

MEASUREMENT REPORT

FCC ID	: 2AQ5W-G60PRO
APPLICANT	: AMobile Solutions Corp.
Application Type	: Certification
Product	: Industry Inspection Device
Model No.	: G60 Pro
Brand Name	: AMobile
Classification	: PCS Licensed Transmitter held to ear (PCE)
FCC Rule Part(s)	: Part2, Part22 Subpart H, Part24 Subpart E, Part27
Test Procedure(s)	: ANSI/TIA-603-E-2016, ANSI C63.26 2015
Received Date	: November 19, 2024
Test Date	: March 14 ~ 21, 2025
Tested By	: <i>Wen Lee</i> (Wen Lee)
Reviewed By	: <i>Paddy Chen</i> (Paddy Chen)
Approved By	: <i>Chenz Ker</i> (Chenz Ker)

The test results only relate to the tested sample.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.26-2015. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2411TW7401-U7	1.0	Original Report	2025-04-15	

CONTENTS

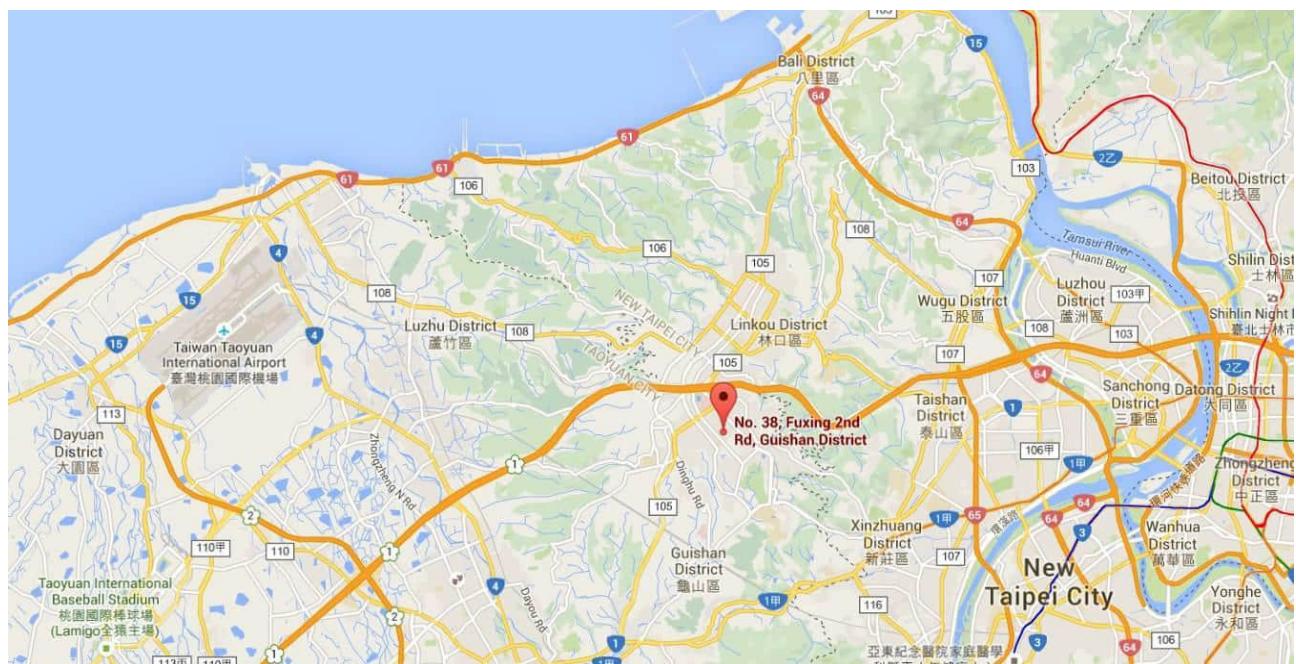
Description	Page
1. Scope.....	6
1.1. MRT Test Location	6
1.2. Product Information	7
1.3. Radio Specification under Testing	7
1.4. Description of Available Antennas	7
1.5. Test Methodology	8
2. DESCRIPTION OF TEST	9
2.1. Summary.....	9
2.2. Occupied Bandwidth.....	11
2.3. Frequency Stability / Temperature Variation.....	11
2.4. Conducted Output Power Measurment.....	12
2.5. Peak-Average Ratio	12
2.6. Spurious and Harmonic Emissions at Antenna Terminal	13
2.7. Conducted and Radiated Spurious Emissions	15
3. TEST EQUIPMENT CALIBRATION DATE.....	16
4. Decision Rules and Measurement Uncertainty.....	17
4.1. Decision Rules	17
4.2. Measurement Uncertainty.....	17
5. TEST RESULT	18
5.1. Summary.....	18
5.2. Occupied Bandwidth.....	19
5.3. Frequency Stability Under Temperature & Voltage Variations	20
5.4. Transmitter Output Power Measurement	21
5.5. Peak-Average Ratio	22
5.6. Transmitter unwanted emissions (band-edge) Measurement	23
5.7. Transmitter unwanted emissions (spurious) Measurement	25
5.8. Radiated Spurious Emissions Measurement	27
5.9. Radiated Receiver Spurious Emissions Measurement	29
Appendix A : TEST RESULT DATA.....	31
A1. Occupied Bandwidth Test Result.....	31
A1.1 WCDMA Band 2 & Band 4	31
A2. Frequency Stability Test Result	35
A2.1 WCDMA Band 2	35

A2.2 WCDMA Band 4	36
A3. Transmitter Output Power Test Result	37
A3.1 WCDMA Band 2	37
A3.2 WCDMA Band 4	38
A4. Peak to Average Radio Test Result	39
A4.1 WCDMA Band 2 & Band 4	39
A5. Transmitter unwanted emissions (band-edge) Test Result	43
A5.1 WCDMA Band 2 & Band 4	43
A6. Transmitter unwanted emissions (spurious) Test Result	45
A6.1 WCDMA Band 2 & Band 4	45
A7. Radiated Spurious Emissions Test Result	51
A7.1 WCDMA Band 2	51
A7.2 WCDMA Band 4	52
Appendix B : Test Photograph.....	53
Appendix C : External Photograph.....	53
Appendix D : Internal Photograph.....	53

General Information

Applicant	AMobile Solutions Corp.
Applicant Address	8F.-1, No. 700, Zhongzheng Rd., Zhonghe Dist., New Taipei City 235, Taiwan
Manufacturer	AMobile Solutions Corp.
Manufacturer Address	8F.-1, No. 700, Zhongzheng Rd., Zhonghe Dist., New Taipei City 235, Taiwan
Test Site	MRT Technology (Taiwan) Co., Ltd
Test Site Address	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C)
MRT FCC Registration No.	291082
MRT IC Registration No.	21723

Test Facility / Accreditations


1. MRT facility is a FCC registered (Reg. No. 291082) test facility with the site description report on file and is designated by the FCC as an Accredited Test Firm.
2. MRT facility is an IC registered (MRT Reg. No. 21723) test laboratory with the site description on file at Industry Canada.
3. MRT Lab is accredited to ISO 17025 by the Taiwan Accreditation Foundation (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC (Designation Number: TW3261), Industry Canada, EU and TELEC Rules.

1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.1. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

1.2. Product Information

Product Name	Industry Inspection Device
Brand Name	AMobile
Model No.	G60 Pro
Test Sample Number	#1
Remark: The information of EUT was provided by the manufacturer, and the accuracy of the information shall be the responsibility of the manufacturer.	

1.3. Radio Specification under Testing

WCDMA Specification	
FDD TX Frequency Range	Band 2: 1850 ~ 1910 MHz; Band 4: 1710 ~ 1755 MHz
FDD RX Frequency Range	Band 2: 1930 ~ 1990 MHz; Band 4: 2110 ~ 2155 MHz
Support Bandwidth	5MHz
Type of Modulation	QPSK

1.4. Description of Available Antennas

Antenna Type			PCB
Technology	Frequency Range (MHz)		Max Peak Gain (dBi)
	TX	RX	
Band 2	1850 ~ 1910	1930 ~ 1990	0.26
Band 4	1710 ~ 1755	2110 ~ 2155	0.26

Note

- 1: All antenna information (Antenna type and Peak Gain) is provided by the manufacturer.
- 2: The typical antennas used to calculate the ERP (EIRP).

1.5. Test Methodology

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ANSI C63.26:2015
- FCC CFR 47 Part 2, Part 22, Part 24, Part 27
- FCC KDB 971168 D01 v03r01: Power Meas License Digital Systems
- FCC KDB 971168 D02 v02r02: Misc Rev Approv License Devices
- FCC KDB 412172 D01 v01r01: Determining ERP and EIRP

2. DESCRIPTION OF TEST

2.1. Summary

FCC Part Section(s)	Test Description	Test Condition	Test Result
2.1049	Occupied Bandwidth	Conducted	Pass
2.1055, 22.355, 24.235, 27.54	Frequency Stability		Pass
2.1046, 22.913(a)(5), 24.232(c) 27.50(a)(3) (b)(10) (c)(10) (d)(4) (h)(2)	Transmitter Output Power		Pass
22.913(d), 24.232(d), 27.50(d)(5)	Peak to Average Ratio		Pass
2.1051, 22.917(a), 24.238(a) 27.53(a) (c) (f) (g) (h) (m)	Transmitter unwanted emissions (band-edge)		Pass
2.1051, 22.917(a), 24.238(a) 27.53(a) (c) (f) (g) (h) (m)	Transmitter unwanted emissions (spurious)		Pass
2.1053, 22.917(a), 24.238(a) 27.53(a) (c) (f) (g) (h) (m)	Transmitter Spurious Emissions	Radiated	Pass

Notes:

- 1) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 2) All supported modulation types were evaluated. The worst-case emission of modulation was selected. Therefore, the Frequency Stability, Transmitter unwanted emissions (band-edge), Transmitter unwanted emissions (spurious), Radiated Spurious Emissions were presented worst-case in the test report.
- 3) For radiated emission tests, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst-case emissions.
- 4) LTE Band 12 (699 ~ 716 MHz) overlaps the entire frequency range of LTE Band 17 (704 ~ 716 MHz). Therefore, test data provided in this report covers Band 17 as well as Band 12.

Test Items	Bandwidth	Modulation	Test Channel
Occupied Bandwidth	All BW	QPSK	Low/Middle/High
Frequency Stability	Maximum BW	QPSK	Middle
Transmitter Output Power	All BW	QPSK	Low/Middle/High
Peak to Average Ratio	Maximum BW	QPSK	Middle
Band Edge	All BW	QPSK	Low/High
Conducted Emissions	All BW	QPSK	Low/Middle/High
Radiated Emissions	Minimum BW	QPSK	Low/Middle/High

Note:

1. All modes of operation and data rates were investigated. The test results shown in the above part represent the worst case emissions.
2. All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.

2.2. Occupied Bandwidth

According to FCC Part 2.1049

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

2.3. Frequency Stability / Temperature Variation

According to FCC Part 2.1055, 22.355, 24.235, 27.54

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification – For Part 22, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

Time Period and Procedure:

1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
2. The equipment is turned on in a “standby” condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

2.4. Conducted Output Power Measurement

According to FCC Part 2.1046, 22.913, 24.232, 27.50

According to KDB 412172 D01 Section 1.2 Power Approach

$EIRP = PT + GT - LC = ERP + 2.15 \text{ dB}$, $ERP = EIRP - 2.15 \text{ dB}$

PT = transmitter output power in dBm

GT = gain of the transmitting antenna in dBi

LC = signal attenuation in the connecting cable between the transmitter and antenna in dB.

Technology	ERP Power Limit	Technology	EIRP Power Limit
LTE Band 5	7W (38.45dBm)	LTE Band 2	2W (33dBm)
LTE Band 12	3W (34.77dBm)	LTE Band 4	1W (30dBm)
LTE Band 13	3W (34.77dBm)	LTE Band 7	2W (33dBm)
LTE Band 17	3W (34.77dBm)	LTE Band 25	2W (33dBm)
LTE Band 26	7W (38.45dBm)	LTE Band 30	250mW (24dBm)
LTE Band 71	3W (34.77dBm)	LTE Band 38	2W (33dBm)
--	--	LTE Band 41	2W (33dBm)
--	--	LTE Band 66	1W (30dBm)

2.5. Peak-Average Ratio

According to FCC Part 22.913, 24.232, 27.50

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

2.6. Spurious and Harmonic Emissions at Antenna Terminal

According to FCC Part 2.1051, 22.917, 24.238, 27.53

For GSM 850/1900, WCDMA B2/B4/B5, LTE B2/B4/B5/B12/B17/B25/B26(824-849MHz)/B66/B71

On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P)$ dB. The emission limit equal to -13dBm. However, in the 1MHz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

For LTE B13

For operations in the 776-788 MHz band, the FCC limit is $43 + 10 \log(P)$ dB below the transmitter power (P) in a 100 kHz bandwidth. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed. In addition, the power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power (P), by at least $65 + 10 \log (P)$ dB, for mobile and portable equipment.

For LTE B7/B38/B41

For mobile digital stations, the attenuation factor shall be not less than $40 + 10 \log (P)$ dB on all frequencies between the channel edge and 5 megahertz from the channel edge, $43 + 10 \log (P)$ dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and $55 + 10 \log (P)$ dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less than $43 + 10 \log (P)$ dB on all frequencies between 2490.5 MHz and 2496 MHz and $55 + 10 \log (P)$ dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

For LTE B30

For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:

- (i) By a factor of not less than: $43 + 10 \log (P)$ dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than $55 + 10 \log (P)$ dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than $61 + 10 \log (P)$ dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than $67 + 10 \log (P)$ dB on all frequencies between 2328 and 2337 MHz;
- (ii) By a factor of not less than $43 + 10 \log (P)$ dB on all frequencies between 2300 and 2305 MHz, $55 + 10 \log (P)$ dB on all frequencies between 2296 and 2300 MHz, $61 + 10 \log (P)$ dB on all frequencies between 2292 and 2296 MHz, $67 + 10 \log (P)$ dB on all frequencies between 2288 and 2292 MHz, and $70 + 10 \log (P)$ dB below 2288 MHz;

2.7. Conducted and Radiated Spurious Emissions

According to FCC Part 2.1051, 2.1053, 22.917, 24.238, 27.53

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

For GSM 850/1900, WCDMA B2/B4/B5, LTE B2/B4/B5/B12/B17/B25/B26(824-849MHz)/B66/B71

On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P)$ dB. The emission limit equal to -13dBm.

For LTE B13

For operations in the 776-788 MHz band, the FCC limit is $43 + 10 \log(P)$ dB below the transmitter power (P) in a 100 kHz bandwidth.

For operations in the 775-788 MHz band, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP). The emission limit equal to -40dBm.

For LTE B7/B38/B41

For mobile digital stations, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $55 + 10 \log(P)$ dB. The emission limit equal to -25dBm.

For LTE B30

For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:

(iii) By a factor of not less than $43 + 10 \log (P)$ dB on all frequencies between 2360 and 2365 MHz, and not less than $70 + 10 \log (P)$ dB above 2365 MHz.

3. TEST EQUIPMENT CALIBRATION DATE

Radiated Emissions – AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	MRTTWA00002	1 year	2025/5/7
Broadband TRILOG Antenna	SCHWARZBECK	VULB 9162	MRTTWA00086	1 year	2025/11/5
Broadband Hornantenna	SCHWARZBECK	BBHA 9120D	MRTTWA00003	1 year	2026/2/11
Broadband Preamplifier	SCHWARZBECK	BBV 9718	MRTTWA00005	1 year	2026/2/11
Breitband Hornantenna	Schwarzbeck	BBHA 9170	MRTTWA00004	1 year	2025/3/26
Broadband Amplifier	Schwarzbeck	BBV 9721	MRTTWA00006	1 year	2025/3/21
EMI Test Receiver	R&S	ESR3	MRTTWA00009	1 year	2026/3/4
Signal Analyzer	R&S	FSVA3044	MRTTWA00092	1 year	2025/6/20
Cable	HUBERSUHNER	SF106	MRTTWE00010	1 year	2025/5/21
Cable	Rosnol	K1K50-UP0264-K1K50-4M	MRTTWE00012	1 year	2025/9/24

Conducted Test Equipment –SR6

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2025/9/24
EXA Signal Analyzer	KEYSIGHT	N9010B	MRTTWA00074	1 year	2025/8/12
USB Wideband Power Sensor	KEYSIGHT	U2021XA	MRTTWA00015	1 year	2026/3/12
Wideband Radio Communication Taster	R&S	CMW 500	MRTTWA00084	1 year	2025/10/23
UXM 5G Wireless Test Platform	KEYSIGHT	E7515B	MRTTWA00089	1 year	2025/5/30

Test Software

Software	Version	Function
e3	9.160520a	EMI Test Software

4. Decision Rules and Measurement Uncertainty

4.1. Decision Rules

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4: 2012 Clause 8.2.

(Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

4.2. Measurement Uncertainty

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

Radiated Spurious Emission
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): 9kHz~30MHz: $\pm 3.92\text{dB}$ 30MHz~1GHz: $\pm 4.25\text{dB}$ 1GHz~18GHz: $\pm 4.40\text{dB}$ 18GHz~40GHz: $\pm 4.45\text{dB}$
Frequency Error
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): $\pm 78.4\text{Hz}$
Conducted Power
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): $\pm 0.84\text{dB}$
Conducted Spurious Emission
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): $\pm 2.65\text{ dB}$
Occupied Bandwidth
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): $\pm 3.3\%$
Temp. / Humidity
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): $\pm 0.82^\circ\text{C}$ / $\pm 3\%$
DC Voltage
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): $\pm 0.3\%$

Note:

Determining compliance is based on the test results met the regulation limits or requirements declared by clients, and the test results don't take into account the value of measurement uncertainty.

5. TEST RESULT

5.1. Summary

Maximum Conducted Power and ERP/EIRP Power

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.

The relevant equation for determining the maximum ERP or EIRP from the measured RF output power is given in Equation (1) as follows

$$\text{ERP or EIRP} = P_{\text{Meas}} + G_T$$

where

ERP or EIRP effective radiated power or equivalent isotropically radiated power, respectively.
(expressed in the same units as P_{Meas} , e.g., dBm or dBW)

P_{Meas} measured transmitter output power or PSD, in dBm or dBW

G_T gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP)

$$\text{ERP} = \text{EIRP} - 2.15$$

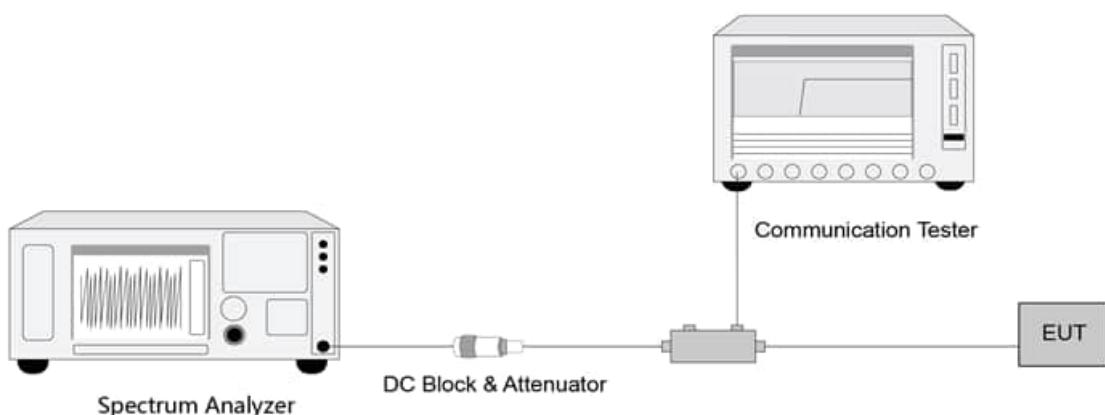
WCDMA Band	Band2	Antenna Gain (dBi)		0.26
Modulation	Conducted Peak Power (dBm)	Conducted Peak Power (W)	Maximum EIRP (W)	EIRP Limit (W)
RMC	21.56	0.143	0.152	2
HSDPA	20.63	0.116	0.123	2
HSUPA	19.65	0.092	0.098	2

WCDMA Band	Band4	Antenna Gain (dBi)		0.26
Modulation	Conducted Peak Power (dBm)	Conducted Peak Power (W)	Maximum EIRP (W)	EIRP Limit (W)
RMC	23.40	0.219	0.232	1
HSDPA	22.33	0.171	0.182	1
HSUPA	21.29	0.135	0.143	1

5.2. Occupied Bandwidth

5.2.1 Test Limit

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.


5.2.2 Test Procedure used

ANSI C63.26-2015 - Section 5.4.4

5.2.3 Test Setting

1. Set center frequency to the nominal EUT channel center frequency
2. RBW = The nominal RBW shall be in the range of 1% to 5% of the anticipated OBW
3. VBW $\geq 3 \times$ RBW
4. Detector = Peak
5. Trace mode = max hold
6. Sweep = auto couple
7. Allow the trace to stabilize
8. Use the 99% power bandwidth function of the instrument and report the measured bandwidth.

5.2.4 Test Setup

5.2.5 Test Result

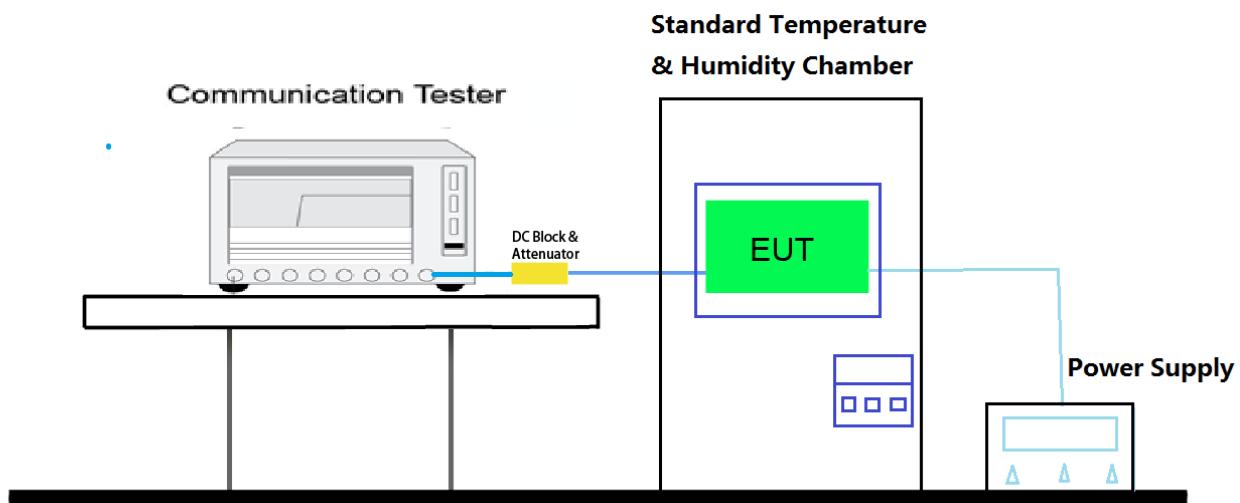
Refer to Appendix A.1

5.3. Frequency Stability Under Temperature & Voltage Variations

5.3.1 Test Limit

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ ($\pm 2.5\text{ppm}$) of the center frequency.

5.3.2 Test Procedure


ANSI C63.26-2015 - Section 5.6

5.3.3 Frequency Stability Under Voltage Variations

Set chamber temperature to 20°C . Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation ($\pm 15\%$) and endpoint, record the maximum

5.3.4 Test Setup

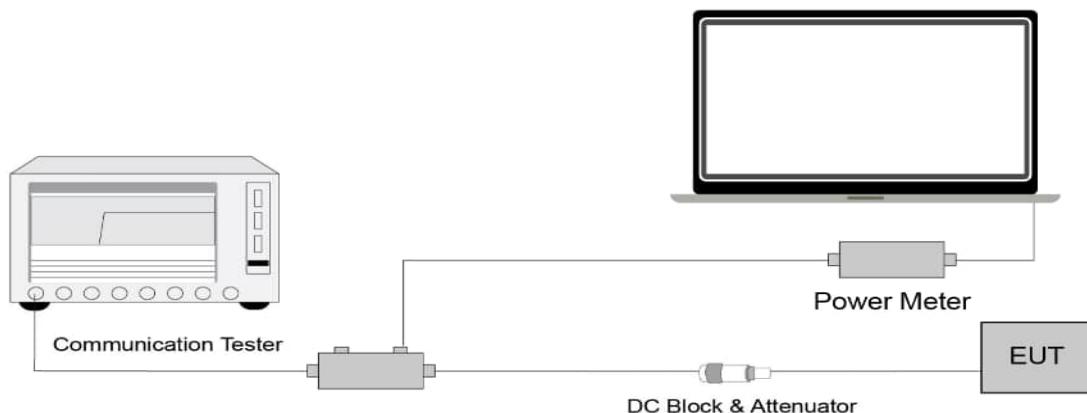
5.3.5 Test Result

Refer to Appendix A.2

5.4. Transmitter Output Power Measurement

5.4.1 Test Limit

Technology	ERP Power Limit	Technology	EIRP Power Limit
Band 5	7W (38.45dBm)	Band 2	2W (33dBm)
Band 12	3W (34.77dBm)	Band 4	1W (30dBm)
Band 13	3W (34.77dBm)	Band 7	2W (33dBm)
Band 17	3W (34.77dBm)	Band 25	2W (33dBm)
Band 26	7W (38.45dBm)	250mW (24dBm)	250mW (24dBm)
Band 71	3W (34.77dBm)	Band 38	2W (33dBm)
--	--	Band 41	2W (33dBm)
--	--	Band 66	1W (30dBm)


5.4.2 Test Procedure

ANSI C63.26-2015 - Section 5.2.4.2

5.4.3 Test Setting

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.

5.4.4 Test Setup

5.4.5 Test Result

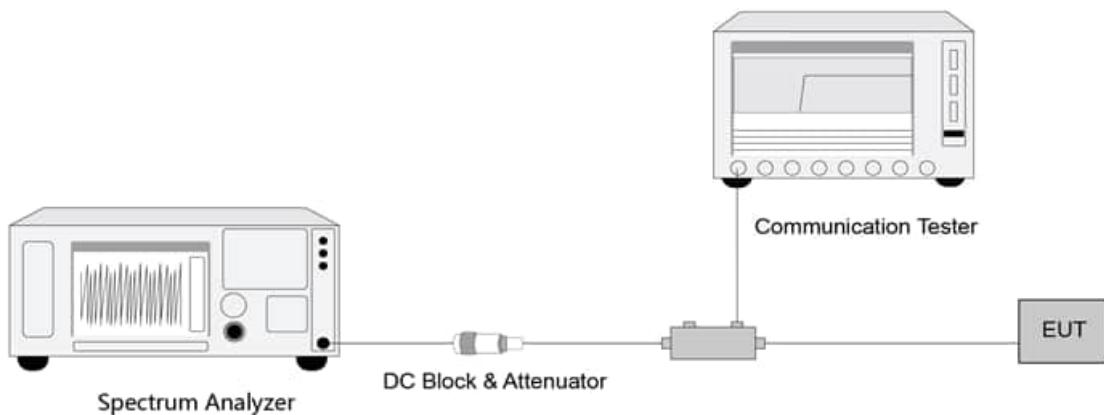
Refer to Appendix A.3

5.5. Peak-Average Ratio

5.5.1 Test Limit

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB.

The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure.


5.5.2 Test Procedure

ANSI C63.26-2015 - Section 5.2.3.4 (CCDF).

5.5.3 Test Setting

1. Set the resolution / measurement bandwidth \geq signal's occupied bandwidth
2. Set the number of counts to a value that stabilizes the measured CCDF curve
3. Record the maximum PARR level associated with a probability of 0.1%

5.5.4 Test Setup

5.5.5 Test Result

Refer to Appendix A.4

5.6. Transmitter unwanted emissions (band-edge) Measurement

5.6.1 Test Limit

On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P)$ dB. The emission limit equal to -13dBm.

For LTE B13

However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed. In addition, the power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power (P), by at least $65 + 10 \log (P)$ dB, for mobile and portable equipment.

For LTE B7/B38/B41

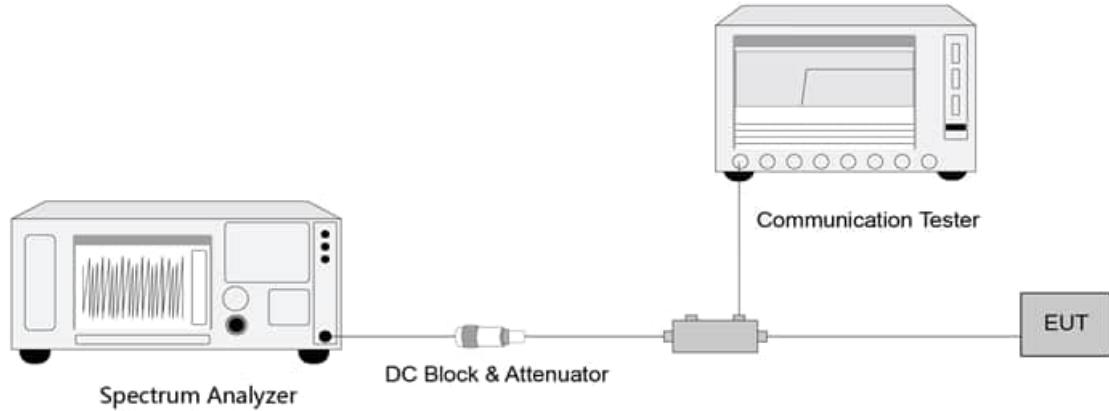
For mobile digital stations, the attenuation factor shall be not less than $40 + 10 \log (P)$ dB on all frequencies between the channel edge and 5 megahertz from the channel edge, $43 + 10 \log (P)$ dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and $55 + 10 \log (P)$ dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less than $43 + 10 \log (P)$ dB on all frequencies between 2490.5 MHz and 2496 MHz and $55 + 10 \log (P)$ dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

For LTE B30

For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:

(i) By a factor of not less than: $43 + 10 \log (P)$ dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than $55 + 10 \log (P)$ dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than $61 + 10 \log (P)$ dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than $67 + 10 \log (P)$ dB on all frequencies between 2328 and 2337 MHz;

(ii) By a factor of not less than $43 + 10 \log (P)$ dB on all frequencies between 2300 and 2305 MHz, $55 + 10 \log (P)$ dB on all frequencies between 2296 and 2300 MHz, $61 + 10 \log (P)$ dB on all frequencies between 2292 and 2296 MHz, $67 + 10 \log (P)$ dB on all frequencies between 2288 and 2292 MHz, and $70 + 10 \log (P)$ dB below 2288 MHz;


5.6.2 Test Procedure

ANSI C63.26-2015 - Section 5.7.

5.6.3 Test Setting

In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.6.4 Test Setup

5.6.4 Test Result

Refer to Appendix A.5

5.7. Transmitter unwanted emissions (spurious) Measurement

5.7.1 Test Limit

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P)$ dB. The emission limit equal to -13dBm.

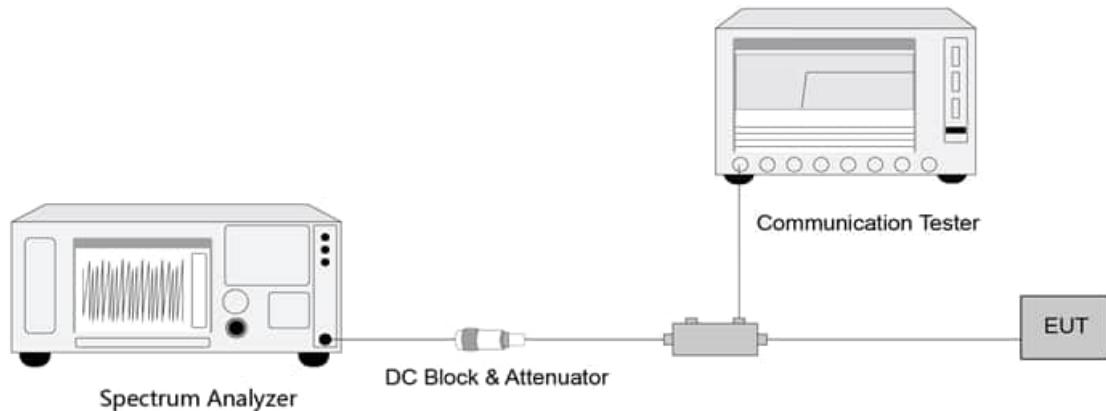
For LTE B7/B38/B41

For mobile digital stations, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $55 + 10 \log(P)$ dB. The emission limit equal to -25dBm.

For LTE B30

For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:

(iii) By a factor of not less than $43 + 10 \log (P)$ dB on all frequencies between 2360 and 2365 MHz, and not less than $70 + 10 \log (P)$ dB above 2365 MHz. The emission limit equal to -40dBm.


5.7.2 Test Procedure

ANSI C63.26-2015 - Section 5.7

5.7.3 Test Setting

1. Set the analyzer frequency to low, Mid or high channel.
2. RBW = specified resolution bandwidth of 100 kHz is at or below 1GHz and 1MHz is above 1GHz
3. VBW \geq 3*RBW
4. Sweep time = auto
5. Detector = power averaging (rms)
6. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.
7. Use the peak marker function to determine the maximum amplitude level.

5.7.4 Test Setup

5.7.5 Test Result

Refer to Appendix A.6

5.8. Radiated Spurious Emissions Measurement

5.8.1 Test Limit

On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P)$ dB. The emission limit equal to -13dBm.

For LTE B13

For operations in the 775-788 MHz band, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP). The emission limit equal to -40dBm.

For LTE B7/B38/B41

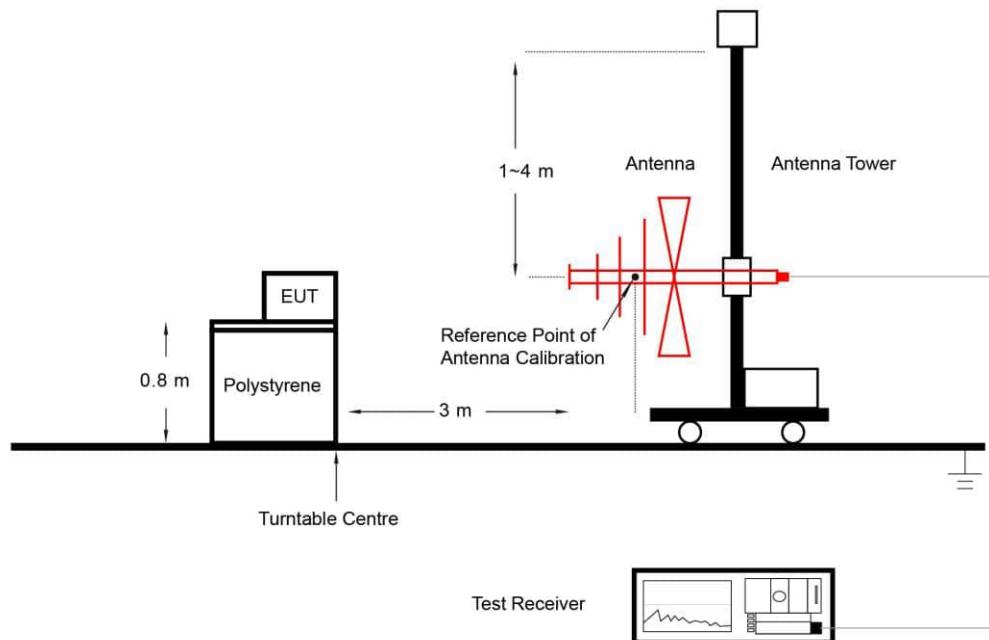
For mobile digital stations, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $55 + 10 \log(P)$ dB. The emission limit equal to -25dBm.

For LTE B30

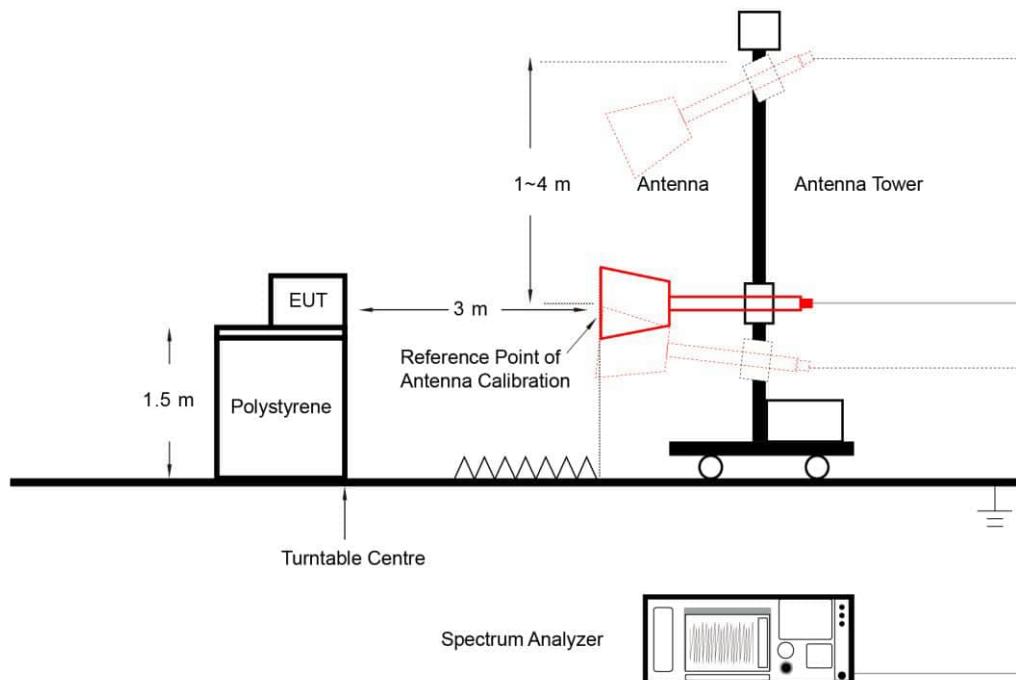
For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:

(iii) By a factor of not less than $43 + 10 \log (P)$ dB on all frequencies between 2360 and 2365 MHz, and not less than $70 + 10 \log (P)$ dB above 2365 MHz. The emission limit equal to -40dBm.

5.8.2 Test Procedure


ANSI C63.26-2015 - Section 5.7

5.8.3 Test Setting


1. RBW = 120kHz or 1MHz
2. VBW $\geq 3^*RBW$
3. Sweep time $\geq 10 \times (\text{number of points in sweep}) \times (\text{transmission symbol period})$
4. Detector = CISPR quasi-peak / average detector (Below 1 GHz, compliance with the limits shall be demonstrated using a CISPR quasi-peak detector and the related measurement bandwidth. Above 1 GHz, compliance with the limits shall be demonstrated using a linear average detector with a minimum resolution bandwidth of 1 MHz.)
5. The trace was allowed to stabilize

5.8.4 Test Setup

Below 1GHz Test Setup:

Above 1GHz Test Setup:

5.8.5 Test Result

Refer to Appendix A.7.

5.9. Radiated Receiver Spurious Emissions Measurement

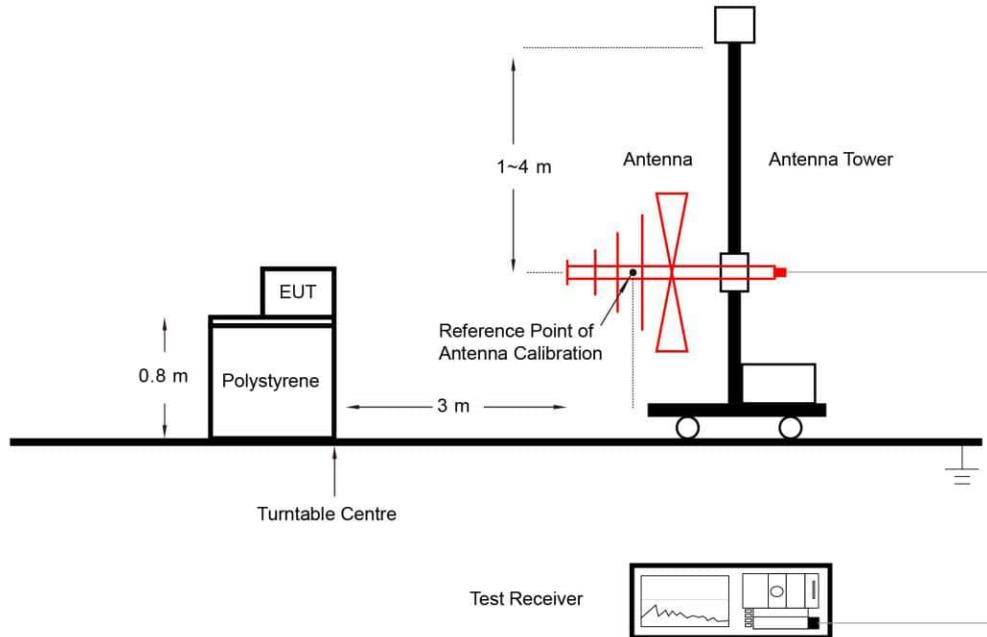
5.9.1 Test Limit

Receiver spurious emissions shall comply with the limits specified in RSS-Gen.

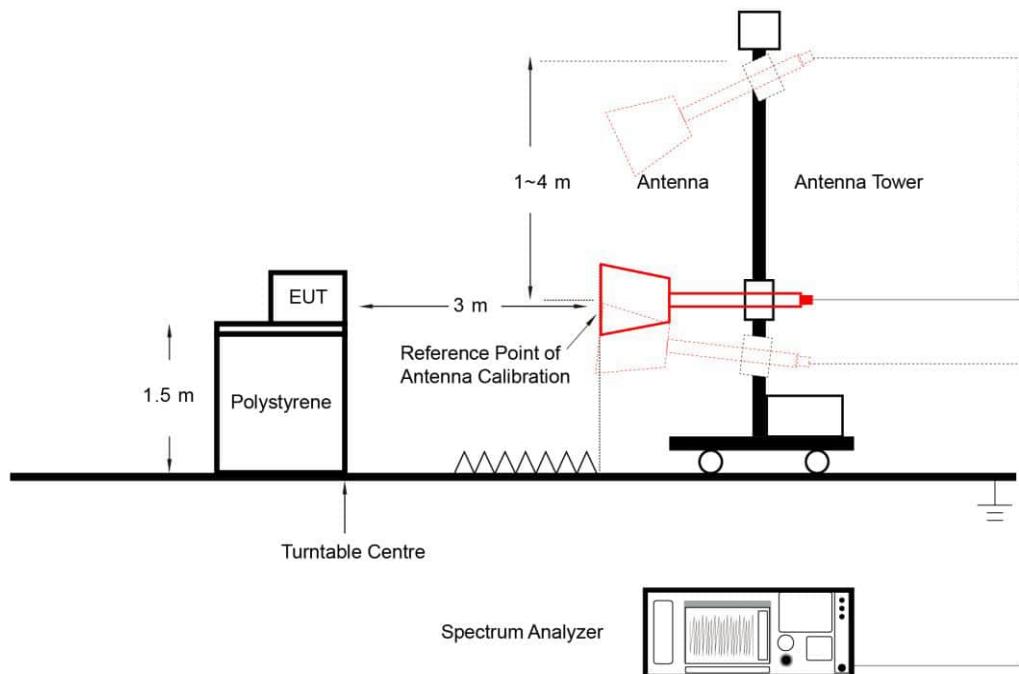
Frequency (MHz)	Field strength (μ V/m at 3 metres) ^{Note}
30 ~ 88	100
88 ~ 216	150
216 ~ 960	200
Above 960	500

Note: Measurements for compliance with the limits in table 3 may be performed at distances other than 3 metres, in accordance with RSS-Gen.

5.9.2 Test Procedure


ANSI C63.4-2014 - Section 8.3

5.9.3 Test Setting

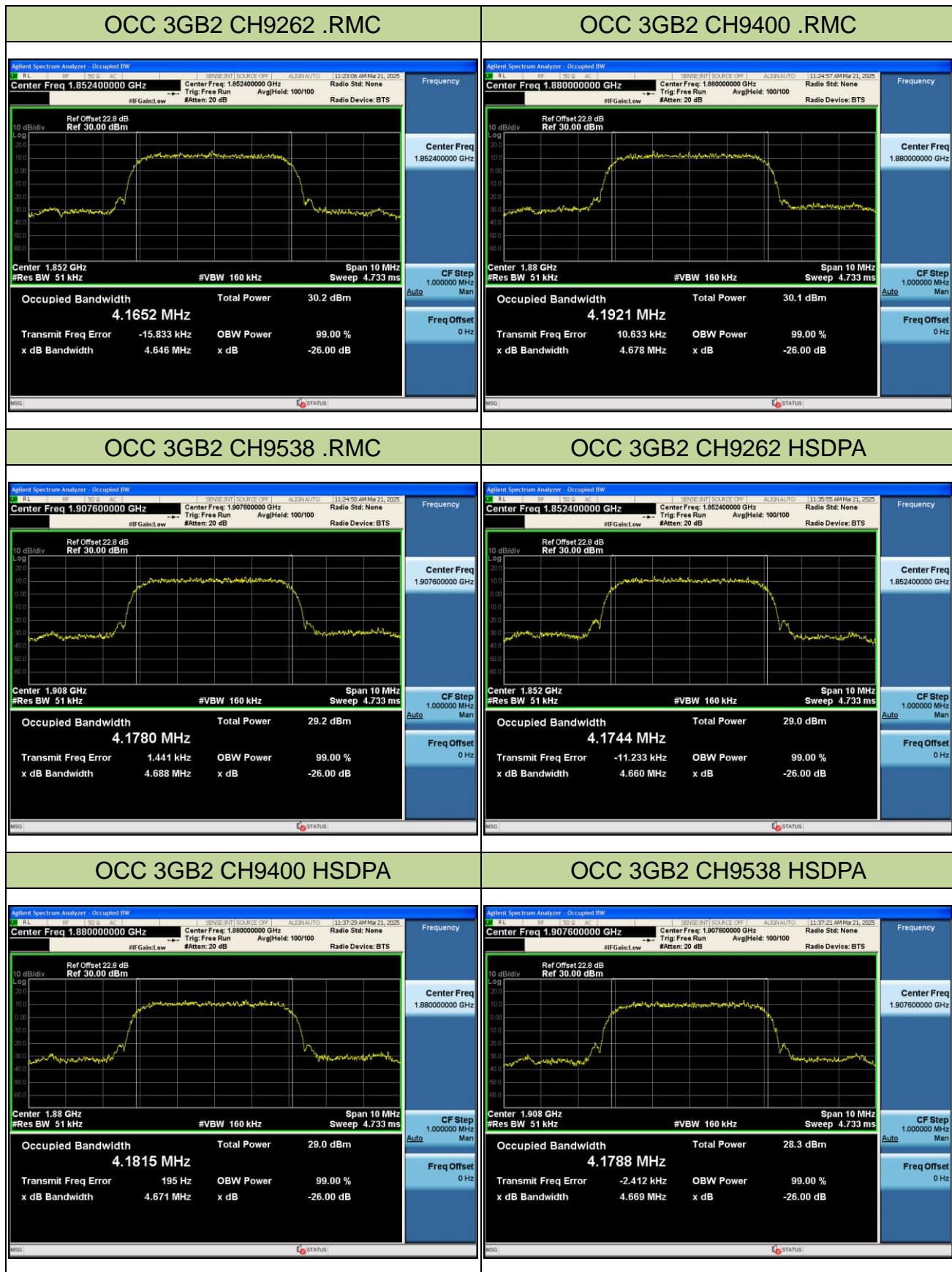

1. RBW = 120kHz or 1MHz
2. VBW \geq 3*RBW
3. Sweep time \geq 10 \times (number of points in sweep) \times (transmission symbol period)
4. Detector = CISPR quasi-peak / average detector (Below 1 GHz, compliance with the limits shall be demonstrated using a CISPR quasi-peak detector and the related measurement bandwidth. Above 1 GHz, compliance with the limits shall be demonstrated using a linear average detector with a minimum resolution bandwidth of 1 MHz.)
5. The trace was allowed to stabilize

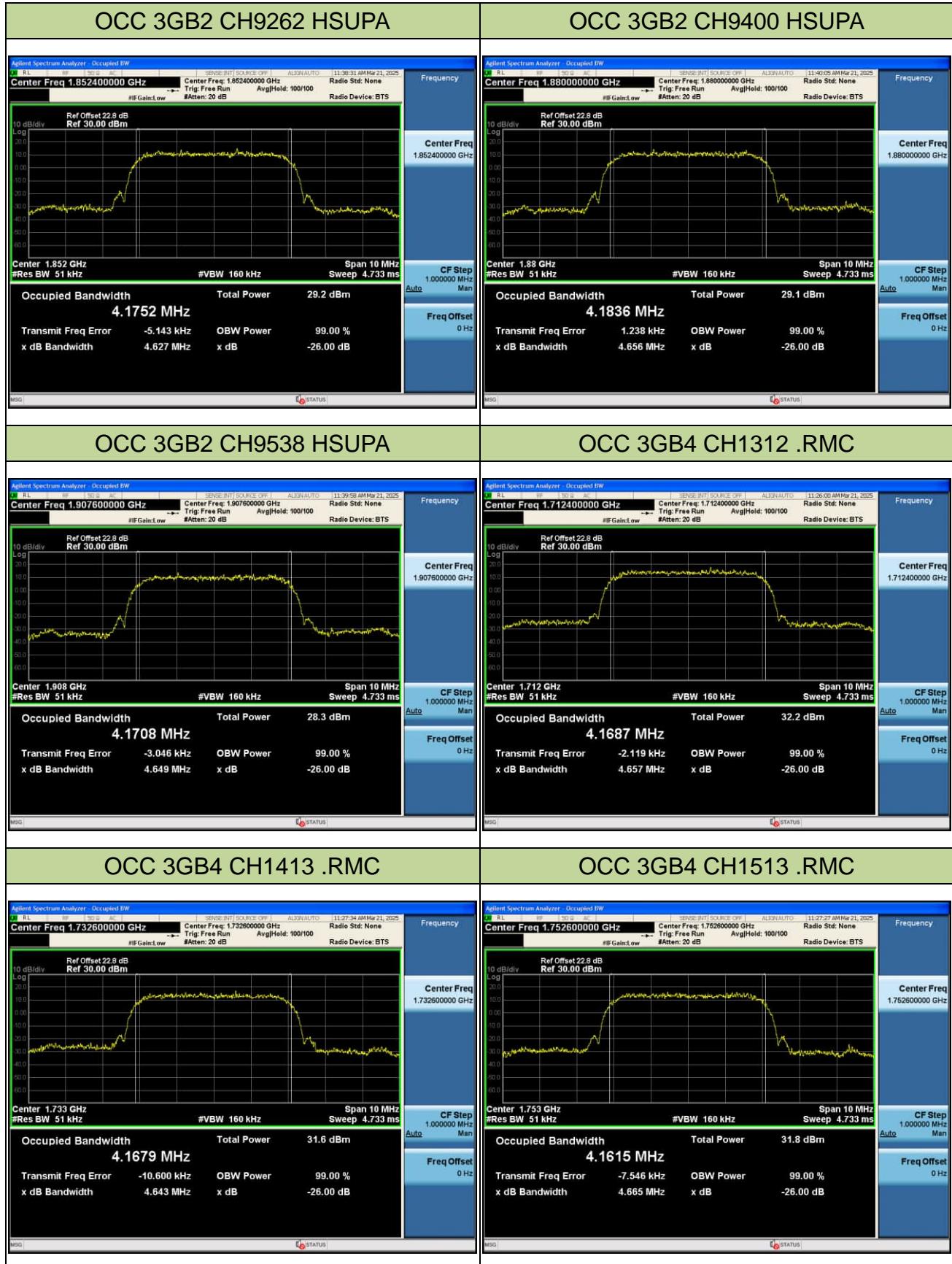
5.9.4 Test Setup

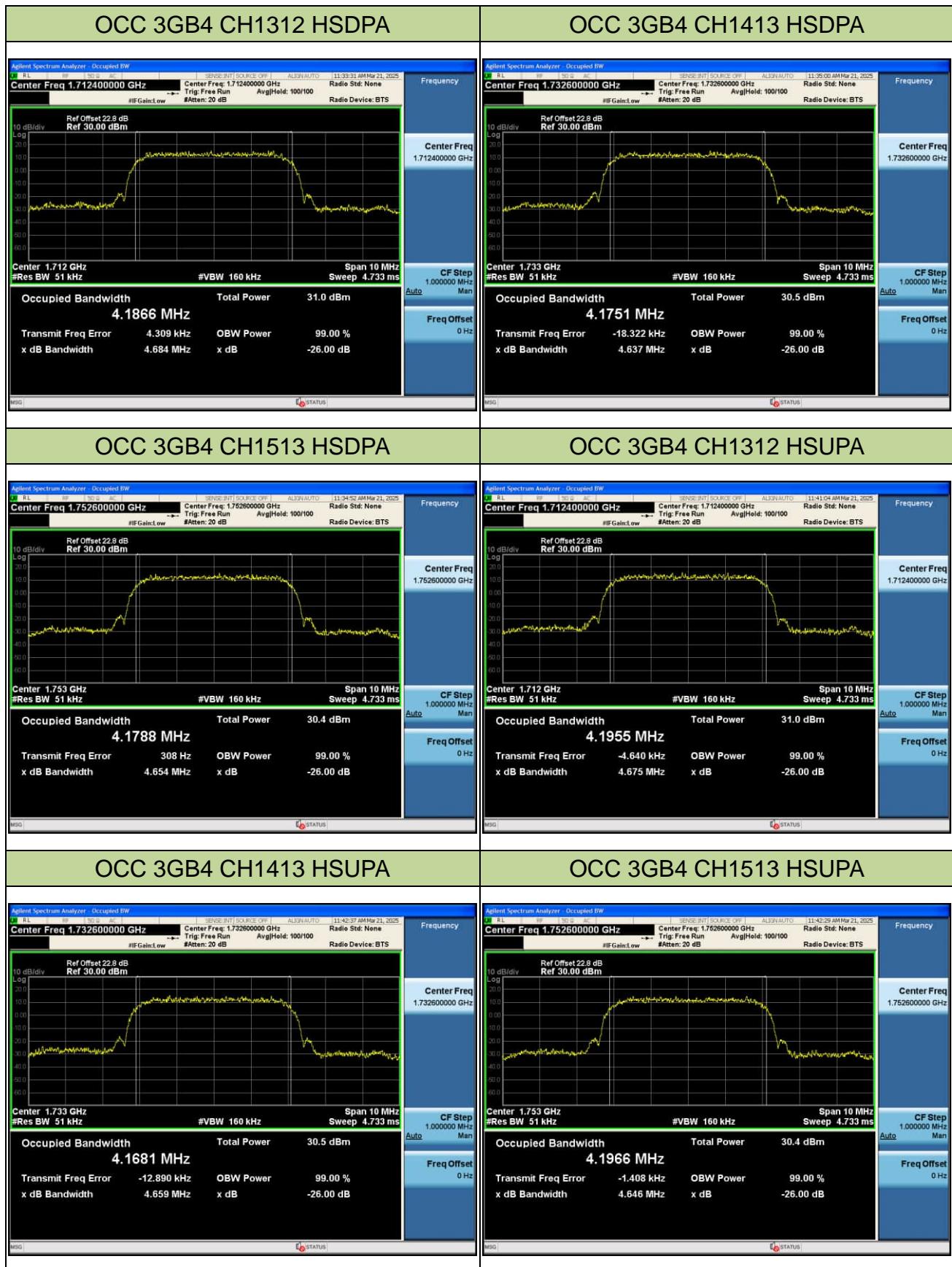
Below 1GHz Test Setup:

Above 1GHz Test Setup:

5.9.5 Test Result


Refer to Appendix A.8.


Appendix A : TEST RESULT DATA


A1. Occupied Bandwidth Test Result

A1.1 WCDMA Band 2 & Band 4

3G Band	Channel	Frequency	99% Occupied Bandwidth (MHz)			
		(MHz)	VOICE	RMC	HSDPA	HSUPA
WCDMA Band2	9262	1852.4	--	4.1652	4.1744	4.1752
	9400	1880	--	4.1921	4.1815	4.1836
	9538	1907.6	--	4.1780	4.1788	4.1708
WCDMA Band4	1312	1712.4	--	4.1687	4.1866	4.1955
	1413	1732.6	--	4.1679	4.1751	4.1681
	1513	1752.6	--	4.1615	4.1788	4.1966
WCDMA Band5	4132	826.4	--	--	--	--
	4183	836.6	--	--	--	--
	4233	846.6	--	--	--	--
3G Band	Channel	Frequency	26 dB bandwidth (MHz)			
		(MHz)	VOICE	RMC	HSDPA	HSUPA
WCDMA Band2	9262	1852.4	--	4.646	4.660	4.627
	9400	1880	--	4.678	4.671	4.656
	9538	1907.6	--	4.688	4.669	4.649
WCDMA Band4	1312	1712.4	--	4.657	4.684	4.675
	1413	1732.6	--	4.643	4.637	4.659
	1513	1752.6	--	4.665	4.654	4.646
WCDMA Band5	4132	826.4	--	--	--	--
	4183	836.6	--	--	--	--
	4233	846.6	--	--	--	--

A2. Frequency Stability Test Result

A2.1 WCDMA Band 2

Test Site	SR3	Test Engineer	Wen Lee
Test Date	3/21/2025	Test Band	RMC Band 2

Temperature vs. Frequency Stability						
Voltage (%)	Power (VAC)	Temp (°C)	Declared Frequency (MHz)	Measured Frequency (Hz)	Frequency Tolerance (ppm)	Limit (ppm)
100%	DC 3.8V	-30	1880	-10.38	-0.006	±2.5
		-20	1880	-14.69	-0.008	±2.5
		-10	1880	-16.05	-0.009	±2.5
		0	1880	-22.47	-0.012	±2.5
		10	1880	-17.96	-0.010	±2.5
		+ 20 (Ref)	1880	-19.62	-0.010	±2.5
		30	1880	-12.83	-0.007	±2.5
		40	1880	-16.40	-0.009	±2.5
		50	1880	-22.32	-0.012	±2.5
Voltage vs. Frequency Stability						
Voltage (%)	Power (VAC)	Temp (°C)	Declared Frequency (MHz)	Measured Frequency (Hz)	Frequency Tolerance (ppm)	Limit (ppm)
100%	DC 3.8V	20	1880	-19.62	-0.010	±2.5
115%	DC 4.4V	20	1880	-20.02	-0.011	±2.5
85%	DC 3.2V	20	1880	-15.15	-0.008	±2.5

DC Current

DC Current (A)	0.91A	IDLE	0.21A	0.91A
----------------	-------	------	-------	-------

A2.2 WCDMA Band 4

Test Site	SR3	Test Engineer	Wen Lee
Test Date	3/21/2025	Test Band	RMC Band 4

Temperature vs. Frequency Stability						
Voltage (%)	Power (VAC)	Temp (°C)	Declared Frequency (MHz)	Measured Frequency (Hz)	Frequency Tolerance (ppm)	Limit (ppm)
100%	DC 3.8V	-30	1732.6	-22.61	-0.013	±2.5
		-20	1732.6	-15.04	-0.009	±2.5
		-10	1732.6	-14.25	-0.008	±2.5
		0	1732.6	-13.15	-0.008	±2.5
		10	1732.6	-12.94	-0.007	±2.5
		+ 20 (Ref)	1732.6	-16.31	-0.009	±2.5
		30	1732.6	-18.92	-0.011	±2.5
		40	1732.6	-15.88	-0.009	±2.5
		50	1732.6	-22.27	-0.013	±2.5
Voltage vs. Frequency Stability						
Voltage (%)	Power (VAC)	Temp (°C)	Declared Frequency (MHz)	Measured Frequency (Hz)	Frequency Tolerance (ppm)	Limit (ppm)
100%	DC 3.8V	20	1732.6	-16.31	-0.009	±2.5
115%	DC 4.4V	20	1732.6	-9.83	-0.006	±2.5
85%	DC 3.2V	20	1732.6	-11.04	-0.006	±2.5

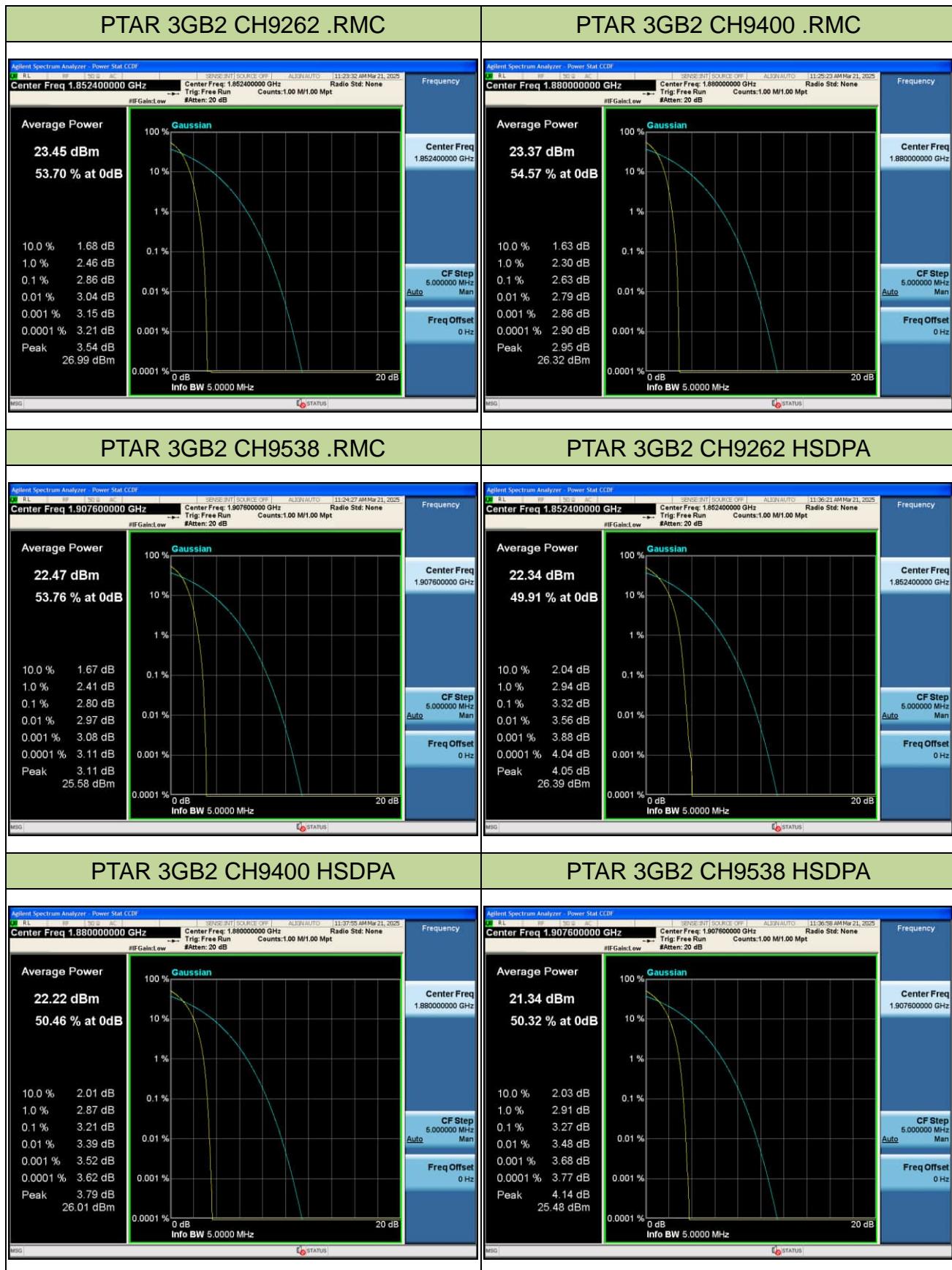
DC Current

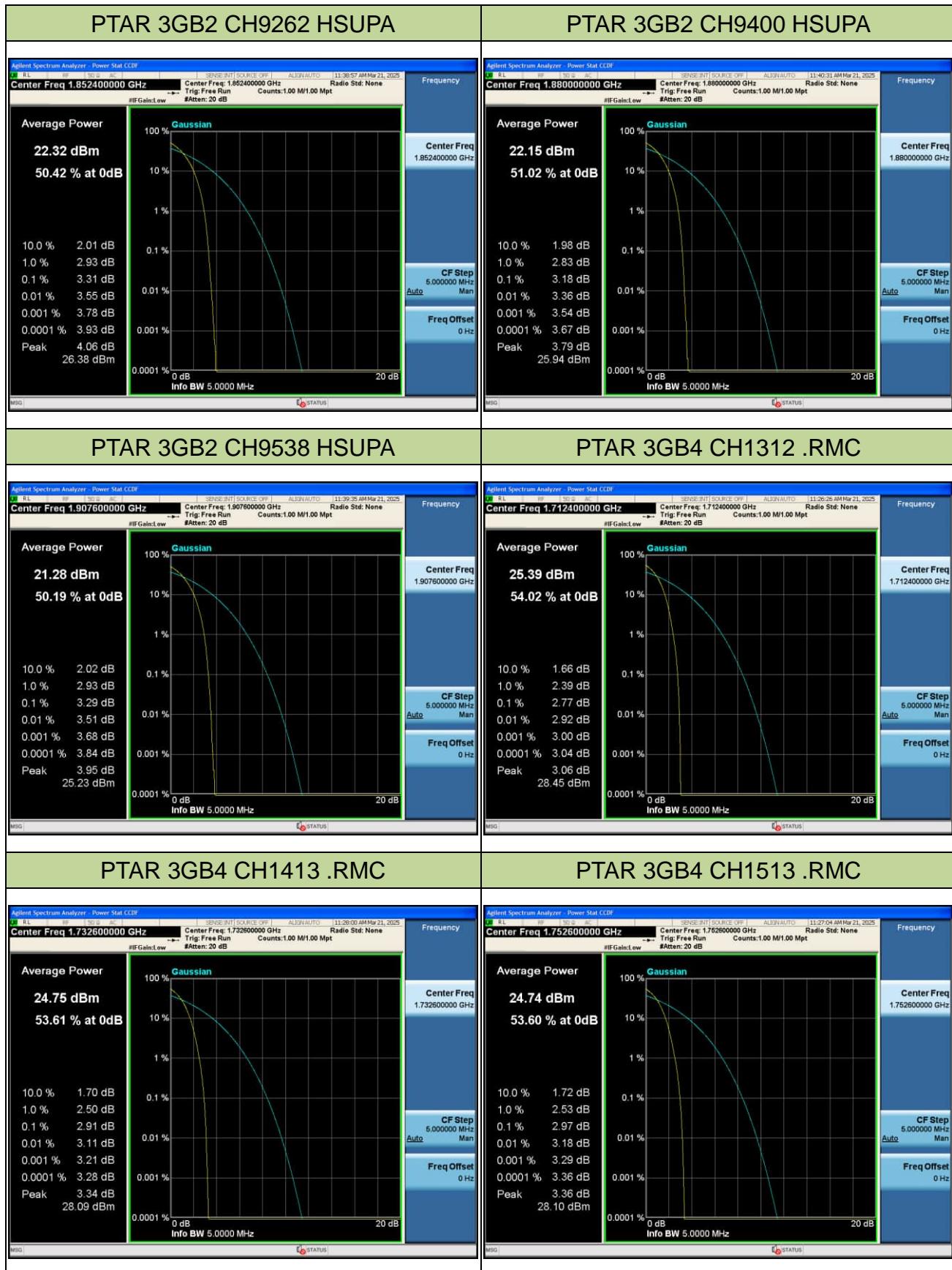
DC Current (A)	LINK:	0.89A	IDLE	0.21A
----------------	-------	-------	------	-------

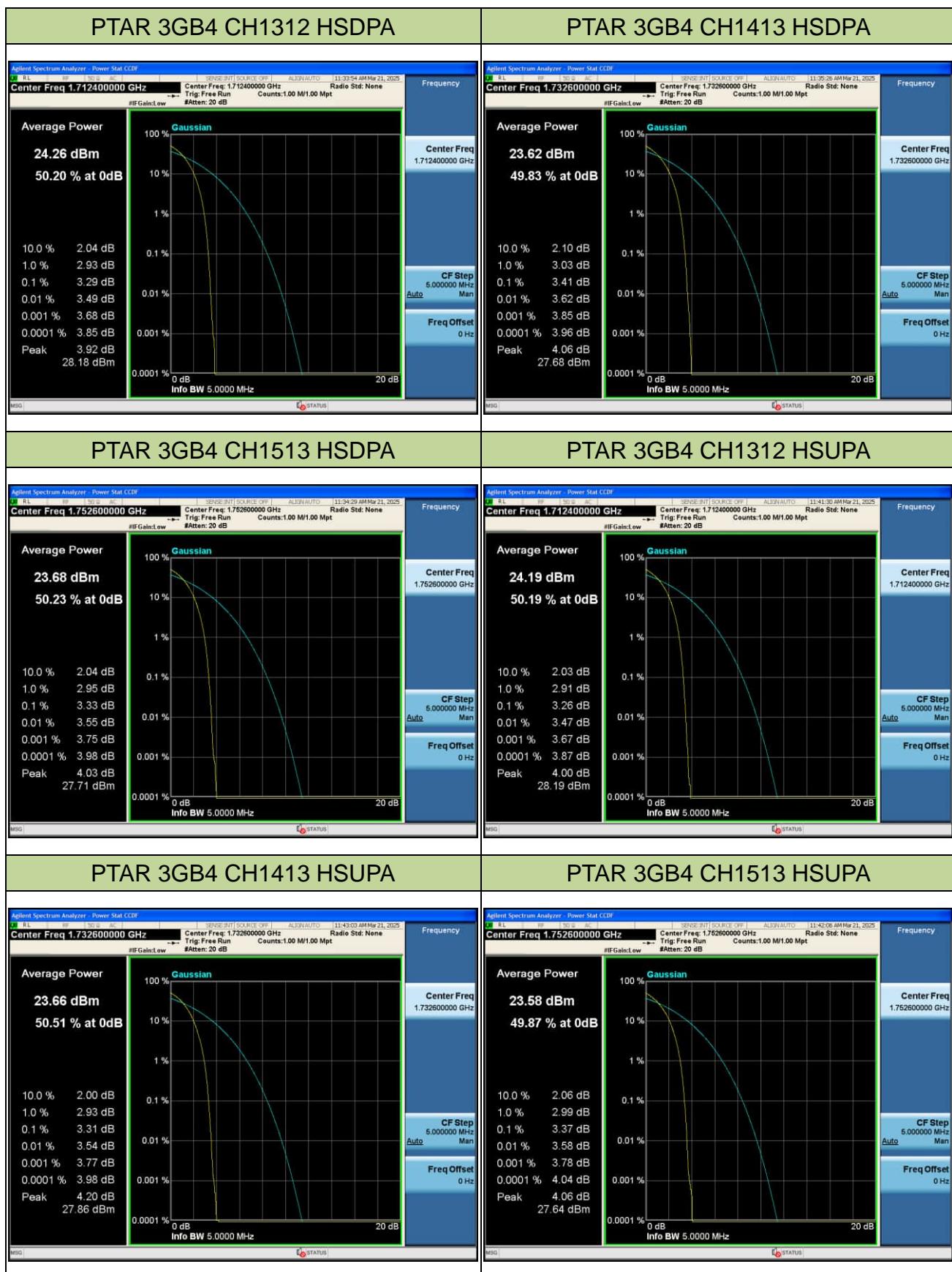
A3. Transmitter Output Power Test Result

A3.1 WCDMA Band 2

3G-WCDMA Mode	3GPP Subtest	Conducted Power (dBm)		
		Band 2 Channel		
		CH 9262 (1852.4MHz)	CH 9400 (1880MHz)	CH 9538 (1907.6MHz)
WCDMA R99	N/A	21.56	21.27	20.47
Rel5 HSDPA	1	20.63	20.33	19.48
	2	20.62	20.26	19.44
	3	20.18	19.78	18.93
	4	20.13	19.77	18.87
Rel6 HSUPA	1	18.63	18.30	17.25
	2	18.62	18.28	17.25
	3	19.65	19.30	18.31
	4	18.19	17.82	16.79
	5	19.63	19.27	18.22


A3.2 WCDMA Band 4

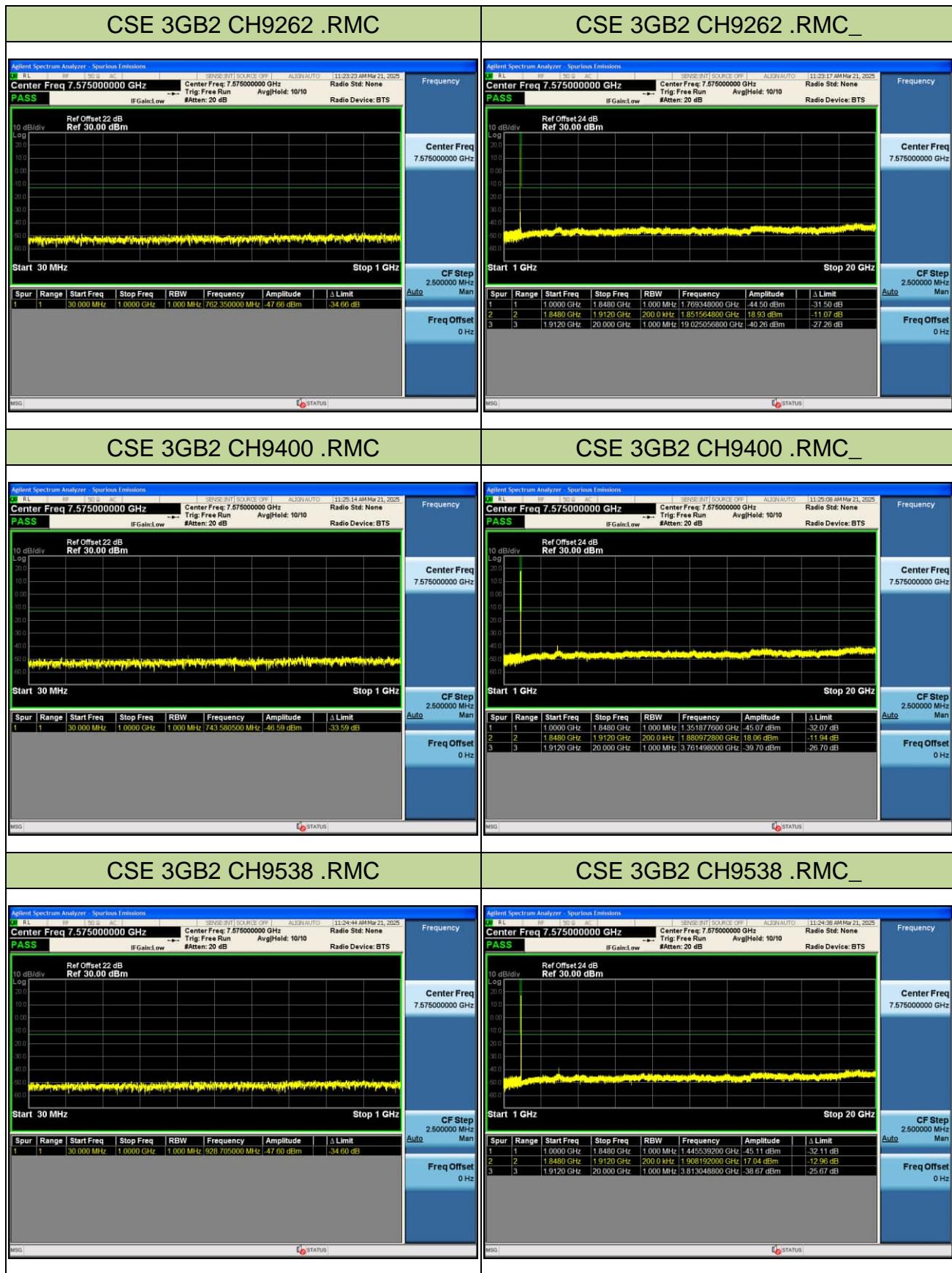

3G-WCDMA Mode	3GPP Subtest	Conducted Power (dBm)		
		Band 4 Channel		
		CH 1312 (1712.4MHz)	CH 1413 (1732.6MHz)	CH 1513 (1752.6MHz)
WCDMA R99	N/A	23.40	22.84	22.96
Rel5 HSDPA	1	22.31	21.96	22.03
	2	22.33	21.94	22.01
	3	21.82	21.46	21.58
	4	21.83	21.48	21.50
Rel6 HSUPA	1	20.30	19.97	20.05
	2	20.27	19.97	20.09
	3	21.29	20.94	21.07
	4	19.83	19.46	19.58
	5	21.27	20.98	21.09

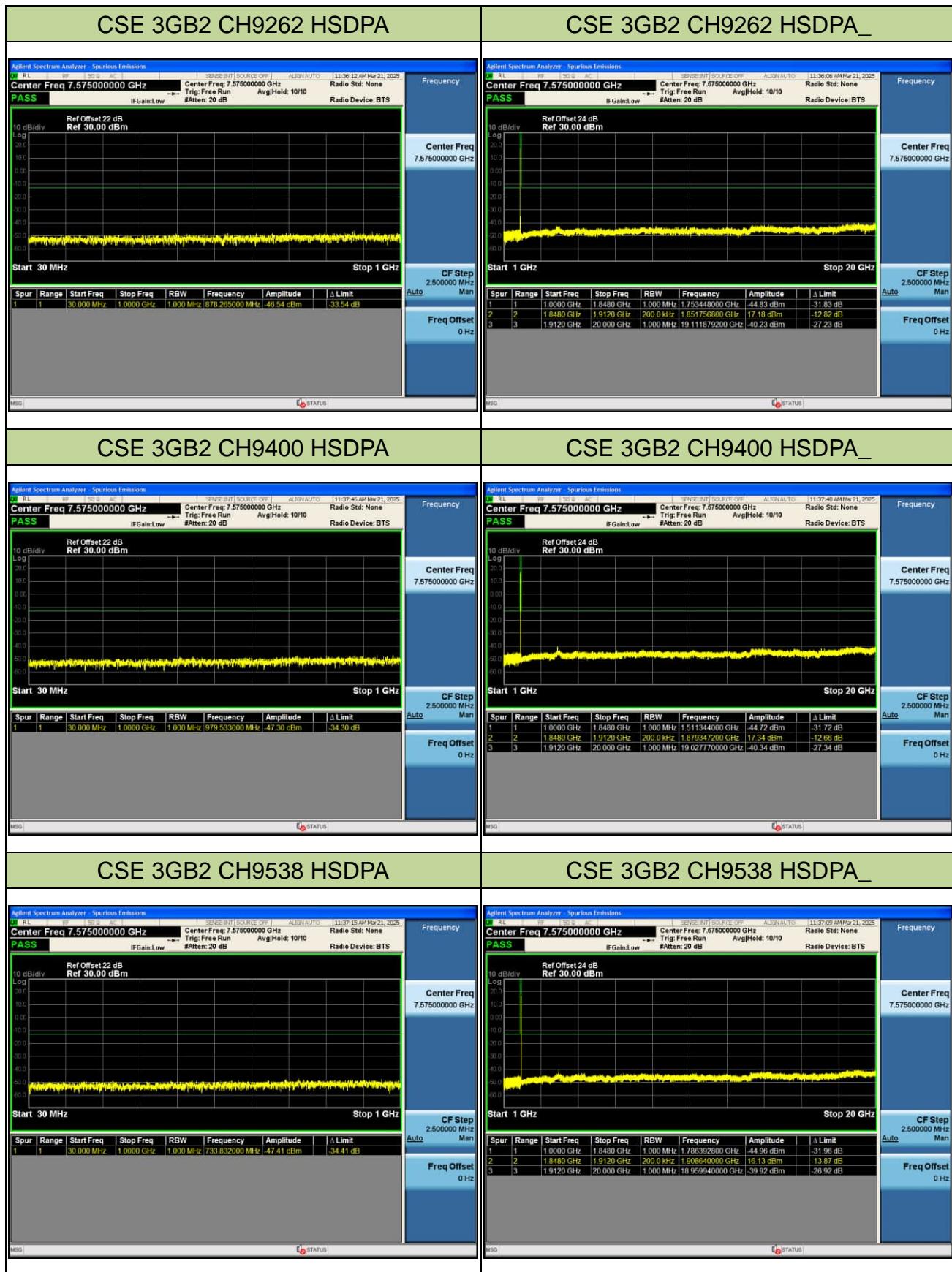

A4. Peak to Average Radio Test Result

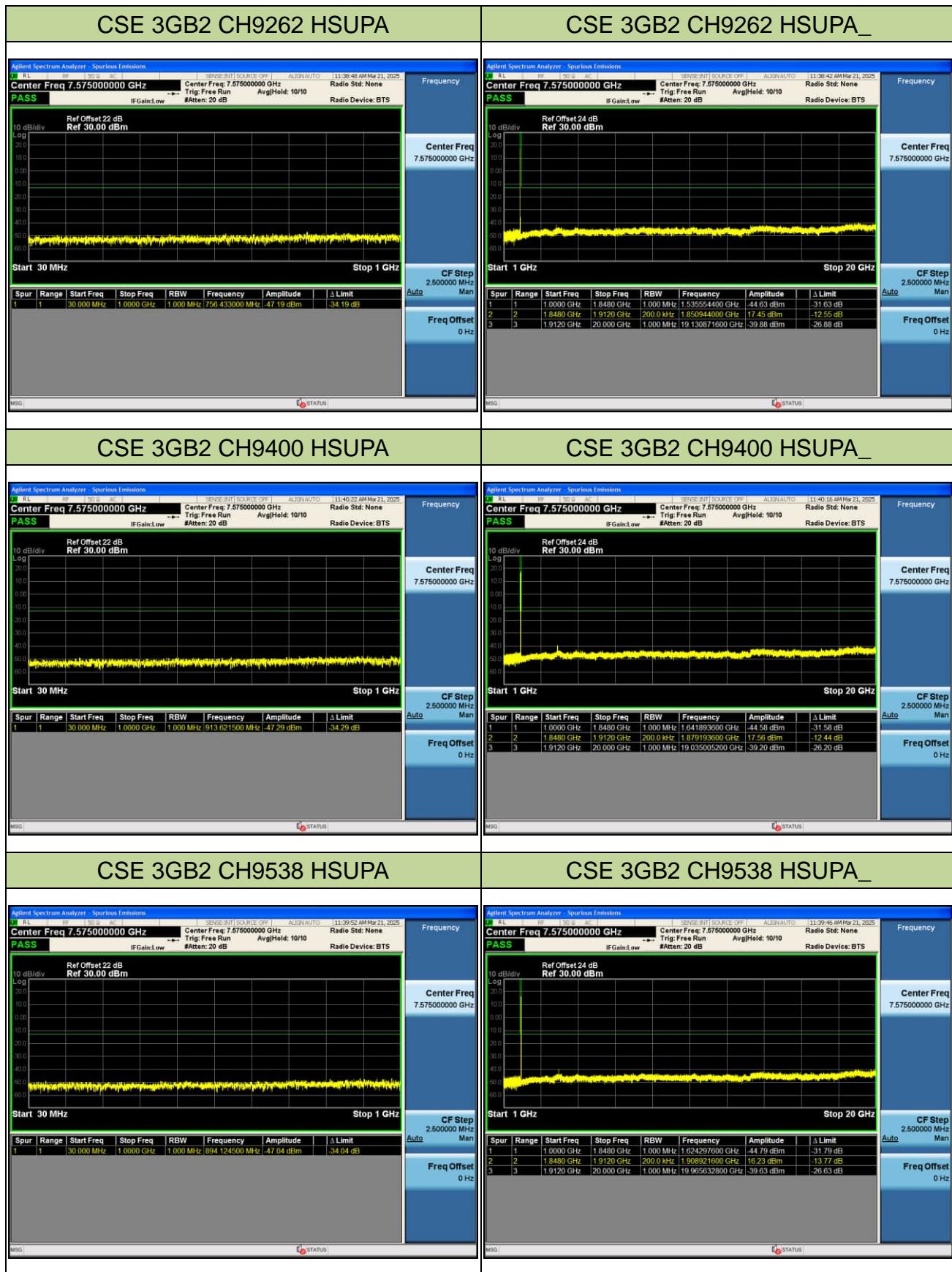
A4.1 WCDMA Band 2 & Band 4

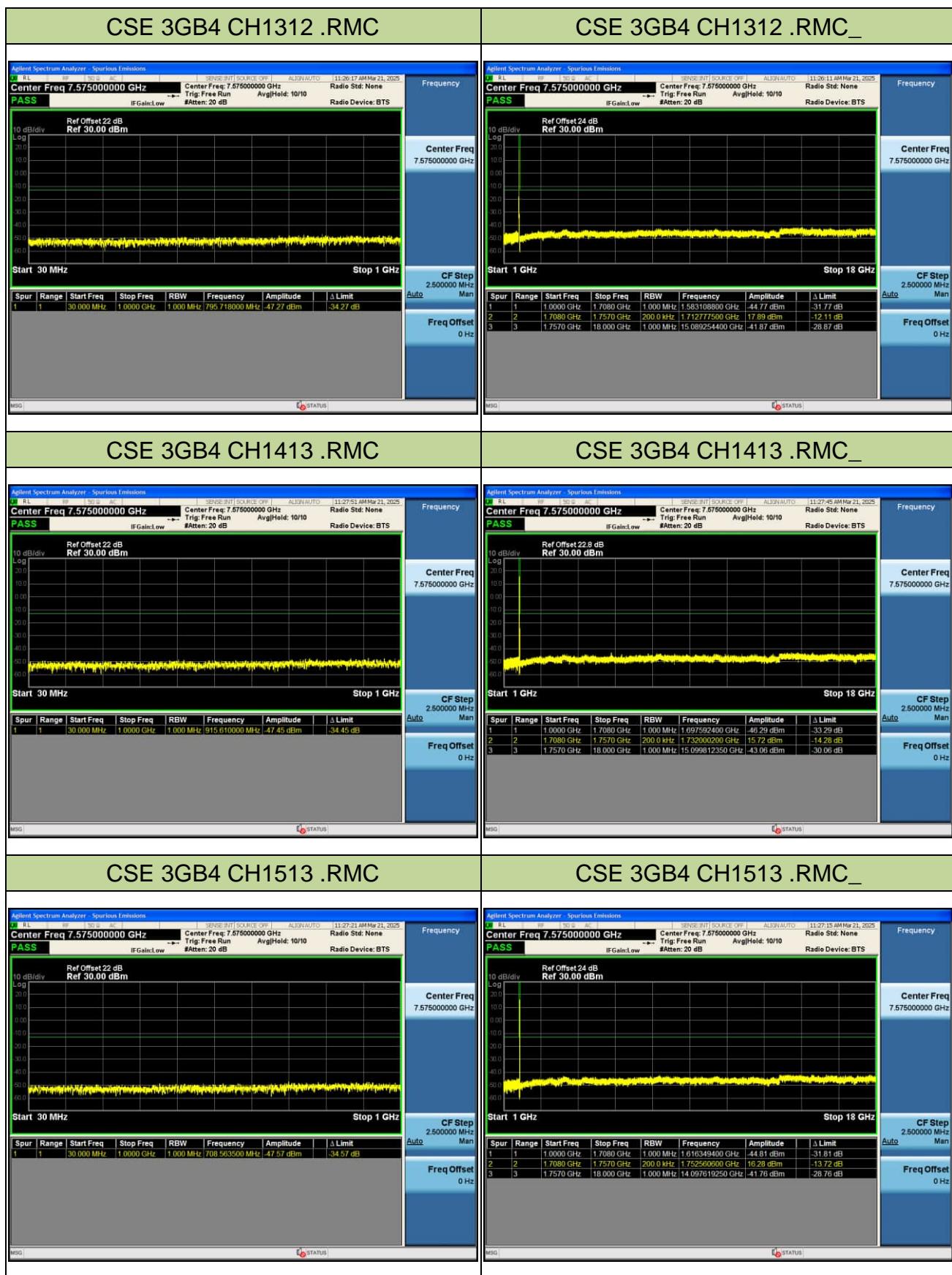
3G Band	Channel	Frequency	PAPR 0.1% Value (dB)			
		(MHz)	VOICE	RMC	HSDPA	HSUPA
WCDMA Band 2	9262	1852.4	--	2.86	3.32	3.31
	9400	1880	--	2.63	3.21	3.18
	9538	1907.6	--	2.80	3.27	3.29
WCDMA Band 4	1312	1712.4	--	2.77	3.29	3.26
	1413	1732.6	--	2.91	3.41	3.31
	1513	1752.6	--	2.97	3.33	3.37
WCDMA Band 5	4132	826.4	--	--	--	--
	4183	836.6	--	--	--	--
	4233	846.6	--	--	--	--

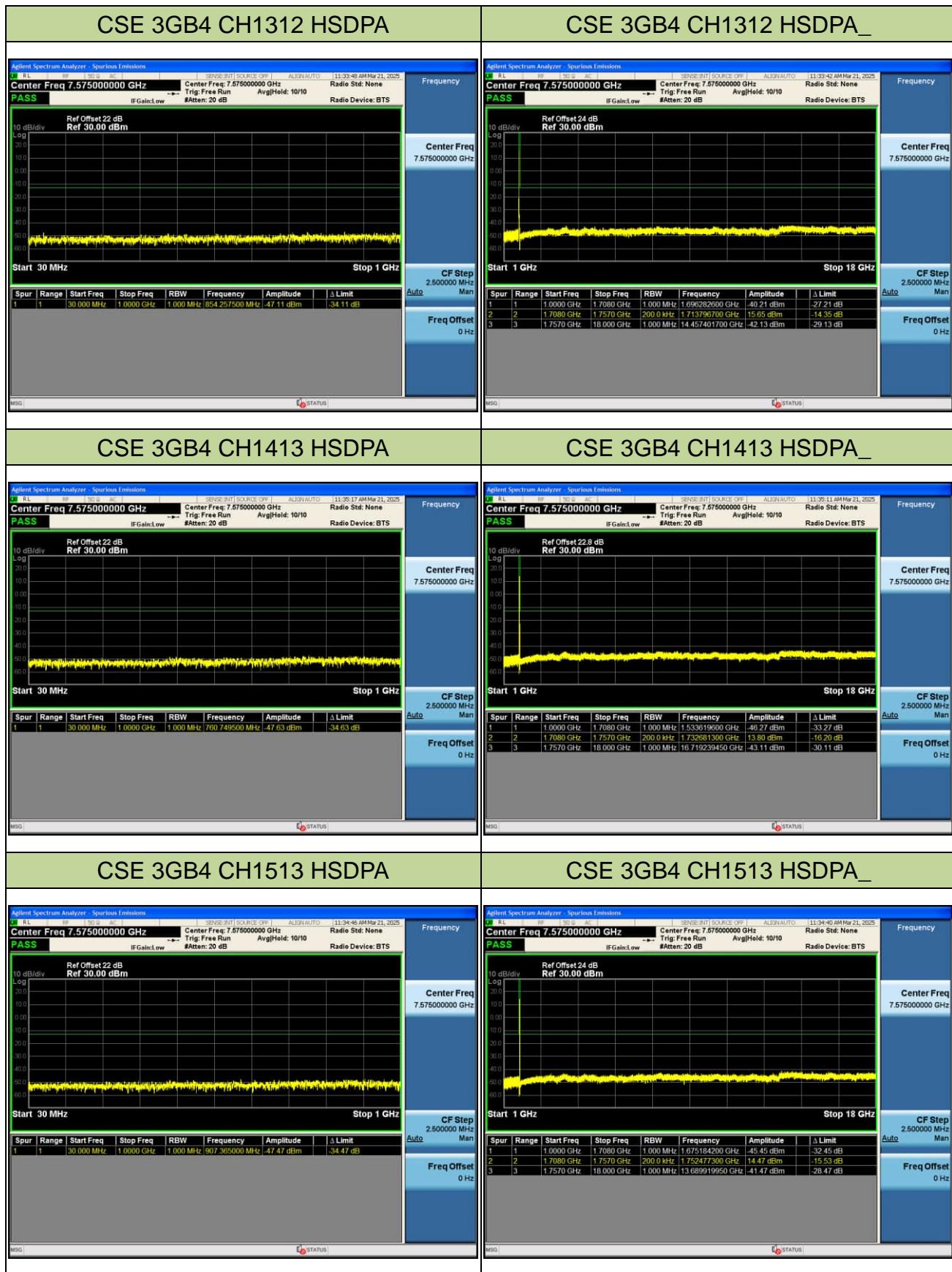
A5. Transmitter unwanted emissions (band-edge) Test Result

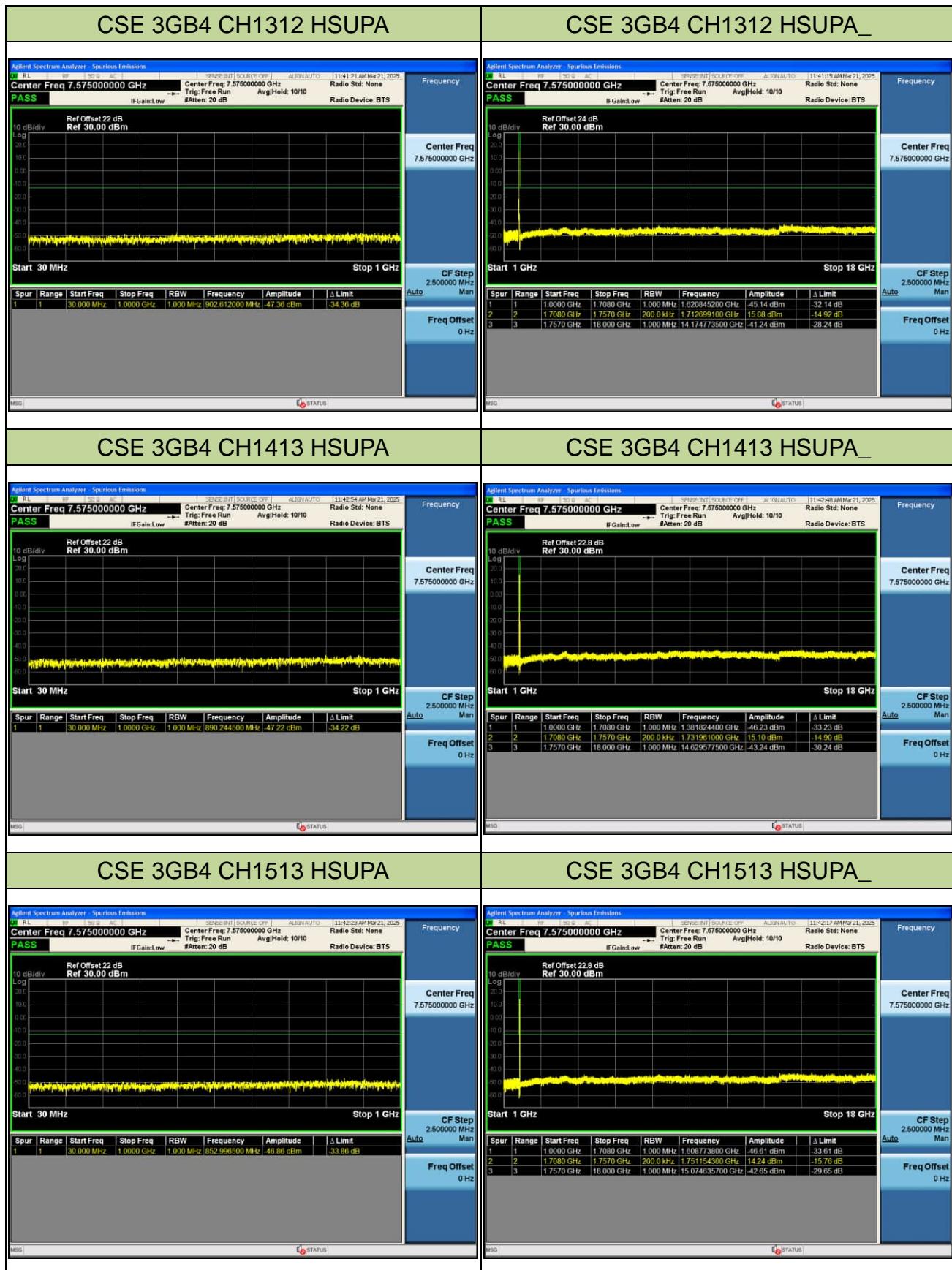

A5.1 WCDMA Band 2 & Band 4






A6. Transmitter unwanted emissions (spurious) Test Result


A6.1 WCDMA Band 2 & Band 4



A7. Radiated Spurious Emissions Test Result

A7.1 WCDMA Band 2

WCDMA Band2							
Frequency (MHz)	Ant. Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Ant Gain (dBi)	EIRP Measure (dBm)	Limit (dBm)	Margin (dB)
Low, QPSK, CH9262 / 1852.4MHz							
3704.8	H	-58.37	1.39	12.12	-47.64	-13	-34.64
5557.2	H	-67.44	1.75	13.17	-56.02	-13	-43.02
7409.6	H	-61.73	1.94	11.30	-52.37	-13	-39.37
3704.8	V	-59.92	1.39	12.12	-49.19	-13	-36.19
5557.2	V	-69.15	1.75	13.17	-57.73	-13	-44.73
7409.6	V	-62.35	1.94	11.30	-52.99	-13	-39.99
Mid, QPSK, CH9400 / 1880.0MHz							
3760	H	-54.46	1.36	12.34	-43.48	-13	-30.48
5640	H	-66.98	1.78	13.46	-55.30	-13	-42.30
7520	H	-62.89	1.87	11.26	-53.50	-13	-40.50
3760	V	-57.27	1.36	12.34	-46.29	-13	-33.29
5640	V	-69.86	1.78	13.46	-58.18	-13	-45.18
7520	V	-63.91	1.87	11.26	-54.52	-13	-41.52
Hight, QPSK, CH9538 / 1907.6MHz							
3815.2	H	-52.74	1.35	12.48	-41.61	-13	-28.61
5722.8	H	-65.29	1.84	13.59	-53.54	-13	-40.54
7630.4	H	-60.37	1.68	11.28	-50.76	-13	-37.76
3815.2	V	-56.98	1.35	12.48	-45.85	-13	-32.85
5722.8	V	-66.19	1.84	13.59	-54.44	-13	-41.44
7630.4	V	-63.07	1.68	11.28	-53.46	-13	-40.46

Note:

1. Spurious emissions within 9KHz-1GHz & Other harmonic were found more than 20dB below limit line.
2. EIRP or ERP (dBm) = SG Reading (dBm) - Cable Loss (dB) + Substitute Antenna Gain (dBi)

A7.2 WCDMA Band 4

WCDMA Band4							
Frequency (MHz)	Ant. Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Ant Gain (dBi)	EIRP Measure (dBm)	Limit (dBm)	Margin (dB)
Low, QPSK, CH1312 / 1712.4MHz							
3424.8	H	-69.97	1.36	12.73	-58.60	-13	-45.60
5137.2	H	-69.17	1.60	12.42	-58.35	-13	-45.35
6849.6	H	-61.84	1.79	12.25	-51.38	-13	-38.38
3424.8	V	-70.74	1.36	12.73	-59.37	-13	-46.37
5137.2	V	-69.46	1.60	12.42	-58.64	-13	-45.64
6849.6	V	-63.31	1.79	12.25	-52.85	-13	-39.85
Mid, QPSK, CH1413 / 1732.6MHz							
3465.2	H	-67.23	1.34	12.44	-56.12	-13	-43.12
5197.8	H	-69.70	1.68	12.79	-58.59	-13	-45.59
6930.4	H	-62.19	1.83	12.21	-51.81	-13	-38.81
3465.2	V	-65.78	1.34	12.44	-54.67	-13	-41.67
5197.8	V	-70.33	1.68	12.79	-59.22	-13	-46.22
6930.4	V	-61.92	1.83	12.21	-51.54	-13	-38.54
Hight, QPSK, CH1513 / 1752.6MHz							
3505.2	H	-67.92	1.35	12.21	-57.07	-13	-44.07
5257.8	H	-70.32	1.74	13.20	-58.86	-13	-45.86
7010.4	H	-65.51	1.82	11.95	-55.38	-13	-42.38
3505.2	V	-67.01	1.35	12.21	-56.16	-13	-43.16
5257.8	V	-70.48	1.74	13.20	-59.02	-13	-46.02
7010.4	V	-66.71	1.82	11.95	-56.58	-13	-43.58

Note:

1. Spurious emissions within 9KHz-1GHz & Other harmonic were found more than 20dB below limit line.
2. EIRP or ERP (dBm) = SG Reading (dBm) - Cable Loss (dB) + Substitute Antenna Gain (dBi)

Appendix B : Test Photograph

Refer to "2411TW7401-UT" file.

Appendix C : External Photograph

Refer to "2411TW7401-UE" file.

Appendix D : Internal Photograph

Refer to "2411TW7401-UI" file.

The End