14.64	30.00	Pass
	06	17.17	14.48		
	11	17.11	14.34		
802.11n(HT40)	03	17.05	14.39	30.00	Pass
	06	17.12	14.49		
	09	17.21	14.58		

Antenna 1:


Type	Channel	Output power PK (dBm)	Output power AV (dBm)	Limit (dBm)	Result
802.11b	01	17.04	14.37	30.00	Pass
	06	17.23	14.53		
	11	17.11	14.40		
802.11g	01	17.25	14.51	30.00	Pass
	06	17.11	14.53		
	11	17.02	14.33		
802.11n(HT20)	01	17.31	14.58	30.00	Pass
	06	17.13	14.50		
	11	17.37	14.63		
802.11n(HT40)	03	17.25	14.54	30.00	Pass
	06	17.17	14.48		
	09	17.22	14.49		

Note: 1. The test results including the cable loss.

Duty cycle used in all test items: 100%.

4.4. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

According to KDB 558074 D01 Method PKPSD (peak PSD) This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

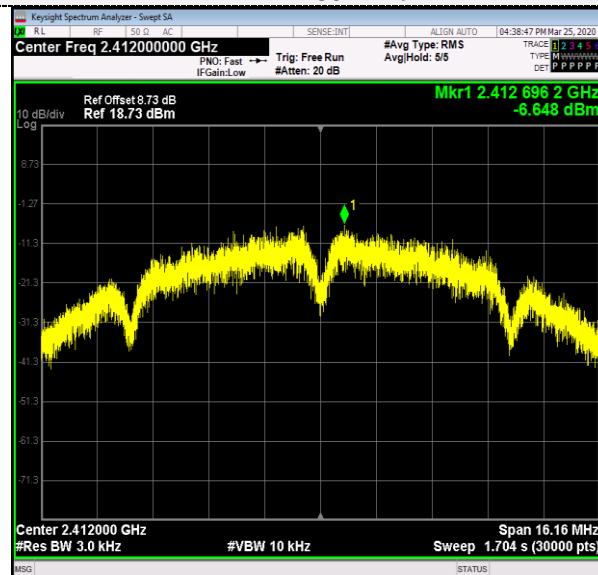
1. Set analyzer center frequency to DTS channel center frequency.
2. Set the span to 1.5 times the DTS bandwidth.
3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
4. Set the VBW $\geq 3 \text{ RBW}$.
5. Detector = peak.
6. Sweep time = auto couple.
7. Trace mode = max hold.
8. Allow trace to fully stabilize.
9. Use the peak marker function to determine the maximum amplitude level within the RBW.
10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

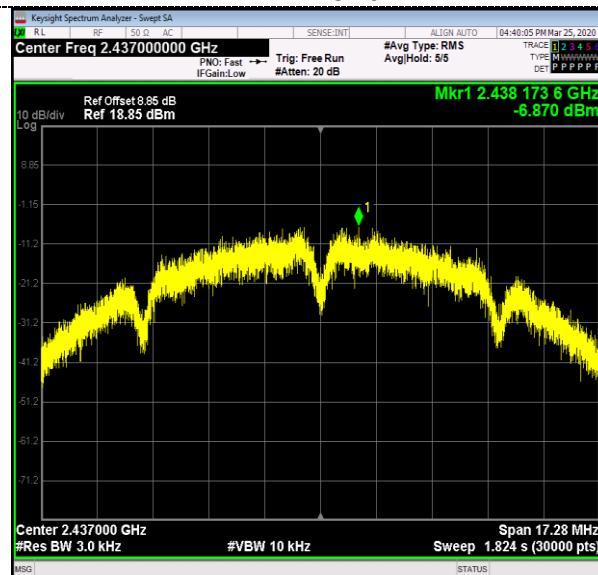
Antenna 0:


Type	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
802.11b	01	-6.65	8.00	Pass
	06	-6.87		
	11	-5.64		
802.11g	01	-14.16	8.00	Pass
	06	-13.4		
	11	-12.76		
802.11n(HT20)	01	-13.71	8.00	Pass
	06	-13.54		
	11	-12.65		
802.11n(HT40)	03	-14.36	8.00	Pass
	06	-15.31		
	09	-15.74		

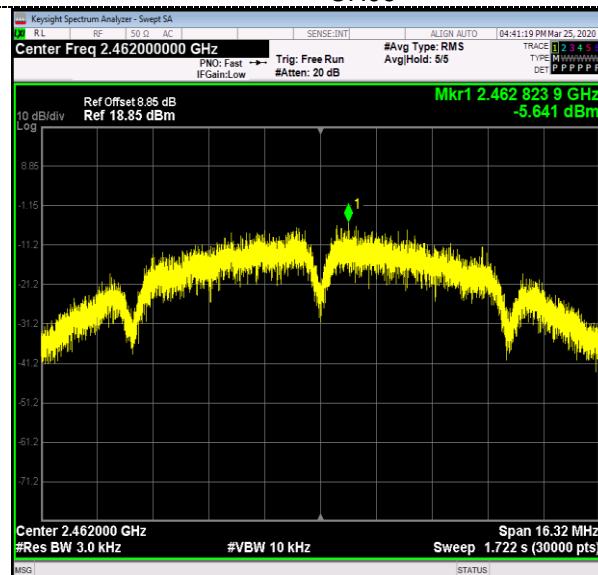
Antenna 1:

Type	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
802.11b	01	-6.99	8.00	Pass
	06	-6.05		
	11	-6.45		
802.11g	01	-13.25	8.00	Pass
	06	-13.77		
	11	-13.72		
802.11n(HT20)	01	-14.1	8.00	Pass
	06	-13.59		
	11	-13.43		
802.11n(HT40)	03	-15.91	8.00	Pass
	06	-16.23		
	09	-14.79		

Antenna 0:

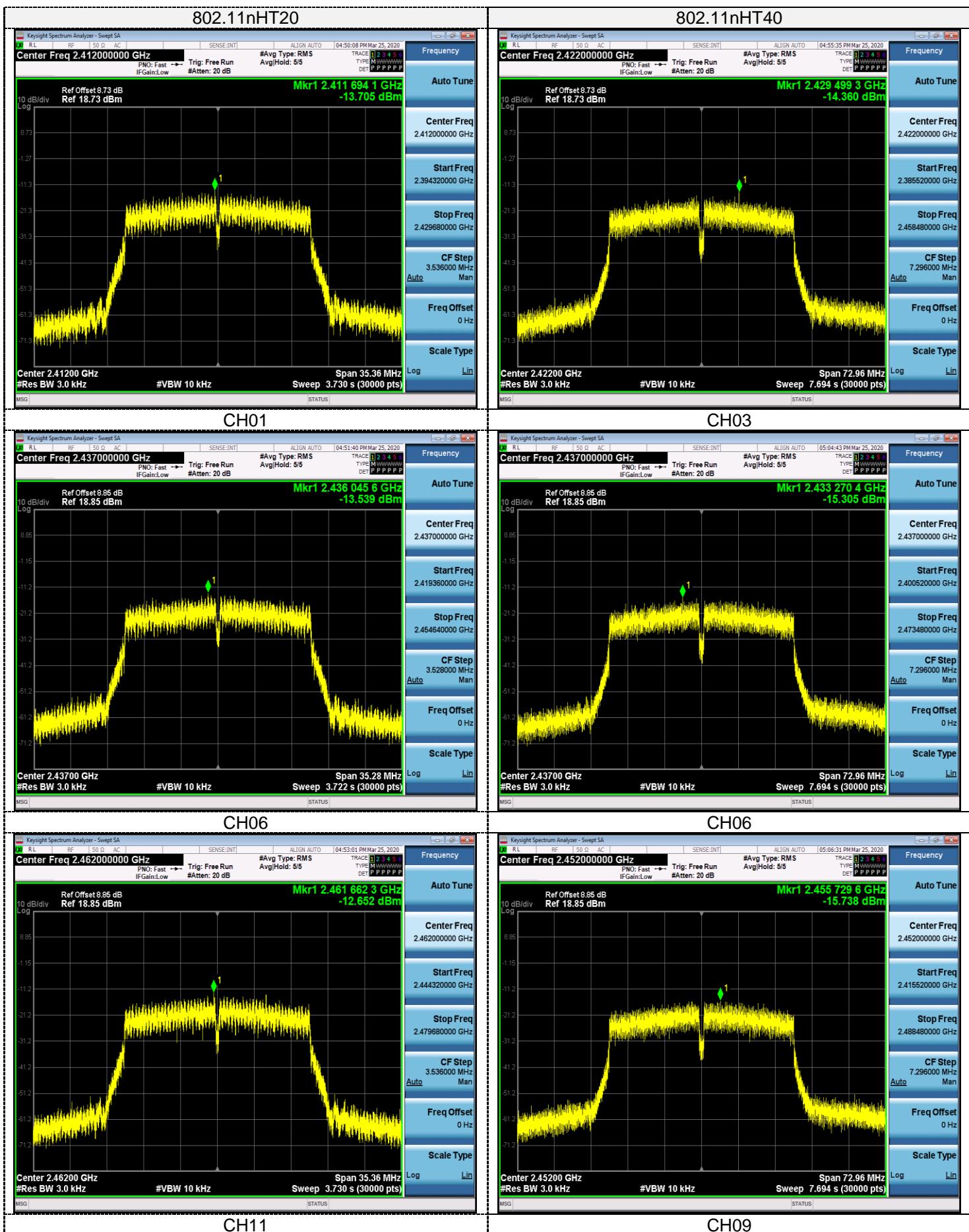

802.11b

802.11g

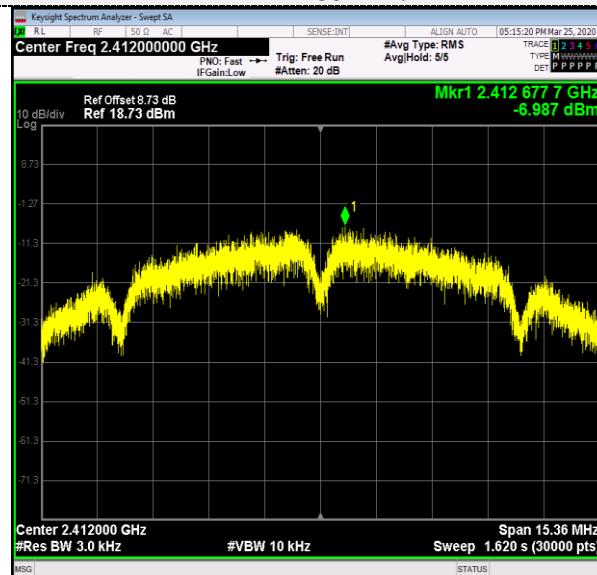

CH01

CH01

CH06

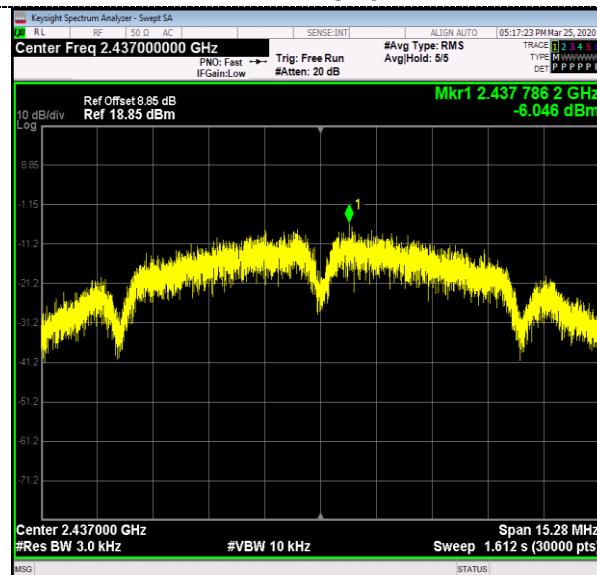


CH06


CH11

CH11

Antenna 1:

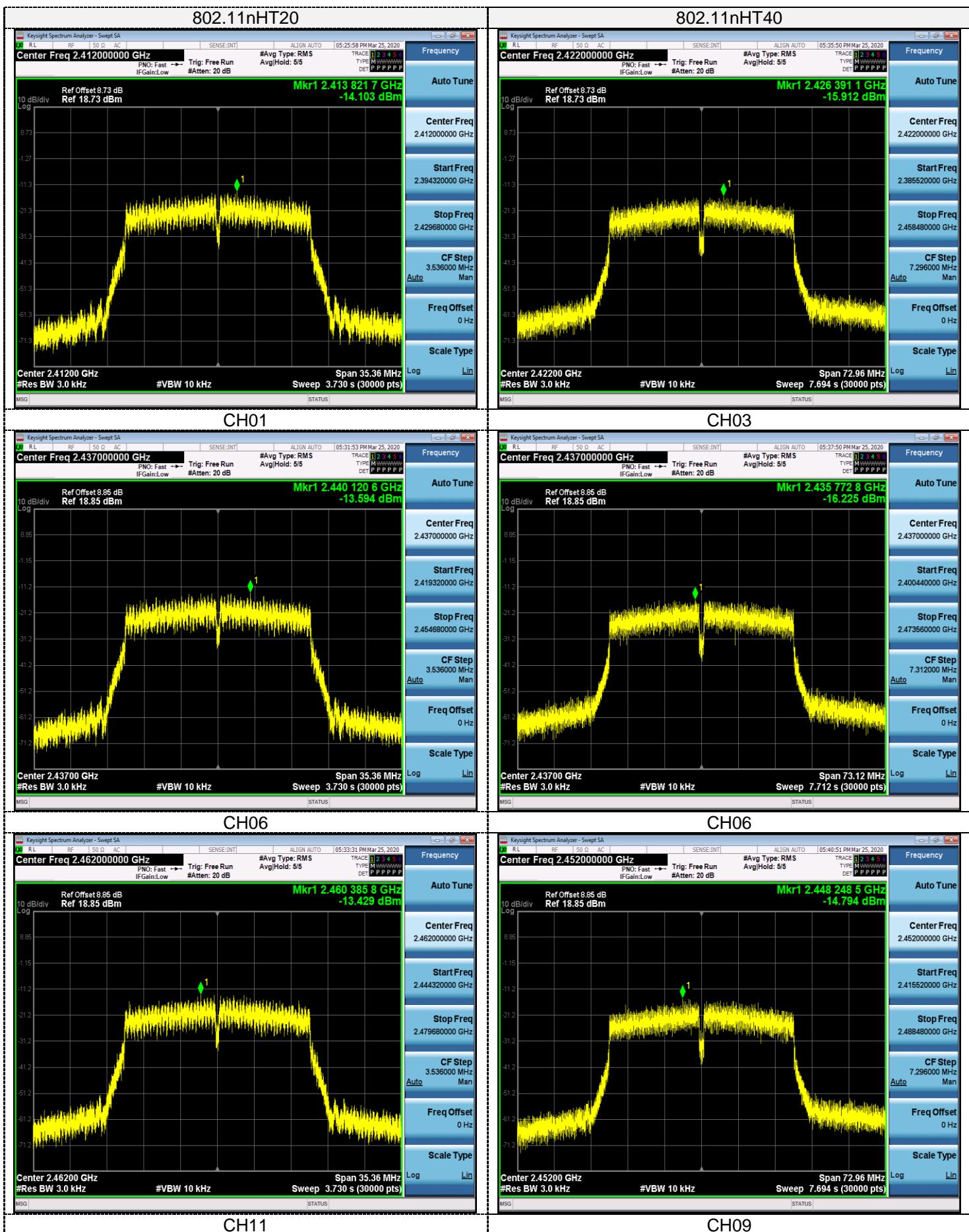

802.11b

802.11g

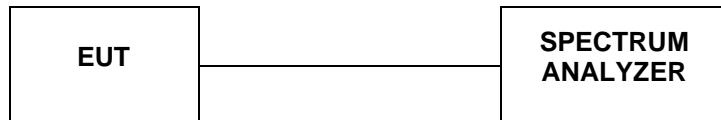

CH01

CH01

CH06



CH06


CH11

CH11

4.5. 6dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz.

The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDB558074 D01 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

1. Set RBW = 100 kHz.
2. Set the video bandwidth (VBW) \geq 3 RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

LIMIT

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

TEST RESULTS

Antenna 0:

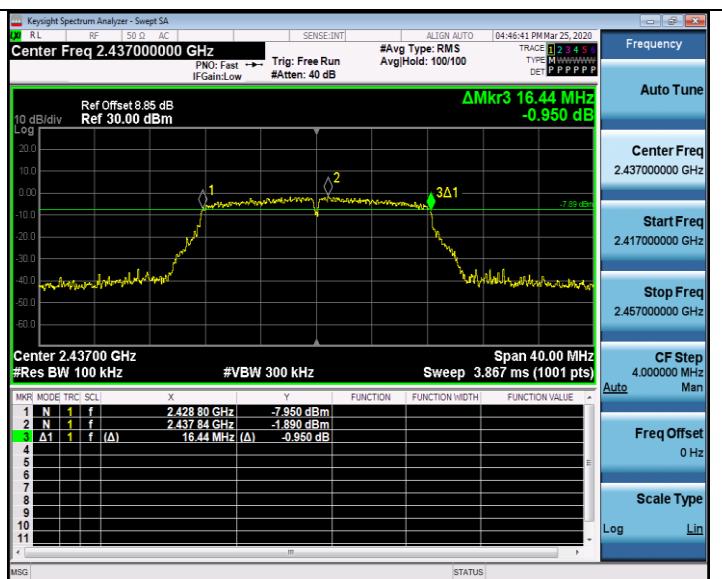
Type	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
802.11b	01	8.08	\geq 500	Pass
	06	8.64		
	11	8.16		
802.11g	01	16.40	\geq 500	Pass
	06	16.44		
	11	16.40		
802.11nHT20	01	17.68	\geq 500	Pass
	06	17.64		
	11	17.68		
802.11nHT40	03	36.48	\geq 500	Pass
	06	36.48		
	09	36.48		

Antenna 1:

Type	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
802.11b	01	7.68	\geq 500	Pass
	06	7.64		
	11	8.12		
802.11g	01	16.48	\geq 500	Pass
	06	16.44		
	11	16.40		
802.11nHT20	01	17.68	\geq 500	Pass
	06	17.68		
	11	17.68		
802.11nHT40	03	36.48	\geq 500	Pass
	06	36.56		
	09	36.48		

Antenna 0:

802.11b


802.11g


CH01


CH01

CH06

CH06

CH11

CH11

802.11n HT20

802.11n HT40

CH01

CH06

CH11

CH09

Antenna 1:

