



## MET Laboratories, Inc. *Safety Certification - EMI - Telecom Environmental Simulation*

914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313  
33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372  
3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372  
13301 MCCALLEN PASS • AUSTIN, TEXAS 78753 • PHONE (512) 287-2500 • FAX (512) 287-2513

January 24, 2019

Premier Dental Products Company  
1710 Romano Dr  
Plymouth Meeting, Pennsylvania 19462

Dear Tiffany Barthol,

Enclosed is the EMC test report for limited compliance testing of the Premier Dental Products Company, AeroPro™ Cordless Prophy System, for Class A device, tested to the requirements of Title 47 of the CFR, Ch. 1 Part 18 Subpart B for Industrial, Scientific, and Medical (ISM) Equipment, Ultrasonic Devices.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely,

Joel Huna  
Documentation Department  
MET Laboratories, Inc.

Reference: ((Premier Dental Products Company|EMC96765-FCC18 Rev. 2)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc. While use of the A2LA logo in this report reflects MET accreditation under these programs, the report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government. This letter of transmittal is not a part of the attached report.





## Electromagnetic Compatibility Test Report

for

Premier Dental Products Company  
AeroPro™ Cordless Prophy System

Tested under

**Title 47 of the CFR, Part 18 Subpart B  
for Industrial, Scientific, and Medical (ISM) Equipment, Ultrasonic Devices**

**MET Report: EMC96765-FCC18 Rev. 2**

January 24, 2019

Bradley Jones  
Test Engineer, EMC Lab

Joel Huna  
Documentation Department

**Engineering Statement:** The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the applicable limits. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Title 47 of the CFR, Part 18, Subpart B for a Class A Digital Device under normal use and maintenance.

John Mason  
Director, Electromagnetic Compatibility Lab



## Report Status Sheet

| Revision | Report Date       | Reason for Revision |
|----------|-------------------|---------------------|
| Ø        | August 24, 2018   | Initial Issue.      |
| 1        | November 14, 2018 | TCB Corrections.    |
| 2        | January 24, 2019  | TCB Corrections.    |



## Table of Contents

|                                                                                     |           |
|-------------------------------------------------------------------------------------|-----------|
| <b>1.0 Testing Summary .....</b>                                                    | <b>7</b>  |
| <b>2.0 Equipment Configuration .....</b>                                            | <b>8</b>  |
| <b>2.1 Overview.....</b>                                                            | <b>8</b>  |
| <b>2.2 Test Site .....</b>                                                          | <b>9</b>  |
| <b>2.3 Measurement Uncertainty .....</b>                                            | <b>9</b>  |
| <b>2.4 Description of Test Sample.....</b>                                          | <b>9</b>  |
| <b>2.5 Equipment Configuration.....</b>                                             | <b>10</b> |
| <b>2.6 Support Equipment .....</b>                                                  | <b>10</b> |
| <b>2.7 Ports and Cabling Information .....</b>                                      | <b>10</b> |
| <b>2.8 Mode of Operation .....</b>                                                  | <b>12</b> |
| <b>2.9 Method of Monitoring EUT Operation .....</b>                                 | <b>13</b> |
| <b>2.10 Modifications .....</b>                                                     | <b>13</b> |
| <b>2.10.1 Modifications to EUT .....</b>                                            | <b>13</b> |
| <b>2.10.2 Modifications to Test Standard.....</b>                                   | <b>13</b> |
| <b>2.11 Disposition of EUT .....</b>                                                | <b>14</b> |
| <b>2.12 Test Software Used .....</b>                                                | <b>14</b> |
| <b>3.0 Electromagnetic Compatibility Emission Criteria .....</b>                    | <b>15</b> |
| <b>3.1 Conducted Emission Limits .....</b>                                          | <b>15</b> |
| <b>3.2 Radiated Emission: Limits of Electromagnetic Radiation Disturbance .....</b> | <b>19</b> |
| <b>4.0 Test Equipment .....</b>                                                     | <b>24</b> |



## List of Tables

|                                                                                                             |    |
|-------------------------------------------------------------------------------------------------------------|----|
| Table 1: List of Abbreviations .....                                                                        | 6  |
| Table 2: Testing Summary .....                                                                              | 7  |
| Table 3. EUT Overview .....                                                                                 | 8  |
| Table 4. Uncertainty Calculations Summary .....                                                             | 9  |
| Table 5. Equipment Configuration.....                                                                       | 10 |
| Table 6. Ports and Cabling Information .....                                                                | 10 |
| Table 7. Conducted Limits for ISM (Ultrasonic Equipment) calculated from FCC Part 18 Section 18.307(a)..... | 15 |
| Table 8: Conducted Emissions at the Mains Terminal (120 VAC/60 Hz) Phase Test Results .....                 | 16 |
| Table 9: Conducted Emissions at the Mains Terminal (120 VAC/60 Hz) Neutral Test Results.....                | 16 |
| Table 10: Test Equipment List .....                                                                         | 24 |

## List of Figures

|                                                     |    |
|-----------------------------------------------------|----|
| Figure 1. Block Diagram of Test Configuration ..... | 11 |
|-----------------------------------------------------|----|

## List of Photographs

|                                                                         |    |
|-------------------------------------------------------------------------|----|
| Photograph 1: Conducted Emissions at the Mains Terminal Test Setup..... | 18 |
| Photograph 2: Radiated Emission, Test Setup, Part 18 .....              | 23 |



## List of Terms and Abbreviations

|                              |                                                                                                                            |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| <b>AC</b>                    | Alternating Current                                                                                                        |
| <b>ACF</b>                   | Antenna Correction Factor                                                                                                  |
| <b>Cal</b>                   | Calibration                                                                                                                |
| <i>d</i>                     | Measurement Distance                                                                                                       |
| <b>dB</b>                    | Decibels                                                                                                                   |
| <b>dB<math>\mu</math>A</b>   | Decibels above one <b>microamp</b>                                                                                         |
| <b>dB<math>\mu</math>V</b>   | Decibels above one <b>microvolt</b>                                                                                        |
| <b>dB<math>\mu</math>A/m</b> | Decibels above one <b>microamp per meter</b>                                                                               |
| <b>dB<math>\mu</math>V/m</b> | Decibels above one <b>microvolt per meter</b>                                                                              |
| <b>DC</b>                    | Direct Current                                                                                                             |
| <b>E</b>                     | Electric Field                                                                                                             |
| <b>ESD</b>                   | Electrostatic Discharge                                                                                                    |
| <b>EUT</b>                   | Equipment Under Test                                                                                                       |
| <i>f</i>                     | Frequency                                                                                                                  |
| <b>CISPR</b>                 | Comite International Special des Perturbations Radioelectriques<br>(International Special Committee on Radio Interference) |
| <b>GRP</b>                   | Ground Reference Plane                                                                                                     |
| <b>H</b>                     | Magnetic Field                                                                                                             |
| <b>HCP</b>                   | Horizontal Coupling Plane                                                                                                  |
| <b>Hz</b>                    | Hertz                                                                                                                      |
| <b>IEC</b>                   | International Electrotechnical Commission                                                                                  |
| <b>kHz</b>                   | kilohertz                                                                                                                  |
| <b>kPa</b>                   | kilopascal                                                                                                                 |
| <b>kV</b>                    | kilovolt                                                                                                                   |
| <b>LISN</b>                  | Line Impedance Stabilization Network                                                                                       |
| <b>MHz</b>                   | Megahertz                                                                                                                  |
| <b><math>\mu</math>H</b>     | microhenry                                                                                                                 |
| <b><math>\mu</math>F</b>     | microfarad                                                                                                                 |
| <b><math>\mu</math>s</b>     | microseconds                                                                                                               |
| <b>PRF</b>                   | Pulse Repetition Frequency                                                                                                 |
| <b>RF</b>                    | Radio Frequency                                                                                                            |
| <b>RMS</b>                   | Root-Mean-Square                                                                                                           |
| <b>V/m</b>                   | Volts <b>per meter</b>                                                                                                     |
| <b>VCP</b>                   | Vertical Coupling Plane                                                                                                    |

Table 1: List of Abbreviations



## 1.0 Testing Summary

The following tests specified below were performed with the following results.

| Reference and Test Description                                                                                                                            | Results   | Comments                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------|
| Title 47 of the CFR, Part 18 Subpart B - 18.309 (a) Conducted Emission Limits for Industrial, Scientific, and Medical (ISM) Equipment, Ultrasonic Devices | Compliant | Measured emissions were within applicable limits. |
| Title 47 of the CFR, Part 18 Subpart B - 18.305 (b) Radiated Emission Limits for Industrial, Scientific, and Medical (ISM) Equipment, Ultrasonic Devices  | Compliant | Measured emissions were within applicable limits. |

**Table 2: Testing Summary**



## 2.0 Equipment Configuration

### 2.1 Overview

MET Laboratories, Inc. was contracted by Premier Dental Products Company to perform testing on the AeroPro™ Cordless Prophy System, under Premier Dental Products Company purchase order number 7396.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Premier Dental Products Company, AeroPro™ Cordless Prophy System.

In accordance with §2.955(a) (3), the following data is presented in support of the verification of the Premier Dental Products Company, AeroPro™ Cordless Prophy System. Premier Dental Products Company should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the AeroPro™ Cordless Prophy System has been **permanently** discontinued, as per §2.955(b).

The results obtained relate only to the item(s) tested.

|                                   |                                 |
|-----------------------------------|---------------------------------|
| <b>Model(s) Tested:</b>           | AeroPro™ Cordless Prophy System |
| <b>Model(s) Covered:</b>          | AeroPro™ Cordless Prophy System |
| <b>FCC ID:</b>                    | 2AQ77-2018-AP                   |
| <b>Primary Power as Tested:</b>   | 120 VAC 50 – 60 Hz              |
| <b>Equipment Emissions Class:</b> | A                               |
| <b>Highest Clock Frequency:</b>   | 24 MHz                          |
| <b>Evaluated by:</b>              | Bradley Jones                   |
| <b>Report Date:</b>               | January 24, 2019                |

**Table 3. EUT Overview**



## 2.2 Test Site

All testing was performed at MET Laboratories, Inc., 914 West Patapsco Avenue, Baltimore, MD 21230. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

MET Laboratories is a ISO/IEC 17025 accredited site by A2LA, Baltimore #0591.01.

Radiated Emissions measurements were performed in a semi-anechoic chamber. In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

## 2.3 Measurement Uncertainty

| Test Method                                  | Typical Expanded Uncertainty | K | Confidence Level |
|----------------------------------------------|------------------------------|---|------------------|
| <b>RF Frequencies</b>                        | $\pm 4.52$ Hz                | 2 | 95%              |
| <b>RF Power Conducted Emissions</b>          | $\pm 2.32$ dB                | 2 | 95%              |
| <b>RF Power Conducted Spurious Emissions</b> | $\pm 2.25$ dB                | 2 | 95%              |
| <b>RF Power Radiated Emissions</b>           | $\pm 3.01$ dB                | 2 | 95%              |

**Table 4. Uncertainty Calculations Summary**

## 2.4 Description of Test Sample

The AeroPro™ Cordless Prophy System, Equipment Under Test (EUT) hereafter, is a prescription only, high performance cordless prophylaxis handpiece with a centralized control button for use with disposable prophylaxis angles to perform cleaning and polishing procedures on teeth.

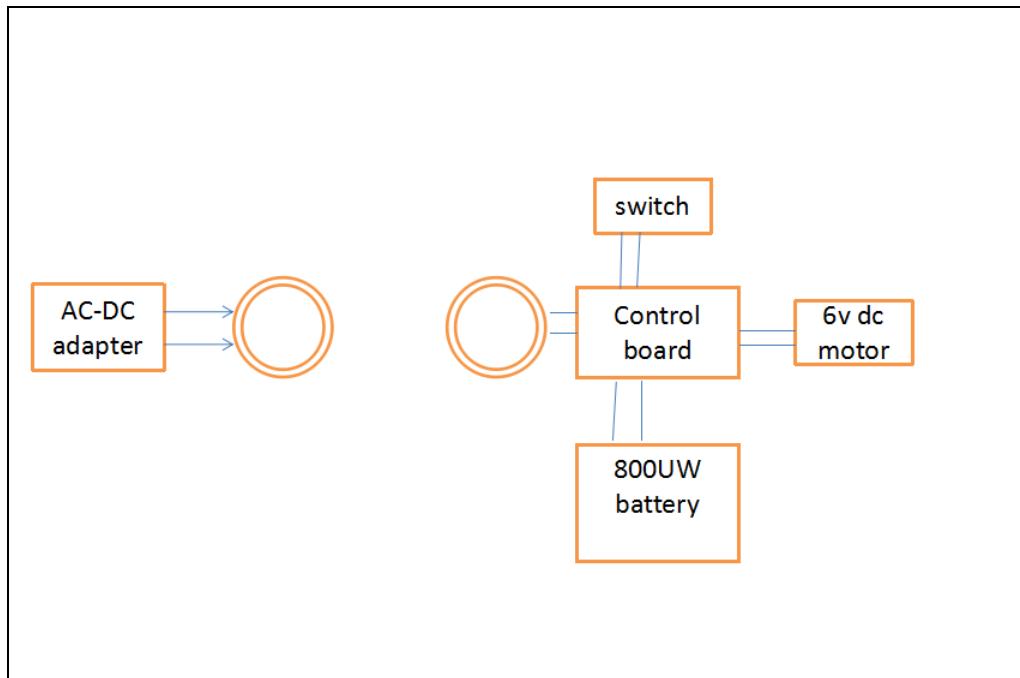


## 2.5 Equipment Configuration

The EUT was set up as outlined in Figure 1. All equipment incorporated as part of the EUT is included in the following list.

| Ref. ID | Name / Description                                 | Model Number | Part Number       | Serial Number | Revision        |
|---------|----------------------------------------------------|--------------|-------------------|---------------|-----------------|
| 1       | Motor Component                                    | N/A          | N/A               | 5500520       | M000013<br>8364 |
| 2       | Outer Sheath                                       | N/A          | N/A               | 5500520       | S0000138<br>384 |
| 3       | Direct current powered<br>battery charging station | N/A          | N/A               | 5500540       |                 |
| 4       | AC power adapter                                   | N/A          | RHD20W120100<br>U | 5500541       |                 |

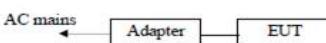
Table 5. Equipment Configuration


## 2.6 Support Equipment

Support equipment was not necessary for the operation and monitoring of this EUT.

## 2.7 Ports and Cabling Information

| Ref. ID | Port name on EUT | Cable Description or reason<br>for no cable | Qty | Length as<br>tested (m) | Max<br>Length<br>(m) | Shielded?<br>(Y/N) | Patient Coupled<br>Port? (Y/N) | Termination Box ID &<br>Port Name                                                                                  |
|---------|------------------|---------------------------------------------|-----|-------------------------|----------------------|--------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1       | AC Adapter       | 2468 20AWG straight                         | 1   | 74.2mm                  | 74.2m<br>m           | No                 | No                             | Continuous 100-<br>240V/50-60 Hz                                                                                   |
| 2.      | Charging Station | Induction Charging<br>Coil inductance 10uH  | 1   | N/A                     | N/A                  | No                 | No                             | Transmitting input<br>voltage 12 VDC<br>Receive module output<br>voltage - 5VDC<br>Receive output 5V/400-<br>500mA |


Table 6. Ports and Cabling Information



**Figure 1. Block Diagram of Test Configuration**

## 2.8 Mode of Operation

This section describes how the EUT is simulating normal operation.

| 1.5. Description of Test Modes                                                    |              |
|-----------------------------------------------------------------------------------|--------------|
| Pretest Modes                                                                     | Descriptions |
| Mode 1                                                                            | Charging     |
| Mode 2                                                                            | On           |
| For Mode 1 Block Diagram of Test Setup                                            |              |
|  |              |
| For Mode 2 Block Diagram of Test Setup                                            |              |
|  |              |

**Charging Mode:** When the battery is low, AeroPro handpiece requires charging. During charging, the AeroPro handpiece must be placed into the charging station. While in the charging station, the LED battery lights will display the charging status. Table below illustrates the configuration of LED lights corresponding to the charging mode.

| Outer Module LED                                                          | Signal                            | Schematic Illustration                                                                |
|---------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------|
| Flashing Red Light                                                        | Low charge                        |  |
| Solid red stays on, 1 yellow, and 3 green lights are blinking in sequence | Charging                          |  |
| Five Solid Lights: 1 red, 1 yellow, 3 green                               | Charging complete/<br>Operational |                                                                                       |

**Polishing Mode “On Mode”:** AeroPro™ Cordless Prophy System used with Disposable Prophy Angles (DPAs) for the purpose of prophylaxis polishing. A Li-ion battery powered electric motor drives the rotation and controls the rotation speeds of the handpiece. AeroPro™ operates in 3 speeds, as per table below. ON/OFF/MODE Button controls speed of the unit.

| Function | Action/Mode   | SPEED            | Schematic Illustration                                                                |
|----------|---------------|------------------|---------------------------------------------------------------------------------------|
| OFF      | OFF           | 0 rpm            |                                                                                       |
| ON       | To load paste | Low: 500 rpm     |                                                                                       |
|          | To Polish     | Medium: 1500 rpm |                                                                                       |
|          |               | High: 2800 rpm   |  |



During polishing, the device has the capability to work in two settings: 2-speed and 3-speed:

| Speeds | 2-Speed Mode<br>(default setting) | 3-Speed Mode |
|--------|-----------------------------------|--------------|
| Low    | 500 rpm                           | 500 rpm      |
| Med    | -                                 | 1500 rpm     |
| High   | 2800 rpm                          | 2800 rpm     |

The optional Speed Modes allow the operator to go from slow to high speed with one button touch (default setting) or, if a greater range of speeds is preferred, the 3 Speed Mode can be selected by following the "Change Speed Mode" instructions in Directions for Use.

## 2.9 Method of Monitoring EUT Operation

| TEST               | Pass/Fail Criteria                                                                                                                                                                                                                                                                                                                                                         |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Radiated Immunity  | <u>Charging Mode:</u> <b>Pass:</b> Handpiece is in the charging station and is the battery voltage is increasing (battery is being charged). LED lights are on and displaying the charge level of the battery. <b>Fail:</b> Battery is not charging and /or LED lights are not on while the handpiece is in the charging station.                                          |
| Conducted Immunity |                                                                                                                                                                                                                                                                                                                                                                            |
| Surge              |                                                                                                                                                                                                                                                                                                                                                                            |
| EFTB               |                                                                                                                                                                                                                                                                                                                                                                            |
| VDI                |                                                                                                                                                                                                                                                                                                                                                                            |
| MI                 | <u>Polishing Mode:</u> <b>Pass:</b> AeroPro™ operates two speed modes (2-speed and 3-speed, as per table above). Motor turns without disturbance, Low, Medium and High speeds are maintained respectively. Motor can be turned On and OFF by pressing On/OFF/MODE button. <b>Fail:</b> AeroPro™ is unable to switch between speeds, or maintain a selected rotation speed. |
| ESD                |                                                                                                                                                                                                                                                                                                                                                                            |

**Required Dwell Time for each Immunity Test for Radiated Immunity and Conducted Immunity:** 1 sec

- Note: The assumed dwell time is on the quote. If a different time is declared here, the scope must be re-evaluated.

**Alarm Limit Settings (if applicable, please provide a rationale for the settings chosen):** N/A

## 2.10 Modifications

### 2.10.1 Modifications to the EUT

No modifications were made to the EUT.

### 2.10.2 Modifications to the Test Standard

No modifications were made to the test standard.



## 2.11 Disposition of EUT

The test sample including all support equipment (if any), submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Premier Dental Products Company upon completion of testing.

## 2.12 Test Software Used

Conducted Emissions - Trace Data Grabber version 01/26/2016  
Radiated Emissions- EMC-REG-TDS-11, Radiated Emissions Prescan.xls version 06/29/11



### 3.0 Electromagnetic Compatibility Emission Criteria

#### 3.1 Conducted Emission Limits

**Test Requirement(s):** **18.307** For the following equipment, when designed to be connected to the public utility (AC) power line the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies shall not exceed the limits in the following tables. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal using a 50  $\mu$ H/50 Ohms Line Impedance Stabilization Network (LISN).

(b) All other part 18 consumer devices:

| Frequency of Emission<br>(MHz) | 18.307(a) ISM Conducted Limits (dB $\mu$ V) |           |
|--------------------------------|---------------------------------------------|-----------|
|                                | Quasi-Peak                                  | Average   |
| 0.15 - 0.5                     | 66 to 56*                                   | 56 to 46* |
| 0.5 - 5                        | 56                                          | 46        |
| 5 - 30                         | 60                                          | 50        |

Note 1 — The lower limit shall apply at the transition frequencies.

Note 2 — \*The limit decreases linearly with the logarithm if the frequency in the range 0.05 MHz to 0.5 MHz.

**Table 7. Conducted Limits for ISM (Ultrasonic Equipment) calculated from FCC Part 18 Section 18.307(a)**

**18.311** The measurement techniques which will be used by the FCC to determine compliance with the technical requirements of this part are set out in FCC Measurement Procedure MP-5, ‘Methods of Measurements of Radio Noise Emissions from ISM equipment’. Although the procedures in MP-5 are not mandated, manufacturers are encouraged to follow the same techniques which will be used by the FCC.

**Test Procedure:**

The EUT was setup on a wooden table, 80cm above the ground plane. The method of testing, test conditions, and test procedures of CISPR 22 were used. The EUT was powered through a 50 $\Omega$ /50 $\mu$ H LISN. An EMI receiver, connected to the measurement port of the LISN, scanned the frequency range from 150 kHz to 30 MHz in order to find the peak conducted emissions. All peak emissions within 20 dB of the limit, six highest peaks were re-measured using a quasi-peak and average detector.

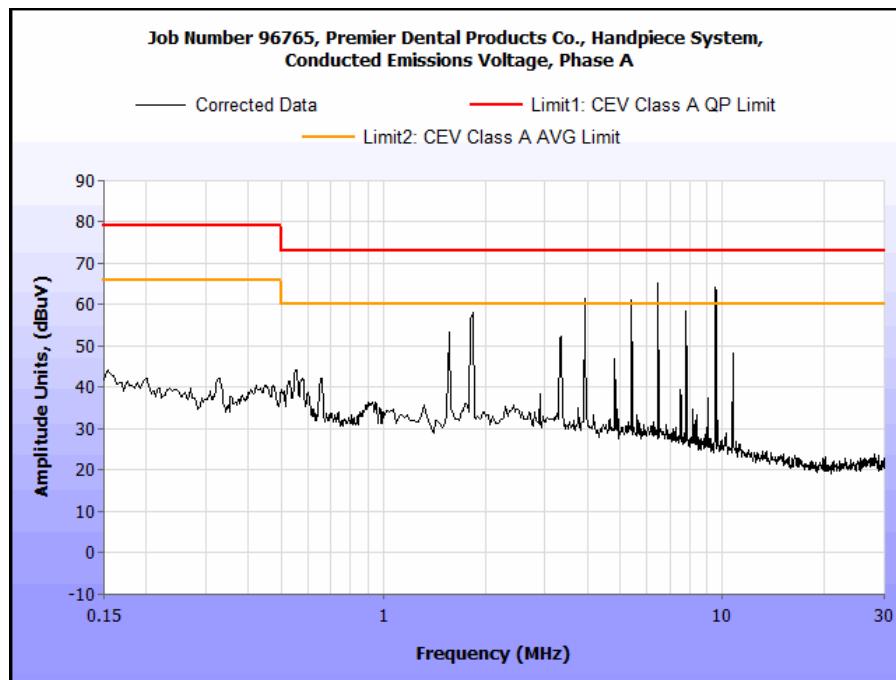


| Environmental Conditions for Conducted Emissions |    |
|--------------------------------------------------|----|
| Ambient Temperature (°C)                         | 22 |
| Relative Humidity (%)                            | 55 |

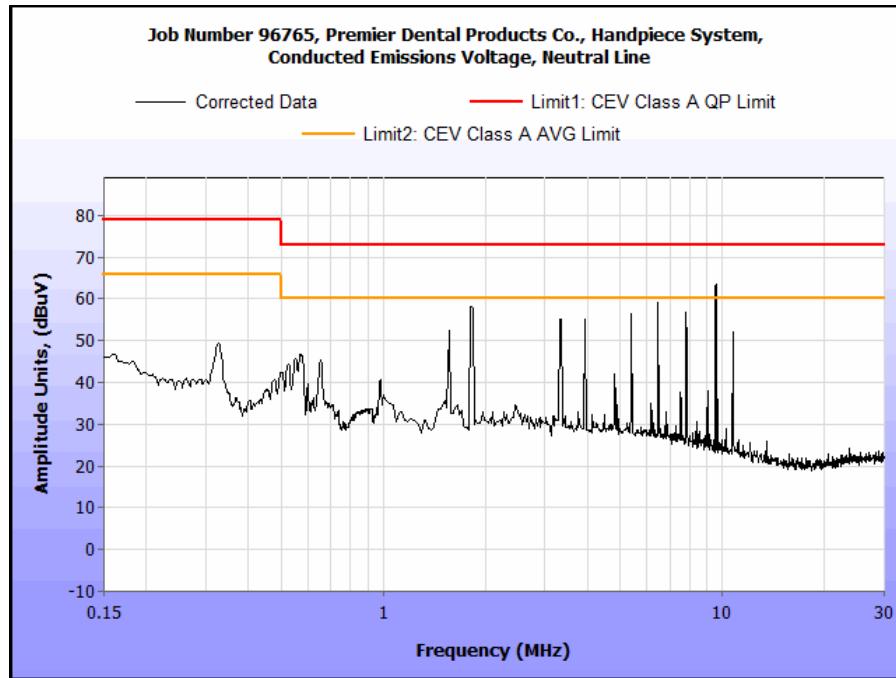
**Test Results:** The EUT was **compliant** with the of this section. Measured emissions were within applicable limits.

**Test Technician(s):** Bradley Jones

**Test Date(s):** July 9, 2018


#### Conducted Emissions at the Mains Terminal Test Data:

| Frequency (MHz) | Uncorrected Meter Reading (dBuV) QP | Cable Loss (dB) | Corrected Measurement (dBuV) QP | Limit (dBuV) QP | Margin (dB) QP | Uncorrected Meter Reading (dBuV) Avg. | Cable Loss (dB) | Corrected Measurement (dBuV) AVG | Limit (dBuV) AVG | Margin (dB) AVG |
|-----------------|-------------------------------------|-----------------|---------------------------------|-----------------|----------------|---------------------------------------|-----------------|----------------------------------|------------------|-----------------|
| 1.817           | 61.12                               | 0               | 61.12                           | 73              | -11.88         | 35.13                                 | 0               | 35.13                            | 60               | -24.87          |
| 3.927           | 61.73                               | 0               | 61.73                           | 73              | -11.27         | 35.5                                  | 0               | 35.5                             | 60               | -24.5           |
| 5.383           | 60.75                               | 0               | 60.75                           | 73              | -12.25         | 34.14                                 | 0               | 34.14                            | 60               | -25.86          |
| 6.46            | 63.36                               | 0               | 63.36                           | 73              | -9.64          | 35.83                                 | 0               | 35.83                            | 60               | -24.17          |
| 7.818           | 57.64                               | 0               | 57.64                           | 73              | -15.36         | 30.66                                 | 0               | 30.66                            | 60               | -29.34          |
| 9.555           | 58.99                               | 0.07            | 59.06                           | 73              | -13.94         | 32.51                                 | 0.07            | 32.58                            | 60               | -27.42          |


Table 8: Conducted Emissions at the Mains Terminal (120 VAC/60 Hz) Phase Test Results

| Frequency (MHz) | Uncorrected Meter Reading (dBuV) QP | Cable Loss (dB) | Corrected Measurement (dBuV) QP | Limit (dBuV) QP | Margin (dB) QP | Uncorrected Meter Reading (dBuV) Avg. | Cable Loss (dB) | Corrected Measurement (dBuV) AVG | Limit (dBuV) AVG | Margin (dB) AVG |
|-----------------|-------------------------------------|-----------------|---------------------------------|-----------------|----------------|---------------------------------------|-----------------|----------------------------------|------------------|-----------------|
| 1.817           | 55.12                               | 0               | 55.12                           | 73              | -17.88         | 28.06                                 | 0               | 28.06                            | 60               | -31.94          |
| 3.323           | 46.83                               | 0               | 46.83                           | 73              | -26.17         | 23.99                                 | 0               | 23.99                            | 60               | -36.01          |
| 3.927           | 54.09                               | 0               | 54.09                           | 73              | -18.91         | 27.27                                 | 0               | 27.27                            | 60               | -32.73          |
| 6.46            | 59.28                               | 0               | 59.28                           | 73              | -13.72         | 28.49                                 | 0               | 28.49                            | 60               | -31.51          |
| 7.818           | 52.48                               | 0               | 52.48                           | 73              | -20.52         | 23.17                                 | 0               | 23.17                            | 60               | -36.83          |
| 9.555           | 58.94                               | 0.07            | 59.01                           | 73              | -13.99         | 29.52                                 | 0.07            | 29.59                            | 60               | -30.41          |

Table 9: Conducted Emissions at the Mains Terminal (120 VAC/60 Hz) Neutral Test Results



Plots 1. Conducted Emissions at the Mains Terminal Test Data – Line Plot



Plots 2. Conducted Emissions at the Mains Terminal Test Data – Neutral Plot



Premier Dental Products Company  
AeroPro™ Cordless Prophy System

Electromagnetic Compatibility  
CFR Title 47, Part 18, Subpart B



**Photograph 1: Conducted Emissions at the Mains Terminal Test Setup**



### 3.2 Radiated Emission: Limits of Electromagnetic Radiation Disturbance

**Test Method:** **ANSI C63.4- American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz**

**Test Standard:** **Title 47 of the Code of Federal Regulations (CFR), Part 18 Subpart C**

**Test Requirement(s):** 18.305 Field strength limits:  
(a) ISM equipment operating on a frequency specified in § 18.301 is permitted unlimited radiated energy in the band specified for that frequency.  
(b) The field strength levels of emissions which lie outside the bands specified in § 18.301, unless otherwise indicated, shall not exceed the following:

| Equipment                                           | Operating frequency                        | RF Power generated by equipment (watts) | Field strength limit (uV/m)                                                         | Distance (meters)                  |
|-----------------------------------------------------|--------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------|------------------------------------|
| Any type unless otherwise specified (miscellaneous) | Any ISM frequency                          | Below 500<br>500 or more                | 25<br>$25 \times \text{SQRT}(\text{power}/500)$                                     | 300<br><sup>1</sup> 300            |
|                                                     | Any non-ISM frequency                      | Below 500<br>500 or more                | 15<br>$15 \times \text{SQRT}(\text{power}/500)$                                     | 300<br><sup>1</sup> 300            |
| Industrial heaters and RF stabilized arc welders    | On or below 5,725 MHz<br>Above 5,725 MHz   | Any<br>Any                              | 10<br>( <sup>2</sup> )                                                              | 1,600<br>( <sup>2</sup> )          |
| Medical diathermy                                   | Any ISM frequency<br>Any non-ISM frequency | Any<br>Any                              | 25<br>15                                                                            | 300<br>300                         |
| Ultrasonic                                          | Below 490 kHz                              | Below 500<br>500 or more                | $2,400/F(\text{kHz})$<br>$2,400/F(\text{kHz}) \times \text{SQRT}(\text{power}/500)$ | 300<br><sup>3</sup> 300            |
|                                                     | 490 to 1,600 kHz<br>Above 1,600 kHz        | Any<br>Any                              | $24,000/F(\text{kHz})$<br>15                                                        | 30<br>30                           |
| Induction cooking ranges                            | Below 90 kHz<br>On or above 90 kHz         | Any<br>Any                              | 1,500<br>300                                                                        | <sup>4</sup> 30<br><sup>4</sup> 30 |

<sup>1</sup> Field strength may not exceed 10  $\mu\text{V}/\text{m}$  at 1600 meters. Consumer equipment operating below 1000 MHz is not permitted the increase in field strength otherwise permitted here for power over 500 watts.

<sup>2</sup> Reduced to the greatest extent possible.

<sup>3</sup> Field strength may not exceed 10  $\mu\text{V}/\text{m}$  at 1600 meters. Consumer equipment is not permitted the increase in field strength otherwise permitted here for over 500 watts.

<sup>4</sup> Induction cooking ranges manufactured prior to February 1, 1980, shall be subject to the field strength limits for miscellaneous ISM equipment.



**18.311** The measurement techniques which will be used by the FCC to determine compliance with the technical requirements of this part are set out in FCC Measurement Procedure MP-5, "Methods of Measurements of Radio Noise Emissions from ISM equipment". Although the procedures in MP-5 are not mandated, manufacturers are encouraged to follow the same techniques which will be used by the FCC.

**Test Procedures:**

The EUT was placed on a non-metallic table, 80 cm above the ground plane (See Photograph 2 - 5) inside a semi-anechoic chamber. Measurements were made with a loop antenna.

Radiated Emission measurements were made in accordance with the general procedures of ANSI C63.4: 2014 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz" as well as the procedures delineated in FCC Measurement Procedure MP-5, "Methods of Measurements of Radio Noise Emissions from ISM equipment".

For each point of measurement, the turntable was rotated and the positions of the interface cables were varied in order to find the maximum radiated emissions.

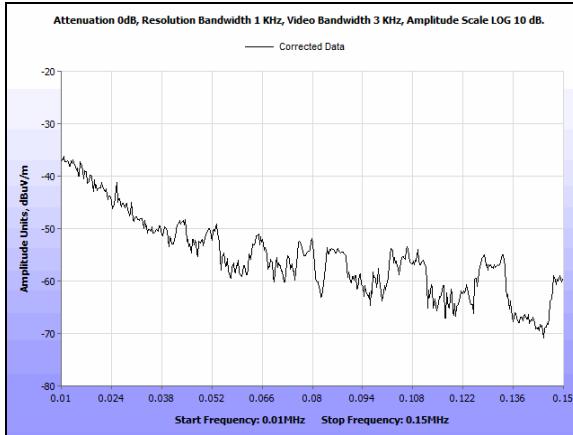
Measurements were made at 1.2m. A roll-off correction factor was calculated and applied to this measurement.

| Environmental Conditions for Radiated Emissions |    |
|-------------------------------------------------|----|
| Ambient Temperature (°C)                        | 22 |
| Relative Humidity (%)                           | 55 |

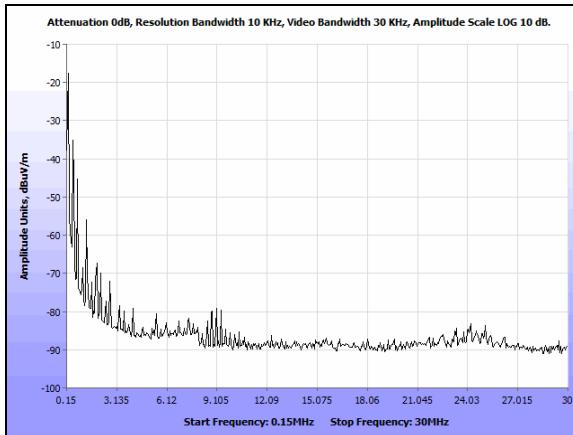
**Test Results:**

The EUT was **compliant** with the requirements of this section. Measured emissions were within applicable limits.

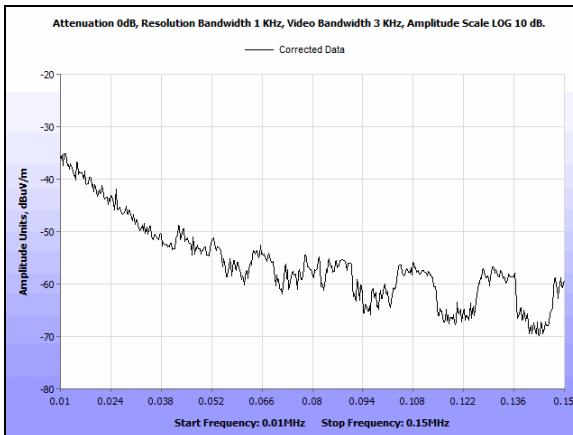
**Test Technician(s):**


Bradley Jones

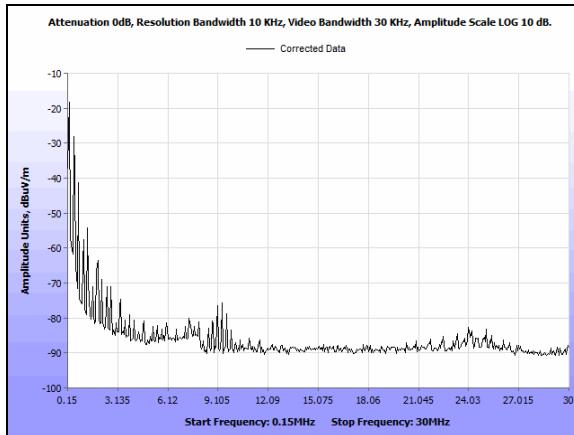
**Test Date(s):**


August 17, 2018

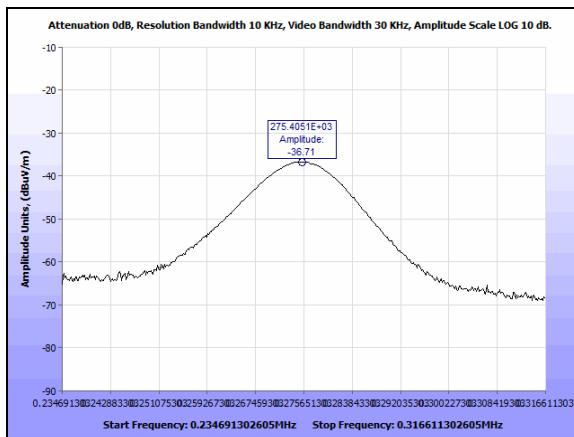



### Radiated Emissions Limits Test Results:




Plots 3. Radiated Emission – Brush Charging (10 – 150 kHz) Plot




Plots 4. Radiated Emission – Brush Charging (150 kHz – 30 MHz) Plot



Plots 5. Radiated Emission – Brush Not Charging – (10 kHz – 150 kHz) Plot



Plots 6. Radiated Emission – Brush Not Charging (150 kHz – 30 MHz) Plot



Plots 7. Radiated Emission – Fundamental 275 kHz Plot



Premier Dental Products Company  
AeroPro™ Cordless Prophy System

Electromagnetic Compatibility  
CFR Title 47, Part 18, Subpart B



**Photograph 2: Radiated Emission, Test Setup, Part 18**



## 4.0 Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2005.

| Test Name: Conducted Emissions (AC Power) |                                 |                           |                  | Test Date(s): July 9, 2018    |              |
|-------------------------------------------|---------------------------------|---------------------------|------------------|-------------------------------|--------------|
| MET Asset #                               | Nomenclature                    | Manufacturer              | Model            | Last Cal Date                 | Cal Due Date |
| 1T8818                                    | Spectrum Analyzer               | Agilent Technologies      | E4407B           | 06/4/2018                     | 06/4/2019    |
| 1T4563                                    | LISN (10 AMP)                   | Solar Electronics Company | 9322-50-R-10-BNC | 03/13/2017                    | 09/13/2018   |
| Test Name: Radiated Emissions             |                                 |                           |                  | Test Date(s): August 17, 2018 |              |
| MET Asset #                               | Nomenclature                    | Manufacturer              | Model            | Last Cal Date                 | Cal Due Date |
| 1T4800                                    | Antenna, Loop                   | EMCO                      | 6512             | 04/12/2017                    | 10/12/2018   |
| 1T4409                                    | EMI Receiver                    | Rohde & Schwarz           | ESIB7            | 12/07/2016                    | 12/07/2018   |
| 1T4300A                                   | SEMI-ANECHOIC CHAMBER # 1 (FCC) | EMC TEST SYSTEMS          | NONE             | 01/31/2016                    | 01/31/2019   |

Note: Functionally verified test equipment is verified using calibrated instrumentation at the time of testing.

**Table 10: Test Equipment List**