

FCC, ISED - TEST REPORT

Report Number : **66.790.20.0071.01R2** Date of Issue: 2021-03-16

Model : 200178005KF

Product Type : GEOX CONNNECT

Applicant : Geox S.p.A.

Address : Via Feltrina Centro 16 31044 Biadene di Montebelluna TV ITALY

Manufacturer : TENNYSON ELECTRONIC (SHEN ZHEN) CO., LTD.

Factory : TENNYSON ELECTRONIC (SHEN ZHEN) CO., LTD.

Address : 3&4/F,Bldg D, Tian Run Zhi Neng Chuang Xin Science Park, Jiuwei
: 1st Roard, Hangcheng Street, Baoan Distric, Shenzhen, China.

Test Result : **Positive** **Negative**

Total pages including Appendices : 31

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory.....	3
3	Description of the Equipment Under Test.....	4
4	Summary of Test Standards.....	5
5	Summary of Test Results.....	6
6	General Remarks	7
7	Test Setups	8
8	Systems test configuration.....	9
9	Technical Requirement	10
9.1	Conducted Emission.....	10
9.2	Conducted peak output power.....	13
9.3	Power spectral density.....	15
9.4	6 dB Bandwidth and 99% Occupied Bandwidth	17
9.5	Spurious RF conducted emissions	20
9.6	Band edge	24
9.7	Spurious radiated emissions for transmitter	26
10	Test Equipment List.....	30
11	System Measurement Uncertainty	31

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch
Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint
Road 2, Nanshan District
Shenzhen 518052
P.R. China

Telephone: 86 755 8828 6998
Fax: 86 755 8288 5299

FCC Registration Number: 514049

IC Registration Number: 10320A

3 Description of the Equipment Under Test

Product:	GEOX CONNNECT
Model no.:	200178005KF
FCC ID:	2AQ7N200178005KF
IC:	24328-200178005KF
Options and accessories:	
Rating:	5.0 Vdc for adapter, 3.7Vdc battery, 1500mAh, 5.55Wh
RF Transmission	2402MHz-2480MHz
Frequency:	
No. of Operated Channel:	40
Modulation:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	-0.58dBi
Description of the EUT:	The Equipment Under Test (EUT) is GEOX CONNNECT with Bluetooth function operated at 2.402-2.48GHz.
PMN:	GEOX CONNNECT
HVIN:	200178005KF

4 Summary of Test Standards

Test Standards	
FCC Part 15 Subpart C 10-1-2020 Edition	PART 15 - RADIO FREQUENCY DEVICES Subpart C - Intentional Radiators
RSS-Gen Issue 5, Amendment 2, February 2021	General Requirements for the Certification of Radio Apparatus
RSS-247 Issue 2 February 2017	Digital Transmission Systems (DTSS), Frequency Hopping Systems (FHSS) and License-Exempt Local Area Network (LE-LAN) Devices

All the test methods were according to KDB558074 D01 v05r02 DTS Measurement Guidance and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements					
FCC Part 15 Subpart C, RSS-Gen, RSS-247					
Test Condition	Pages	Test Site	Test Result		
			Pass	Fail	N/A
15.207 RSS-GEN 8.8	Conducted emission AC power port	10	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>
15.247 (b) (1) RSS-247 Clause 5.4(d)	Conducted peak output power	12	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>
15.247(e) RSS-247 Clause 5.2(b)	Power spectral density	14	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>
15.247(a)(2) RSS-247 Clause 5.1(a)	6dB bandwidth and 99% Occupied Bandwidth	17	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>
15.247(d) RSS-247 Clause 5.5	Spurious RF conducted emissions	20	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>
15.247(d) RSS-247 Clause 5.5	Band edge	24	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>
15.247(d) & 15.209 & 15.205 RSS-247 Clause 5.5 & RSS-GEN 8.9	Spurious radiated emissions for transmitter	26	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>
15.203 RSS-GEN 6.8	Antenna requirement	See note 2		<input checked="" type="checkbox"/>	<input type="checkbox"/>

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an PCB antenna, which gain is -0.58dBi. It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

This submittal(s) (test report) is intended for FCC ID: 2AQ7N200178005KF complies with Section 15.205, 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C.

This submittal(s) (test report) is intended for IC: 24328-200178005KF, complies with RSS-247 and RSS-Gen rules.

200178005KF is GEOX CONNECT with Bluetooth function. The TX and RX range is 2402MHz-2480MHz.

Note: The report is for BLE only.

SUMMARY:

All tests according to the regulations cited on page 6

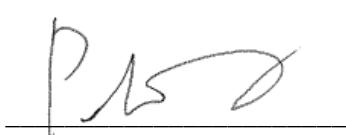
- Performed

- **Not** Performed

The Equipment under Test

- **Fulfills** the general approval requirements.

- **Does not** fulfill the general approval requirements.

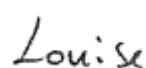

Sample Received Date: January 20, 2021

Testing Start Date: January 22, 2021

Testing End Date: February 27, 2021

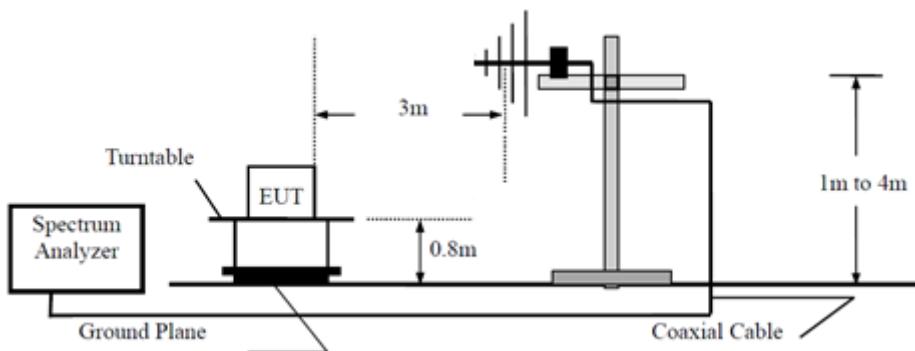
- TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch -

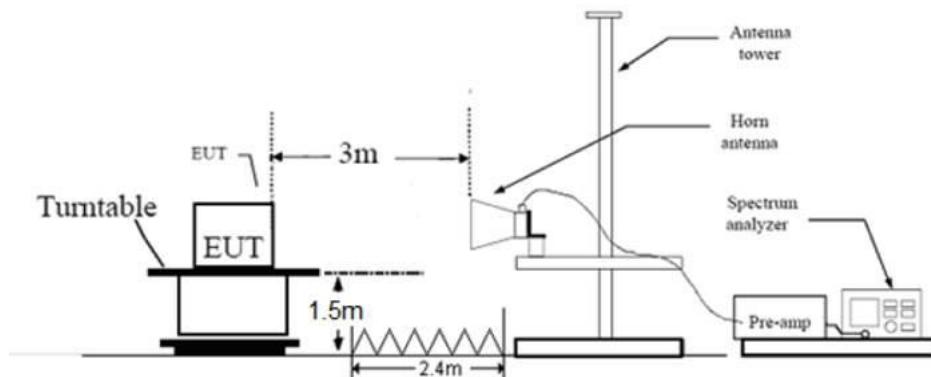
Reviewed by:


Peter Jia
Reviewer

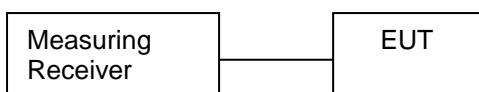
Prepared by:

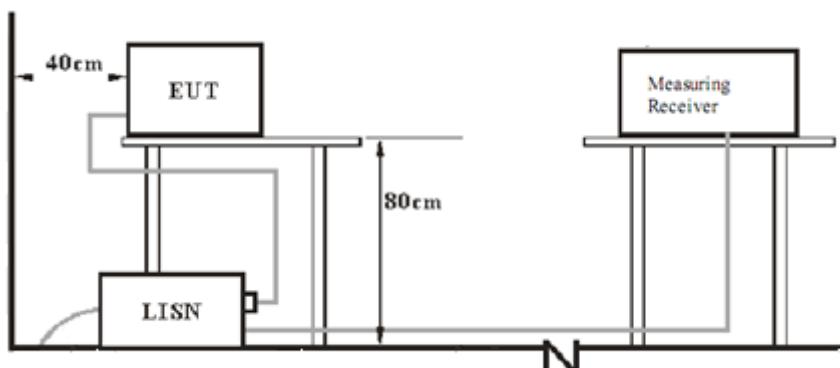
Tim Pang
Project Engineer


Tested by:


Louise Liu
Test Engineer

7 Test Setups


Radiated emission test setups
Below 1GHz


Above 1GHz

Conducted RF test setups

AC Power Line Conducted Emission test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Notebook	Lenovo	X220	---
Mobile Phone	Huawei	---	

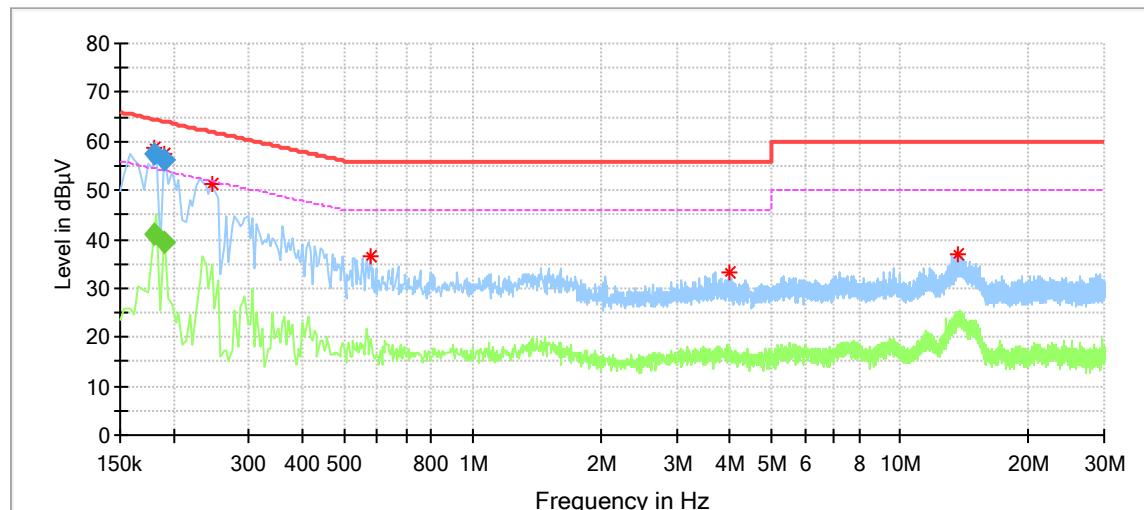
Test software: nRFgo Studio Test Tool, which used to control the EUT in continues transmitting mode.

The system was configured to channel 0, 19, and 39 for the test.

9 Technical Requirement

9.1 Conducted Emission

Test Method


1. The EUT was placed on a table, which is 0.8m above ground plane
2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
3. Maximum procedure was performed to ensure EUT compliance
4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

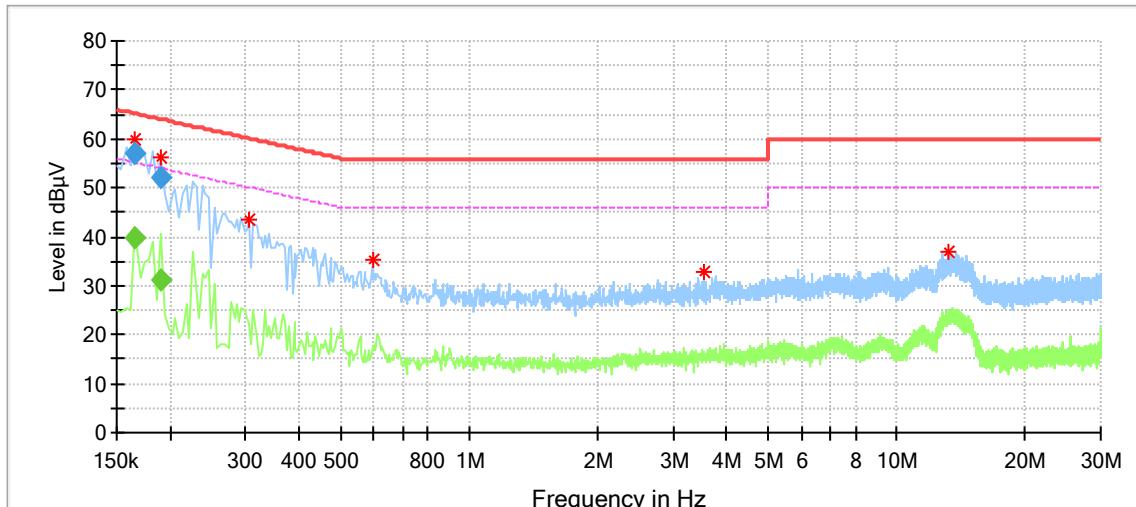
Frequency MHz	QP Limit dB μ V	AV Limit dB μ V
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Decreasing linearly with logarithm of the frequency

Product Type : GEOX CONNNECT
 M/N : 200178005KF
 Operating Condition : Charging+ BT Link
 Test Specification : Line
 Comment : 120VAC (Supplied by computer)

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.181000	---	41.14	54.60	13.46	L1	9.64
0.181000	57.24	---	64.60	7.36	L1	9.64
0.190000	---	39.41	54.24	14.82	L1	9.64
0.190000	56.24	---	64.24	8.00	L1	9.64


Remark:

Level=Reading Level + Correction Factor

Correction Factor=Cable Loss + LISN Factor

(The Reading Level is recorded by software which is not shown in the sheet)

Product Type : GEOX CONNNECT
 M/N : 200178005KF
 Operating Condition : Charging+ BT Link
 Test Specification : Neutral
 Comment : 120VAC (Supplied by computer)

Final_Result

Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Line	Corr. (dB)
0.166000	---	39.95	54.94	14.99	N	9.62
0.166000	56.85	---	64.94	8.08	N	9.62
0.189500	---	31.12	54.06	22.94	N	9.62
0.189500	51.95	---	64.06	12.11	N	9.62

Remark:

Level=Reading Level + Correction Factor

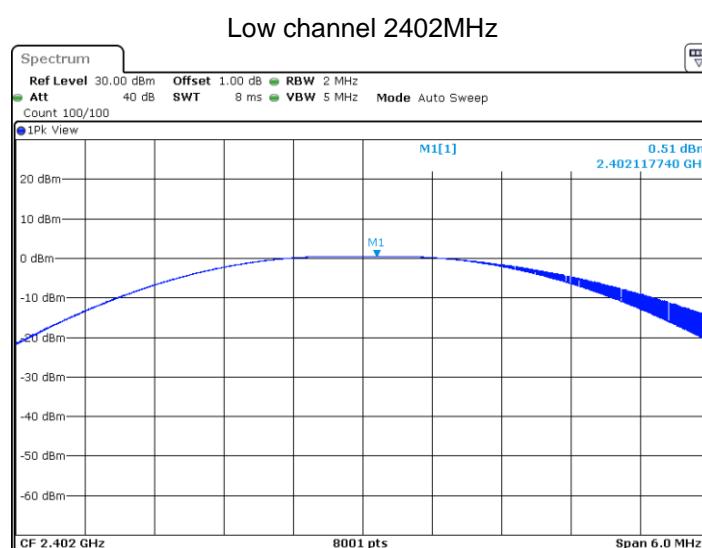
Correction Factor=Cable Loss + LISN Factor

(The Reading Level is recorded by software which is not shown in the sheet)

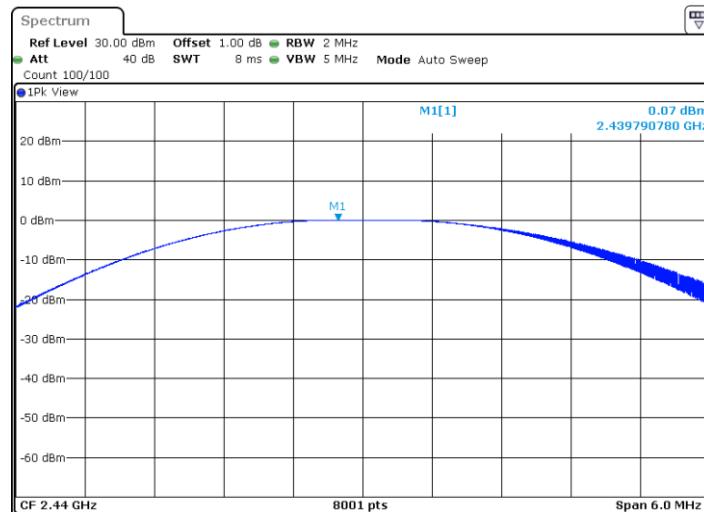
9.2 Conducted peak output power

Test Method

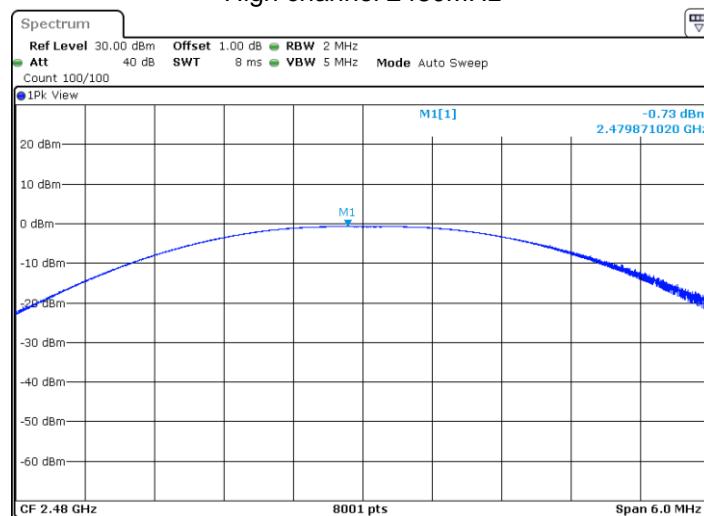
1. Use the following spectrum analyzer settings:
RBW > the 6dB bandwidth of the emission being measured, VBW \geq 3RBW, Span \geq 3RBW
Sweep = auto, Detector function = peak, Trace = max hold.
2. Add a correction factor to the display.
3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.


Limits

According to §15.247 (b) (1), conducted peak output power limit as below:


Frequency Range MHz	Limit W	Limit dBm
2400-2483.5	≤ 1	≤ 30

Test result as below table


Frequency MHz	Conducted Peak Output Power dBm	EIRP dBm	Result
Low channel 2402MHz	0.51	-0.07	Pass
Middle channel 2440MHz	0.07	-0.51	Pass
High channel 2480MHz	-0.73	-1.31	Pass

Middle channel 2440MHz

High channel 2480MHz

9.3 Power spectral density

Test Method

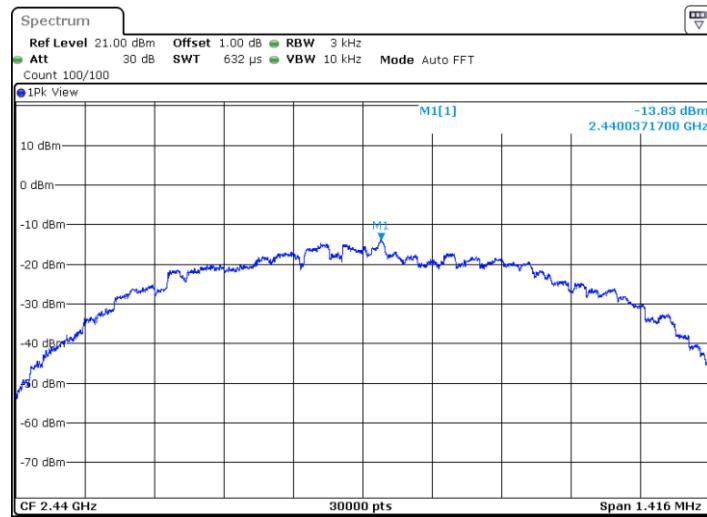
This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

1. Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW \geq 3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
3. Repeat above procedures until other frequencies measured were completed.

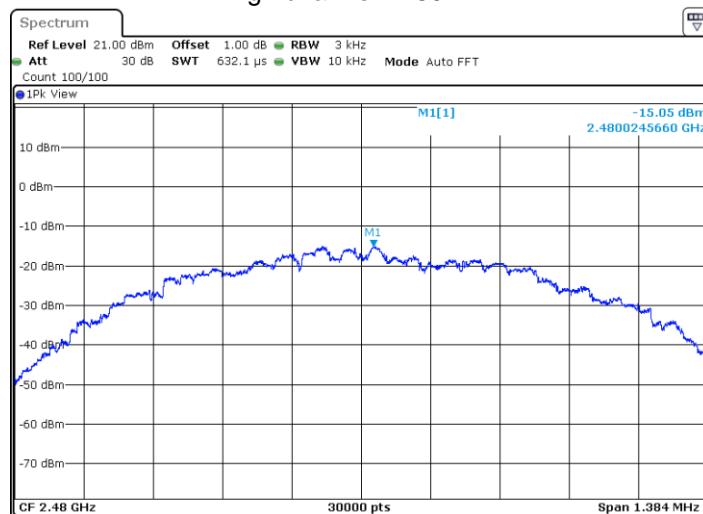
Limit

Limit [dBm/3kHz]

≤ 8


Test result

Frequency MHz	Power spectral density dBm/3kHz	Result
Top channel 2402MHz	-12.48	Pass
Middle channel 2440MHz	-13.83	Pass
Bottom channel 2480MHz	-15.05	Pass


Low channel 2402MHz

Middle channel 2440MHz

High channel 2480MHz

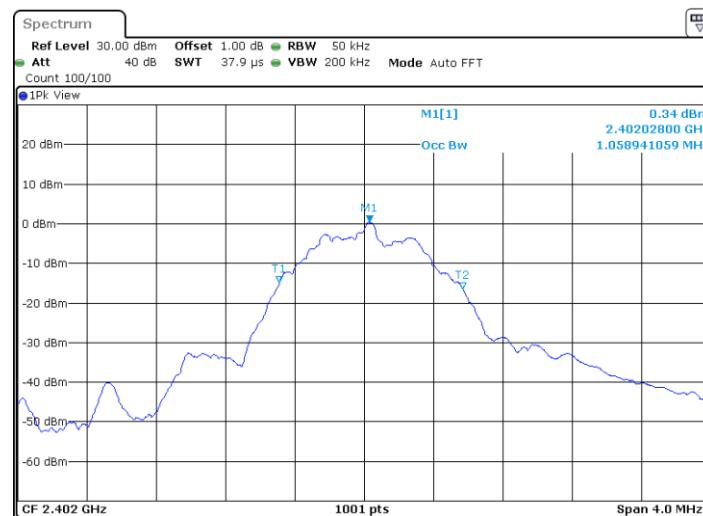
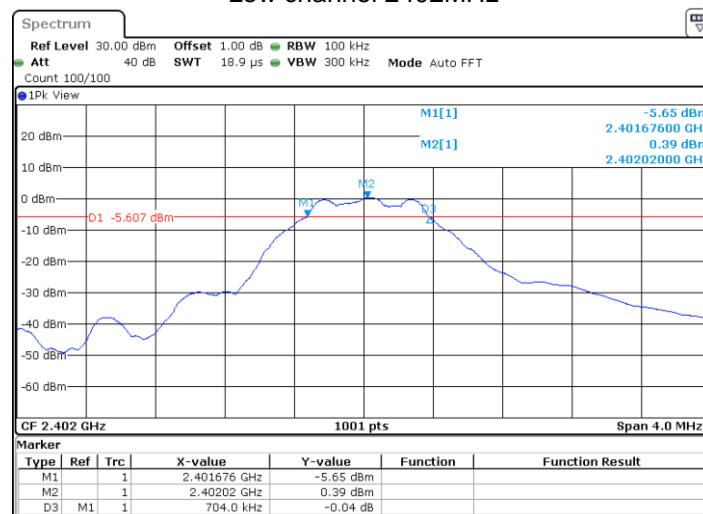
9.4 6 dB Bandwidth and 99% Occupied Bandwidth

Test Method

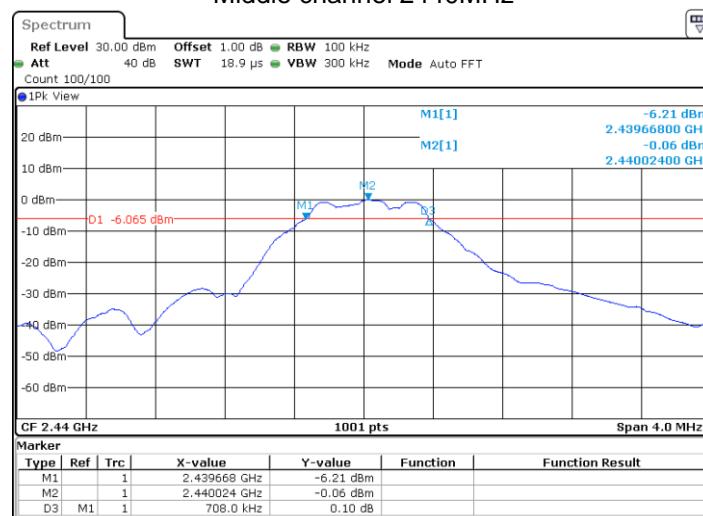
1. Use the following spectrum analyzer settings:
RBW=100K, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold
2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.
3. Allow the trace to stabilize, record the X dB Bandwidth value.

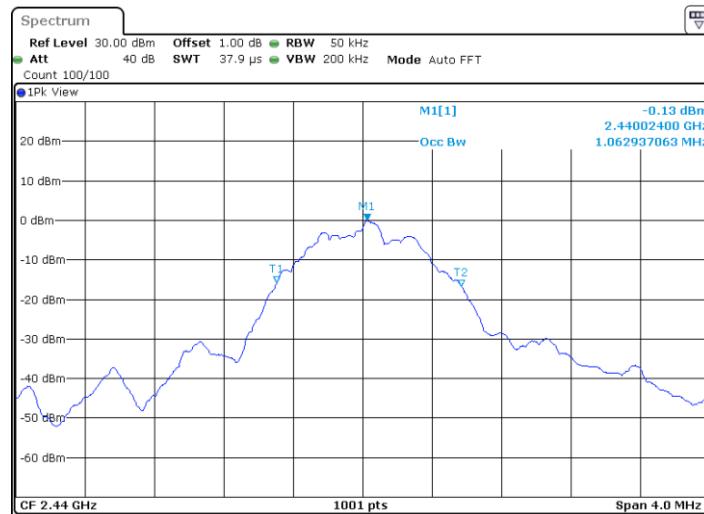
Limit

Limit [kHz]

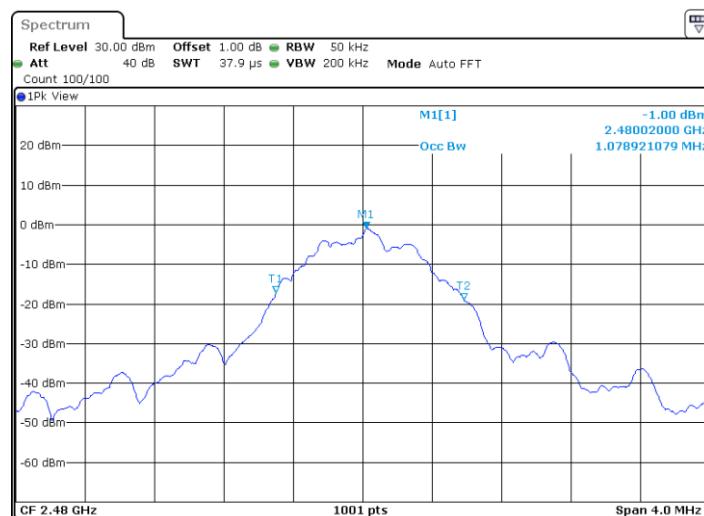
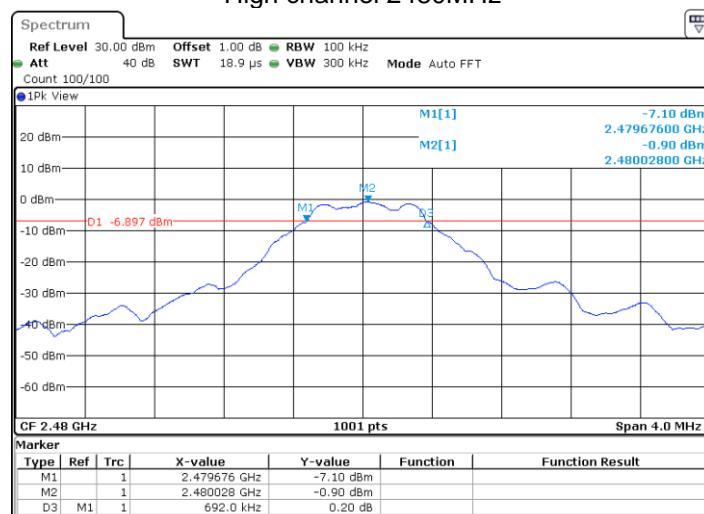


\geq 500

Test result


Frequency MHz	6dB bandwidth kHz	99% bandwidth kHz	Result
Bottom channel 2402MHz	704	1059	Pass
Middle channel 2440MHz	708	1063	Pass
Top channel 2480MHz	692	1079	Pass


6 dB Bandwidth

Low channel 2402MHz

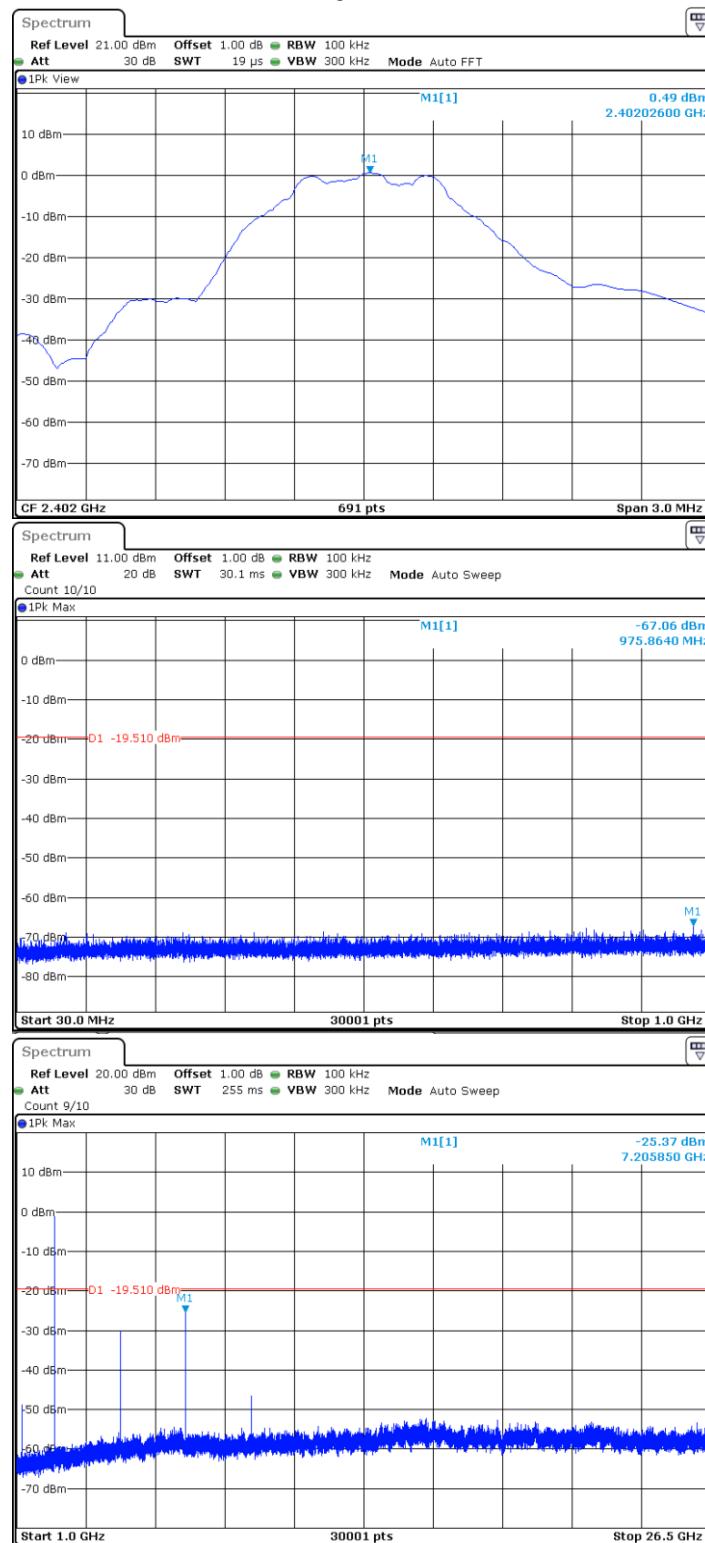



Middle channel 2440MHz

High channel 2480MHz

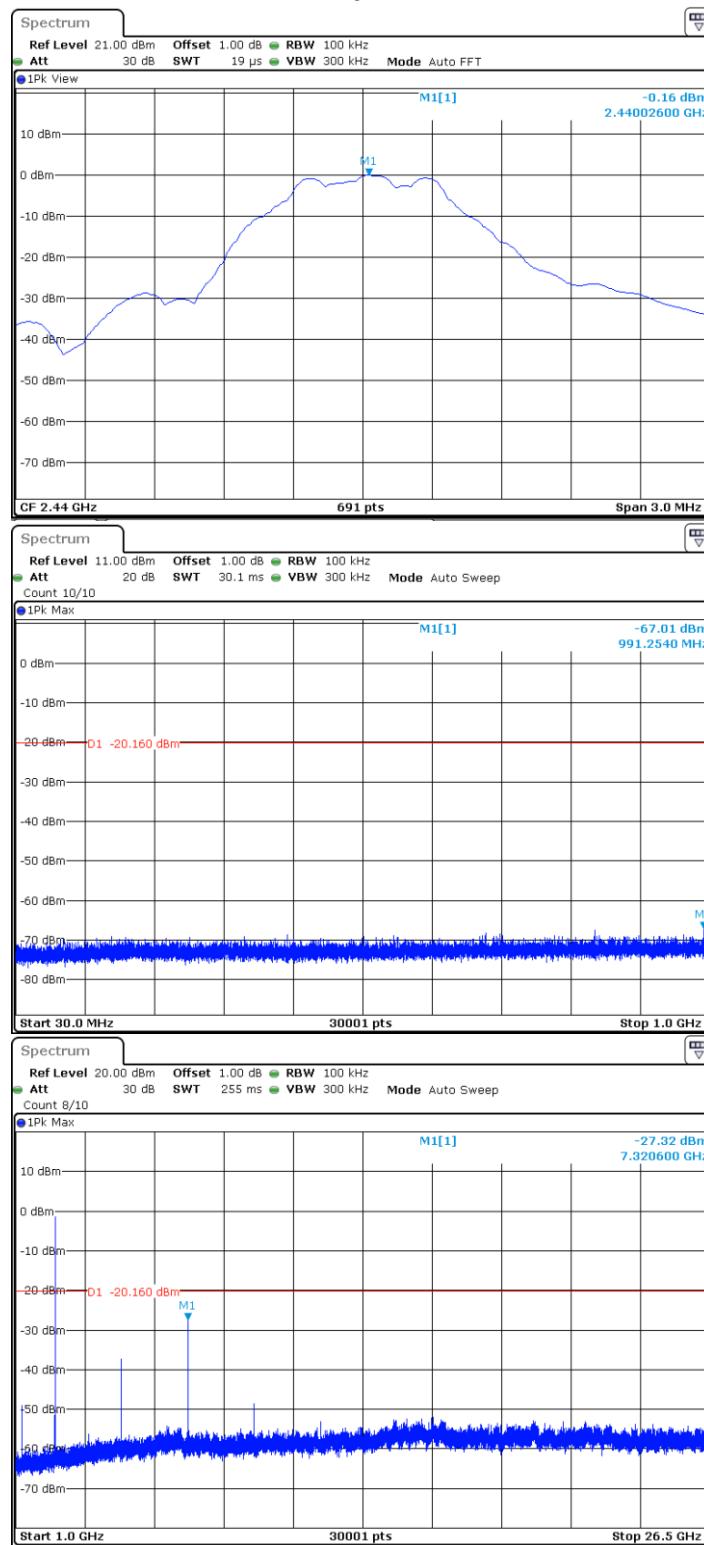
9.5 Spurious RF conducted emissions

Test Method

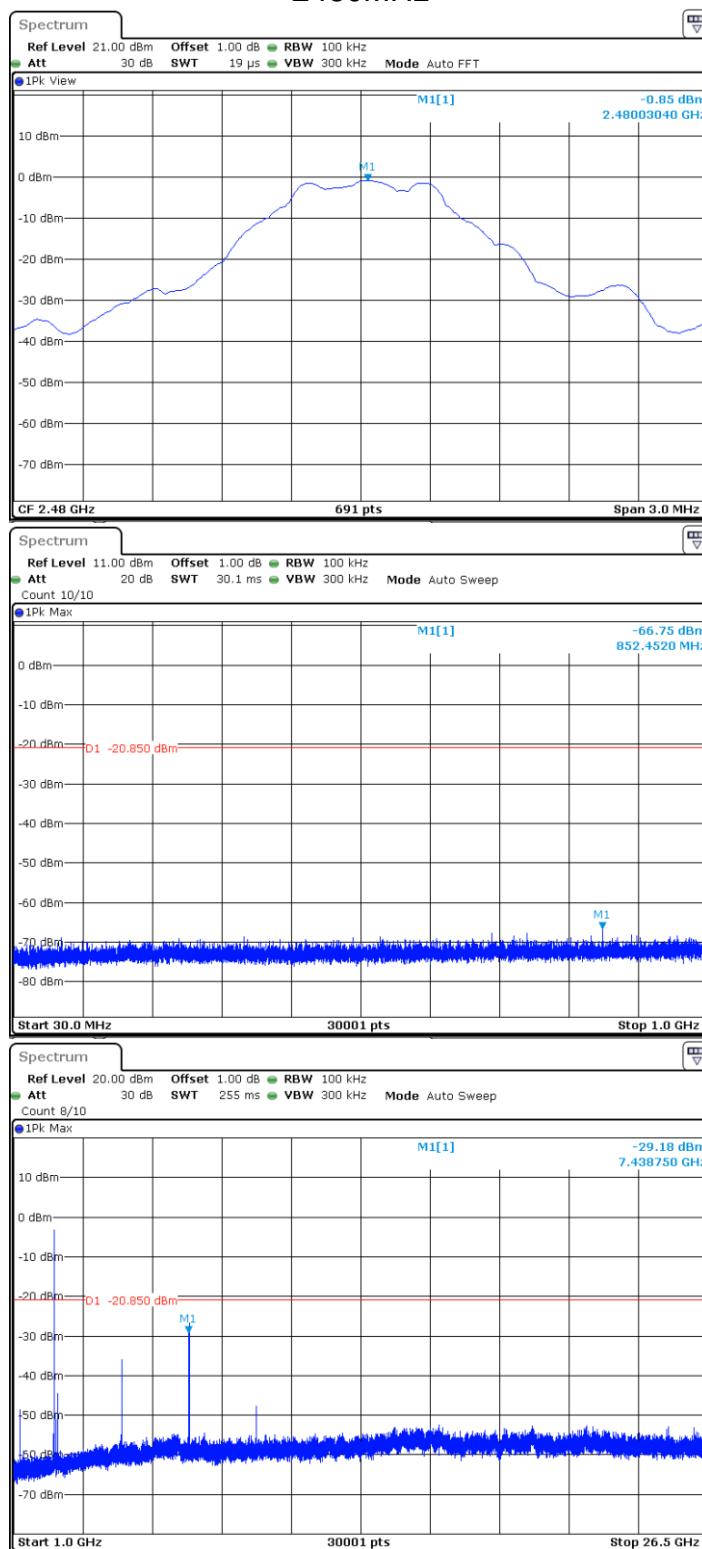

1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW \geq 3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
3. Repeat above procedures until other frequencies measured were completed.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20


Spurious RF conducted emissions

2402MHz


Remark: The emissions exceed the limit, it is fundamental signals.

2440MHz

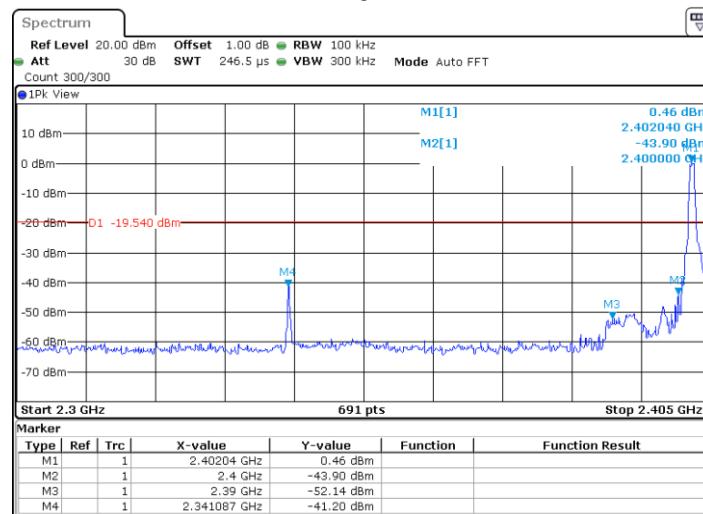
Remark: The emissions exceed the limit, it is fundamental signals.

2480MHz

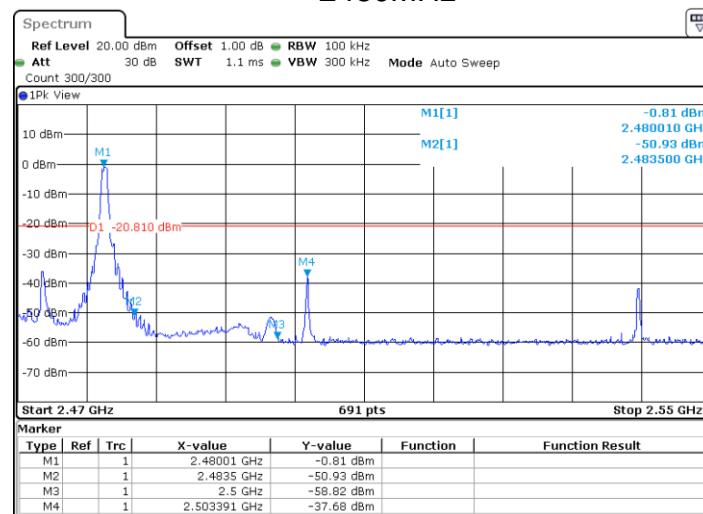
Remark: The emissions exceed the limit, it is fundamental signals.

9.6 Band edge

Test Method


- 1 Use the following spectrum analyzer settings:
Span = wide enough to capture the peak level of the in-band emission and all spurious
RBW = 100 kHz, VBW \geq RBW, Sweep = auto, Detector function = peak, Trace = max
hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit


Frequency Range MHz	Limit (dBc)
30-25000	-20

Band edge testing

2402MHz

2480MHz

9.7 Spurious radiated emissions for transmitter

Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious
RBW = 100 KHz to 120KHz, VBW \geq RBW for peak measurement, Sweep = auto, Detector
function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious
RBW = 1MHz, VBW \geq RBW for peak measurement ,Sweep = auto, Detector function =
peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz

- a) RBW = 1 MHz.
- b) VBW \ [3 x RBW].
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \ RBW / 2.
Satisfying this condition can require increasing the number of points in the sweep or
reducing the span. If the condition is not satisfied, then the detector mode shall be set to
peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type
may be set for linear voltage averaging. Some instruments require linear display mode to
use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the
transmission is not continuous, then the number of traces shall be increased by a factor
of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces
shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100%
duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100
traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a
correction factor shall be added to the measurement results prior to comparing with the
emission limit, to compute the emission level that would have been measured had the
test been performed at 100% duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (rms) mode was used in the preceding step e), then the correction
factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty
cycle was 50%, then 3 dB shall be added to the measured emission levels.
 - 2) If linear voltage averaging mode was used in the preceding step e), then

the correction factor is $[20 \log (1 / D)]$, where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.

3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section 15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dB μ V/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

Transmitting spurious emission test result as below:

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

30MHz-1GHz

Final_Result

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Pol	Corr. (dB/m)
58.493750	34.47	40.00	5.53	H	17.08
163.071875	40.66	43.50	2.84	H	13.29
326.880625	39.98	46.00	6.02	H	19.45
58.978750	36.10	40.00	3.90	V	17.00
215.148750	36.63	43.50	6.87	V	16.63

Above 1GHz

2402MHz

Frequency (MHz)	MaxPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Pol	Corr. (dB/m)
2441.500000	47.92	74.00	26.08	H	-3.08
4620.500000	50.39	74.00	23.61	H	2.55
5056.000000	49.57	74.00	24.43	H	3.03
7206.500000	43.01	74.00	30.99	H	5.12
9439.500000	43.92	74.00	30.08	H	7.43
12220.000000	45.28	74.00	28.72	H	8.92
16679.500000	49.54	74.00	24.46	H	15.88
4804.000000	51.41	54.00	2.59	V	2.77
8179.500000	41.98	74.00	32.02	V	6.05
10083.000000	44.25	74.00	29.75	V	9.25
14575.500000	46.46	74.00	27.54	V	11.11
16890.500000	49.00	74.00	25.00	V	16.54

2440MHz

Frequency (MHz)	MaxPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Pol	Corr. (dB/m)
4880.500000	52.69	54.00	1.31	H	2.85
7321.000000	42.22	74.00	31.78	H	5.29
10240.500000	44.50	74.00	29.50	H	9.00
14678.500000	47.13	74.00	26.87	H	11.32
17378.000000	49.21	74.00	24.79	H	16.39
4880.000000	53.93	54.00	0.07	V	2.85
7229.000000	42.42	74.00	31.58	V	5.26
10568.000000	45.37	74.00	28.63	V	8.54
13321.000000	46.07	74.00	27.93	V	9.50
16045.500000	49.60	74.00	24.40	V	14.79

2480MHz

Frequency (MHz)	MaxPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Pol	Corr. (dB/m)
4960.500000	51.63	54.00	2.37	H	2.81
8275.000000	42.70	74.00	31.30	H	6.31
10120.500000	44.25	74.00	29.75	H	9.15
12469.000000	45.72	74.00	28.28	H	9.12
16602.500000	49.02	74.00	24.98	H	15.76
4960.500000	50.45	54.00	3.55	V	2.81
8357.500000	43.36	74.00	30.64	V	6.21
9794.500000	44.68	74.00	29.32	V	7.85
12225.500000	46.02	74.00	27.98	V	8.93
16104.500000	49.42	74.00	24.58	V	14.74

Remark:

- (1) Data of measurement within frequency range 18Hz-26GHz are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (2) Data of measurement within this frequency range shown “--” in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (3) Level=Reading Level + Correction Factor
Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
Below 1GHz: Corrector factor = Antenna Factor + Cable Loss
(The Reading Level is recorded by software which is not shown in the sheet)

10 Test Equipment List

List of Test Instruments

Radiated Spurious Emission Test

Description	Manufacturer	Model no.	Serial no.	cal. due date
Signal Analyzer	Rohde & Schwarz	FSV40	101031	2021-6-28
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	708	2021-7-5
Horn Antenna	Rohde & Schwarz	HF907	102295	2021-7-5
Wideband Horn Antenna	Q-PAR	QWH-SL-18-40-K-SG	12827	2021-7-5
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100398	2021-7-7
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2021-6-28
Pre-amplifier	Rohde & Schwarz	SCU 40A	100432	2021-7-16
Attenuator	Agilent	8491A	2021-6-21	Attenuator
Fully Anechoic Chamber	TDK	8X4X4	--	2020-7-7
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

Conducted Emission Test

Description	Manufacturer	Model no.	Serial no.	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2021-6-29
LISN	Rohde & Schwarz	ENV4200	100249	2021-6-12
LISN	Rohde & Schwarz	ENV432	101318	2021-6-12
LISN	Rohde & Schwarz	ENV216	100326	2021-6-12
ISN	Rohde & Schwarz	ENY81	100177	2021-6-12
ISN	Rohde & Schwarz	ENY81-CA6	101664	2021-6-12
High Voltage Probe	Schwarzbeck	TK9420(VT9420)	9420-584	2021-6-23
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2021-6-28
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2021-6-21
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A
Shielding Room	TDK	CSR #1	----	2022-11-07

RF Test System

Description	Manufacturer	Model no.	Serial no.	cal. due date
Signal Generator	Rohde & Schwarz	SMB100A	108272	2021-6-21
Vector Signal Generator	Rohde & Schwarz	SMBV100A	262825	2021-6-21
Communication Synthetical Test Instrument	Rohde & Schwarz	CMW 270	101251	2021-6-21
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2021-6-21
Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2021-6-22
RF Switch Module	Rohde & Schwarz	OSP120/OSP-B157	101226/100851	2021-6-21
Power Splitter	Weinschel	1580	SC319	2021-7-16
10dB Attenuator	Weinschel	4M-10	43152	2021-6-21
10dB Attenuator	R&S	DNF	DNF-001	2021-6-21
10dB Attenuator	R&S	DNF	DNF-002	2021-6-21
10dB Attenuator	R&S	DNF	DNF-003	2021-6-21
10dB Attenuator	R&S	DNF	DNF-004	2021-6-21
Test software	Rohde & Schwarz	EMC32	Version 10.60.10	N/A
Test software	Tonscend	System for BT/WIFI	Version 2.6.77.0518	N/A
Shielding Room	TDK	TS8997	----	2022-11-07

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty	
Test Items	Extended Uncertainty
Uncertainty for Conducted Emission 150kHz-30MHz (for test using AMN ENV432 or ENV4200)	3.21dB
Uncertainty for Radiated Emission in 3m chamber 30MHz-1000MHz	Horizontal: 4.63dB; Vertical: 4.61dB;
Uncertainty for Radiated Emission in 3m chamber 1000MHz-18000MHz	Horizontal: 4.65dB; Vertical: 4.64dB;
Uncertainty for Radiated Spurious Emission 25MHz-3000MHz	Horizontal: 4.35dB; Vertical: 4.44dB;
Uncertainty for Radiated Spurious Emission 3000MHz-18000MHz	Horizontal: 4.30dB; Vertical: 4.29dB;
Uncertainty for Radiated Spurious Emission 18000MHz-40000MHz	Horizontal: 4.51dB; Vertical: 4.50dB;
Uncertainty for Conducted RF test with TS 8997	RF Power Conducted: 1.31dB Frequency test involved: 0.6×10^{-7} or 1%