

Test Report Electromagnetic Compatibility

Product Blueye Charger to Blueye Pioneer underwater drone

Name and address of the

applicant

Blueye Robotics AS Transittgata 10

7042 Trondheim, Norway

Name and address of the

manufacturer

Blueye Robotics AS Transittgata 10

7042 Trondheim, Norway

Model Blueye Charger

Rating Input Input 19,5 V DC, 4 A (Power supplied from an AC/DC 100-240V AC 50/60Hz)

Output 16,8 V DC, 2,5 A - for Blueye Smart Battery

USB Outputs 5 V DC - Surface unit charging port: 2,1 A (Middle port) - Top and

bottom USB charging port: 400mA

Trademark Blueye

Serial number 6018 - See product marking.

Additional information

Tested according to EN 55032:2012 + AC:2013

> EN 55024:2010 FCC CFR 47 Part 15

Order number 340630

Tested in period 2018-04-10 - 2018-04-11, 2018-09-26 - 2018-09-27, 2018-10-29 and 2018-11-19

Issue date 2018-11-22

Name and address of the testing laboratory

Nemko Group Nemko AS Gaustadalléen 30,

P.O.Box 73 Blindern, 0314 Oslo, Norway

An accredited technical test executed under the Norwegian accreditation scheme

TEL: +47 22 96 03 30 FAX: +47 22 96 05 50

Prepared by [Thomas Danglé]

Approved by [Tore Løvlien]

This report shall not be reproduced except in full without the written approval of Nemko. Opinions and interpretations expressed within this report are not part of the current accreditation. This report was originally distributed electronically with digital signatures. For more information contact Nemko.

REPORT REVISIONS

Revision #	Date	Order #	Description
00	2018-11-22	340630	First issued

THIS REPORT APPLIES ONLY TO THE ITEM(S) AND CONFIGURATION(S) TESTED.

It is the manufacturer's responsibility to assure the additional production units of this product are manufactured with identical electrical and mechanical components. The manufacturer is responsible to the authorities for any modifications made to the product, which result in non-compliance to the relevant regulations.

Nemko authorizes the above named Customer to reproduce this report provided it is reproduced in its entirety.

Any reproduction of parts of this report requires approval in writing from Nemko.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko accepts no responsibility for damages suffered by any third party as a result of decisions made or actions based on this report.

Opinions expressed within this report regarding general assessments and qualifications for PASS or FAIL to the standards limits and requirements, are not part of the current accreditation. Neither is opinions expressed regarding model variants covered by the testing performed in this report.

Deviations from, additions to, or exclusions from the test specifications are described in "Testing Report Summary".

Date: 2018-11-22 - Page 2 of 33 -

DESCRIPTION OF TESTED ITEM(S)

Product description:	Charger for the Smart Blueye Battery	
Model/type:	Blueye Charger	
Serial number	6018 – See product marking	
Operating voltage	19.5V DC (Power supplied from an AC/DC 100-240 VAC 50/60 Hz)	
Maximum power/current:	19.5V DC 4A	
Insulation class:	EUT with external insulated AC/DC power supply (Class II)	
Highest clock frequency:	876 kHz	
Hardware version:	6	
Software version:	-	
Mounting position:		
	☐ Wall/ceiling mounted equipment	
	☐ Floor standing equipment	

Mounting position:	
	☐ Wall/ceiling mounted equipment
	☐ Floor standing equipment
	☐ Handheld equipment
	☐ Rack mounted equipment
	☐ Console equipment
	□ Other:

INPUT/OUTPUT PORTS

Port name and description	Cable			
	> 3m	Attached during test	Shielded	
DC mains input (Power from the AC/DC Adapter)		\boxtimes		
DC output for battery charging inside the drone		\boxtimes		
DC output for battery charging outside the drone		\boxtimes		
3 x USB ports for USB charging devices (only one during testing)		\boxtimes		

OPERATING MODES

No.	Description	Applied for testing	
		Emissions	Immunity
1	USB device charging	\boxtimes	\boxtimes
2	Direct charging with the battery inside the drone	\boxtimes	\boxtimes
3	Indirect charging with the battery outside the drone		\boxtimes

ACCESSORIES USED DURING TEST

Description	Manufacturer	Туре
Drone	Blueye Robotics AS	-
AC/DC Power Adapter	FSP Group Inc	FSP230-AJAN3
USB device for charging	Any	-

Date: 2018-11-22 - Page 3 of 33 -

PHOTOS AND DRAWINGS

Copy of marking label		
Photo of the test item:	See photo in separate document	
Drawing of test setup:	-	

OTHER INFORMATION

Modifications to the test item:		Snap on ferrites need to be added on both the USB cable and the cable connected to the drone. See the photos above
	Additional information:	There is a manual switch to prevent charging two batteries at the same time.

Note: This equipment has been tested with certain cable types and cable configurations. Any changes to these parameters when installed may influence on the EMC properties of this equipment

Date: 2018-11-22 - Page 4 of 33 -

Report No. E18275.00

TEST ENVIRONMENT

Test laboratory:	☐ GAUSTAD	(Gaustadalleen 30, N-0314 Oslo, Norway)	
	⊠ KJELLER	(Instituttveien 6, N-2007 Kjeller, Norway)	
Laboratory accreditation:	NORWEGIAN ACCREDITATION TEST 033	Norsk Akkreditering – TEST 033 P06 – Electromagnetic Compatibility	
Environmental ref. conditions:	manufacturer for the	y: 25 – 75 %RH	
		y the test standard, or the requirements are tighter than ic conditions are recorded and documented separately	
Calibration:	All instruments used in the tests of this test report are calibrated and traceable to national or international standards. Between calibrations test setups are controlled and verified on a regular basis by intermediate checks to ensure, with 95% confidence that the instruments remain within their calibrated levels. The instrumentation accuracy is within limits agreed by the IECEE/CTL and defined by Nemko reference document TM-NO/301.		
Measurement uncertainties:	EMC uncertainty is specified in CISPR 16-4-2. Only if our uncertainty is larger than the maximum value UCISPR, the uncertainty is added to the measurement result. EMC test uncertainties for transient immunity are kept within the requirements of the relevant basic standard. Further information about measurement uncertainties is provided on request		

POWER SUPPLY SYSTEM UTILISED

Power supply voltage:		240V AC 50Hz		400V 3NAC 50Hz
	\boxtimes	230V AC 50Hz		230V 3AC 50Hz
		200V AC 60Hz		12V DC
	\boxtimes	115V AC 60Hz		24V DC
		The power supply voltage has disturbance investigation ove		
		Voltage:	Freque	ncy:
Grounding conditions:		Not grounded		
		Ground is received from its po Additional chassis grounding	ower supp	oly connection

Date: 2018-11-22 - Page 5 of 33 -

Report No. E18275.00

EVALUATION OF PERFORMANCE

PERFORMANCE TESTS

Performance checks:	Battery charging in both cases: direct charging with the battery inside the drone and indirect charging when the battery is outside the drone.	
Performance tests:	Charging function in both cases	
Monitoring during tests Visual monitoring with a camera inside the emc test chamber		
Note 1: Performance check is a short functional test carried out during or after a technical test to confirm that the equipment operates		

Note 1: Performance check is a short functional test carried out during or after a technical test to confirm that the equipment operates. Note 2: Performance test is a measurement or a group of measurements carried out during and/or after a technical test to confirm that the equipment complies with selected parameters as defined in the equipment standard.

Note 3: Monitoring during tests describes which functions were monitored and how.

PERFORMANCE CRITERIA

i			
Performance criteria is:			
	□ based on a declaration from the customer		
Criterion A:	The device shall continue to operate as intended both during and after the test. No degradation of performance or loss of function is allowed below the expected performance level of the device		
Criterion B:	The device shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below the expected performance level of the device		
Criterion C	Temporary loss of function during test is allowed, provided the function is self-recoverable or can be restored by the operation of the controls		

Note: In the subsequent test sections of this report, the required and actual specimen performance during immunity testing is indicated by the nomenclatures as given by the table above (A, B or C).

Date: 2018-11-22 - Page 6 of 33 -

TEST REPORT SUMMARY

APPLIED STANDARDS

Standards	Titles
EN 55032:2012 + AC:2013	Electromagnetic compatibility of multimedia equipment - Emission requirements
EN 55024:2010	Information technology equipment - Immunity characteristics - Limits and methods of measurement
FCC CFR 47 Part 15	Digital devices - Unintentinal radiators, Class B Digital Device

TEST SUMMARY

Requirements – Tests	Reference standards	Verdict
Conducted Emissions	EN 55032:2012 + AC:2013 CISPR 16-2-1:2014, Ed.3.0 FCC CFR 47 Part 15 ANSI C63.4-2014	PASS
Conducted Emissions (Telecom Port)	EN 55032:2012 + AC:2013 CISPR 16-2-1:2014, Ed.3.0	N/A
Radiated Emissions (30MHz-1000MHz)	EN 55032:2012 + AC:2013 FCC CFR 47 Part 15 CISPR 16-2-3:2014, Ed.3.2	PASS
Radiated Emissions (Above 1GHz)	EN 55032:2012 + AC:2013 FCC CFR 47 Part 15 CISPR 16-2-3:2014, Ed.3.2	N/A
Electrostatic Discharge (ESD) Immunity	EN 55024:2010 EN 61000-4-2:2009, Ed.2.0	PASS
Radiated RF Disturbance Immunity	EN 55024:2010 EN 61000-4-3:2010, Ed.3.2	PASS
Electric Fast Transients Immunity	EN 55024:2010 EN 61000-4-4:2012, Ed.3.0	PASS
Surge Immunity	EN 55024:2010 EN 61000-4-5:2014, Ed.3.0	PASS
Conducted RF Disturbance Immunity	EN 55024:2010 EN 61000-4-6:2014, Ed.4.0	PASS
Power Frequency Magnetic Field Immunity	EN 55024:2010 EN 61000-4-8:2010, Ed.2.0	N/A
Dips and Interruptions Immunity	EN 55024:2010 EN 61000-4-11:2004, Ed.2.0	PASS

Tested and complied with the requirements Tested and failed the requirements **PASS**

FAIL

Test not relevant to this specimen (evaluated by the test laboratory) N/A

Test not performed (instructed by the applicant)

An asterisk (*) placed after the verdict in the Result column indicates test items that are not within Nemko's scope of

accreditation

A grid (#) placed after the verdict in the Result column indicates test items that are only partly covered by Nemko's scope

of accreditation. Further information is detailed in the test section

- Page 7 of 33 -Date: 2018-11-22

NOTES

Note 1: Product standards with dated references to basic standards may have been performed by Nemko AS according to the newest edition of the basic standard. This may impact the compliance criteria or technical performance of the test, still this is considered to be adequate as long as the test is expected to confirm compliance to the intention of the product standard. The table above lists the actual editions of the basic standards which have been used during testing.

Note 2: The choice of immunity test levels could be higher than those specified by the reference standards when we take into account the nature of the specimen and its intended use, or based on customer requests.

Date: 2018-11-22 - Page 8 of 33 -

Test Results

Date: 2018-11-22 - Page 9 of 33 -

Report No. E18275.00

CONDUCTED EMISSIONS

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

S	е	t-	u	р

The measurement was performed at the power supply terminal of the specimen. Nominal supply voltage was provided.

The specimen was energized and in normal operating mode during the measurement.

 □ The specimen and its cables were elevated 10 cm above a ground plane. □ The specimen and its cables were elevated 40 cm above a ground plane. ☑ The specimen and its cables were placed 40 cm from a vertical ground plane, 80 cm over ground plane. □ The specimen was mounted directly on, and bonded to a ground plane. Cables and auxiliary equipment were elevated by 1 cm
 ☑ The specimen was connected to an Artificial Mains Network (AMN) by its power supply cable, which was adjusted to 100cm length by folding. ☐ The specimen was connected to an Artificial Mains Network (AMN) by a 0.8 m shielded power supply cable directly connected to the AMN
Conditions ☐ Frequency range was 9kHz – 30MHz. ☐ Frequency range was 10kHz – 30MHz. ☑ Frequency range was 150kHz – 30MHz.

The measuring bandwidth is 200Hz in the frequency range 9 kHz – 150 kHz. Measurement was made with a 100 Hz step size and 100 ms dwell time.

The measuring bandwidth is 9 kHz in the frequency range 150 kHz - 30 MHz. Measurement was made with a 4.5 kHz step size and 20 ms dwell time.

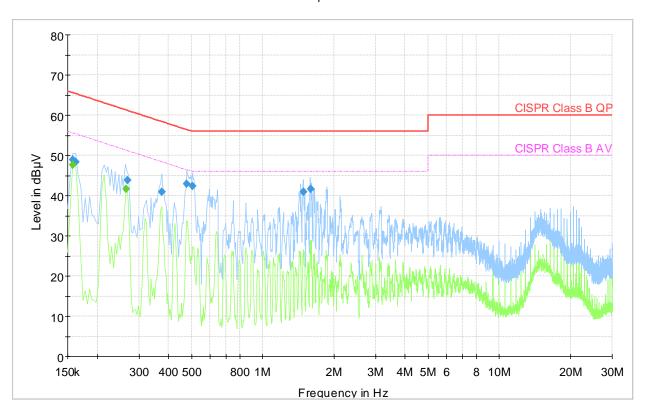
Measurement uncertainty: ± 3.8 dB (9 kHz - 150 kHz); ± 3.5 dB (150 kHz - 30 MHz)

Instruments used during measurement

Instrument list: AMN: R&S / ENV216 (LR-1665) (11/2019)

EMI Receiver: R&S / ESCI 3 (N-4259) (10/2019)

Conformity

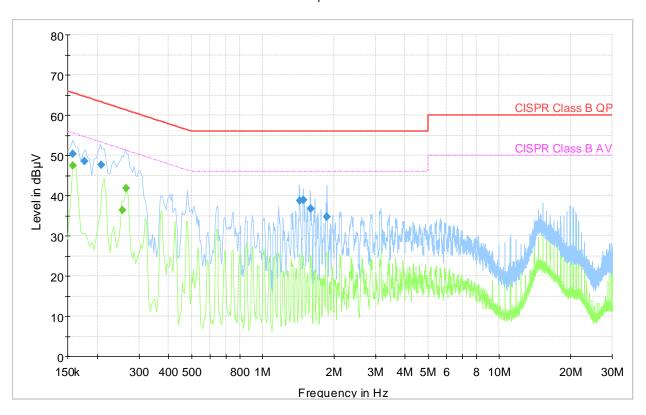

Verdict: PASS
Test engineer: THT

Date: 2018-11-22 - Page 10 of 33 -

Charging outside the drone, 230V AC 50Hz

Full Spectrum

MEASUREMENT DATA

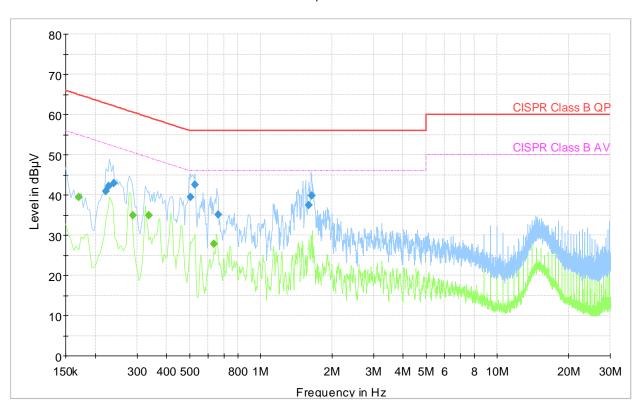

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter
0.158	48.99		65.57	16.58	1000	9	N	OFF
0.158		47.60	55.57	7.97	1000	9	L1	OFF
0.162	48.40		65.36	16.96	1000	9	N	OFF
0.264		41.60	51.31	9.70	1000	9	N	OFF
0.268	43.81		61.18	17.37	1000	9	N	OFF
0.376	40.99		58.37	17.38	1000	9	N	OFF
0.476	42.92		56.41	13.49	1000	9	L1	OFF
0.504	42.35		56.00	13.65	1000	9	N	OFF
1.484	40.94		56.00	15.06	1000	9	L1	OFF
1.592	41.66		56.00	14.34	1000	9	L1	OFF

Date: 2018-11-22 - Page 11 of 33 -

Charging outside the drone, 120V AC 60Hz

Full Spectrum

MEASUREMENT DATA

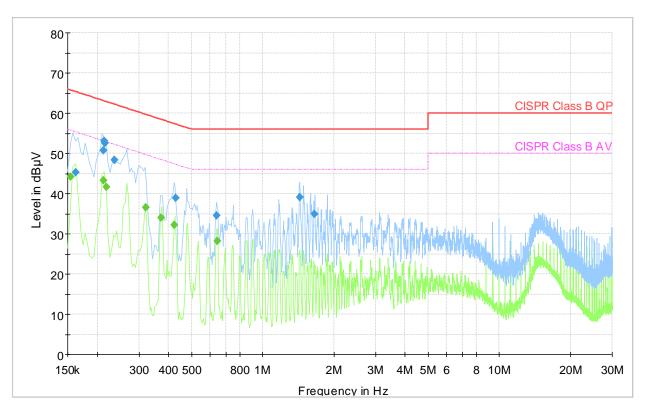

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter
(1411 12)	(αΒμν)	(ubha)	(ubha)	(ub)	(1113)	(KI 12)		
0.158		47.41	55.57	8.16	1000	9	L1	OFF
0.158	50.31		65.57	15.26	1000	9	L1	OFF
0.176	48.54		64.67	16.13	1000	9	L1	OFF
0.208	47.61		63.29	15.68	1000	9	L1	OFF
0.256	-	36.41	51.56	15.15	1000	9	N	OFF
0.264	-	41.90	51.31	9.40	1000	9	N	OFF
1.432	38.81		56.00	17.19	1000	9	L1	OFF
1.488	38.94		56.00	17.06	1000	9	L1	OFF
1.592	36.80		56.00	19.20	1000	9	N	OFF
1.864	34.82		56.00	21.18	1000	9	L1	OFF

Date: 2018-11-22 - Page 12 of 33 -

Direct charging with the drone, 230V AC 50Hz

Full Spectrum

MEASUREMENT DATA


Frequency	QuasiPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Line	Filter
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)		
0.170		39.53	54.96	15.43	1000	9	N	OFF
0.222	40.94		62.74	21.80	1000	9	L1	OFF
0.228	42.17		62.52	20.36	1000	9	L1	OFF
0.240	42.84		62.10	19.25	1000	9	L1	OFF
0.288		34.93	50.58	15.65	1000	9	N	OFF
0.336		34.94	49.30	14.36	1000	9	N	OFF
0.504	39.40		56.00	16.60	1000	9	L1	OFF
0.528	42.51		56.00	13.49	1000	9	N	OFF
0.636		27.84	46.00	18.16	1000	9	N	OFF
0.660	35.06		56.00	20.94	1000	9	N	OFF
1.600	37.52		56.00	18.48	1000	9	N	OFF
1.644	39.79		56.00	16.21	1000	9	L1	OFF

Date: 2018-11-22 - Page 13 of 33 -

Direct charging with the drone, 120V AC 60Hz

Full Spectrum

MEASUREMENT DATA

Frequency	QuasiPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Line	Filter
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)		
0.154		44.16	55.78	11.62	1000	9	N	OFF
0.162	45.22		65.36	20.14	1000	9	L1	OFF
0.212	50.81		63.13	12.31	1000	9	N	OFF
0.212		43.27	53.13	9.86	1000	9	L1	OFF
0.214	53.01		63.05	10.04	1000	9	L1	OFF
0.216	52.49		62.97	10.48	1000	9	L1	OFF
0.218		41.58	52.90	11.31	1000	9	L1	OFF
0.236	48.32		62.24	13.91	1000	9	L1	OFF
0.320		36.54	49.71	13.17	1000	9	L1	OFF
0.372		33.99	48.46	14.47	1000	9	N	OFF
0.424		32.12	47.37	15.25	1000	9	L1	OFF
0.428	38.83		57.29	18.47	1000	9	L1	OFF
0.640	34.49		56.00	21.51	1000	9	N	OFF
0.644		28.12	46.00	17.88	1000	9	N	OFF
1.436	39.11		56.00	16.89	1000	9	L1	OFF
1.660	34.87		56.00	21.14	1000	9	L1	OFF

Date: 2018-11-22 - Page 14 of 33 -

RADIATED EMISSIONS (30MHZ-1000MHZ)

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

The measurements were performed in a semi-anechoic chamber (SAC). Nominal supply voltage was provided.

The specimen was energized and in normal operating mode during the measurement.

☐ The specimen and its cables were elevated 10 cm above the site ground plane, and placed in the centre of the turntable.

⊠ The specimen and its cables were placed on a table 80 cm above the site ground plane and placed in the centre of the turntable.

The measuring antenna was located 10 meters from the specimen. Measurements were performed with a hybrid bilog antenna. Antenna elevation = 100-400 cm above the ground reference plane. Specimen rotation = $0-360^{\circ}$.

Conditions

The measuring bandwidth is 120 kHz in the frequency range 30 MHz - 1000 MHz. Frequency sweeps with RBW = 120 kHz and VBW = 1 MHz was applied with a sweep time of 20 ms (step size resolution < 60 kHz).

Measurement uncertainty: ± 4.1 dB (30 MHz - 200 MHz); ± 4.2 dB (200 MHz - 1000 MHz)

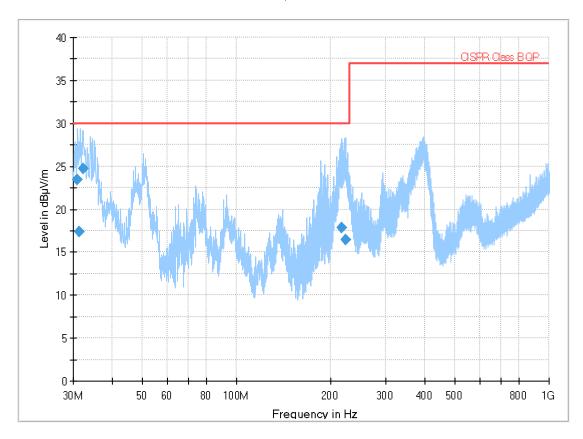
Instruments used during measurement

Instrument list: Antenna, bilog: Sunol / JB3 (N-4525) (11/2019)

EMI Receiver: R&S / ESU40 (LR-1639) (11/2019) Preamplifier: Sonoma / 310N (LR-1686) (07/2019)

Conformity

Verdict: PASS

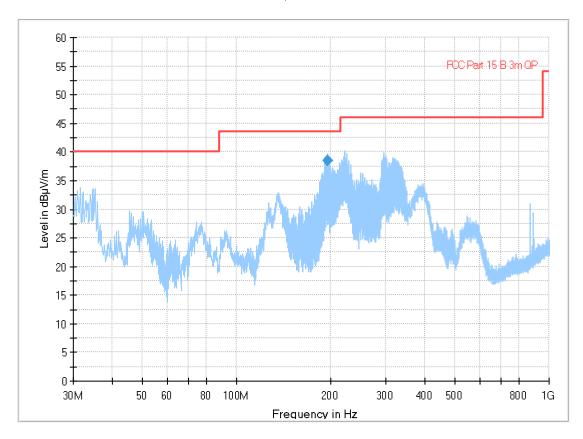

Test engineer: TD

Date: 2018-11-22 - Page 15 of 33 -

Charging outside the drone, 230V AC 50Hz

Full Spectrum

MEASUREMENTS DATA

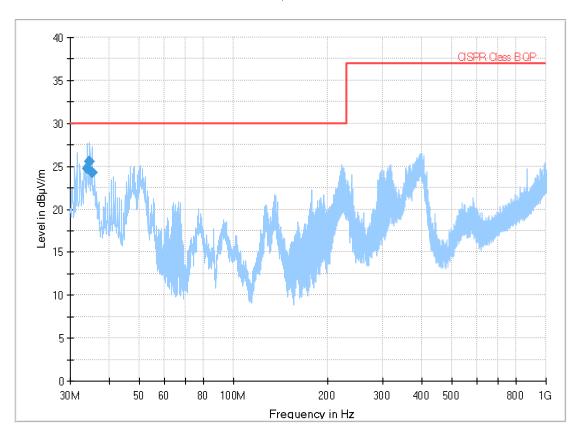

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.993050	23.42	30.00	6.58	1000.0	120.000	103.0	٧	2.0	-11.2
31.355178	17.32	30.00	12.68	1000.0	120.000	154.0	٧	258.0	-11.5
32.205706	24.78	30.00	5.22	1000.0	120.000	99.0	٧	76.0	-12.2
217.571344	17.79	30.00	12.21	1000.0	120.000	373.0	Н	82.0	-19.1
223.318789	16.47	30.00	13.53	1000.0	120.000	300.0	Н	78.0	-19.2

Date: 2018-11-22 - Page 16 of 33 -

Charging outside the drone, 120V AC 60Hz

Full Spectrum

MEASUREMENTS DATA

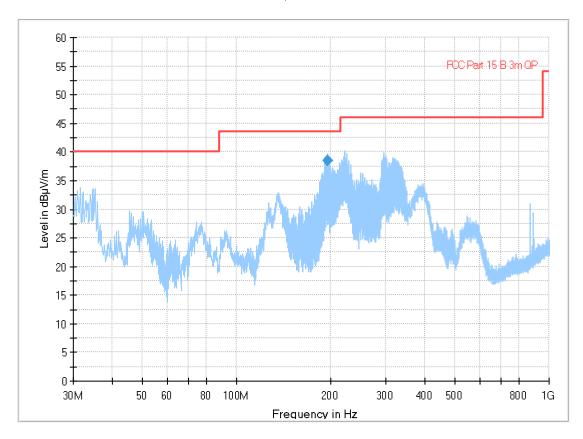

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
195.108800	38.54	43.50	4.96	1000.0	120.000	102.0	Н	88.0	-18.2

Date: 2018-11-22 - Page 17 of 33 -

Direct charging with the drone, 230V AC 50Hz

Full Spectrum

MEASUREMENTS DATA


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
33.996728	24.78	30.00	5.22	1000.0	120.000	103.0	٧	0.0	-13.6
34.600756	25.58	30.00	4.42	1000.0	120.000	103.0	٧	0.0	-14.1
35.210872	24.21	30.00	5.79	1000.0	120.000	103.0	٧	24.0	-14.6

Date: 2018-11-22 - Page 18 of 33 -

Direct charging with the drone, 120V AC 60Hz

Full Spectrum

MEASUREMENTS DATA

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
195.108800	38.54	43.50	4.96	1000.0	120.000	102.0	Н	88.0	-18.2

Date: 2018-11-22 - Page 19 of 33 -

ELECTROSTATIC DISCHARGE (ESD) IMMUNITY

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

The specimen was energized and in normal operating condition.

- ☐ Floor standing equipment. Specimen was elevated 10 cm above the ground reference plane.

A vertical coupling plane (VCP) of 50x50 cm was placed 10 cm from the specimen exterior. This VCP is connected to the reference plane via a cable with two $470k\Omega$ resistors located one in each end of the cable.

The ESD generator's reference ground was connected to the reference ground plane.

Procedure

- ☑ Indirect contact discharges were applied to the mid edge of the VCP.
- ☑ Direct contact discharges were applied to various selected test points of the specimen at conductive surfaces,
- ☑ Direct air discharges were applied to various selected test points of the specimen at non-conductive surfaces.

Discharges were applied at increasing levels to each test point.

Uncertainty figures: Peak voltage: ± 10 %; Transient shape: ± 30 %

A functional test was performed before and after the exposure. The specimen was observed during exposure in order to detect unintended responses.

Instruments used during measurement

Instrument list: ESD Generator: EMTest / ESD30N (N-4643) (03/2019)

Temperature: 23 °C Verdict: PASS
Humidity: 37 %RH Test engineer: THT

Atmos. pressure: 1003 hPA

Date: 2018-11-22 - Page 20 of 33 -

PHOTO OF SELECTED TEST POINTS

See photo in separate document

= Contact discharge points

= Air discharge points

Date: 2018-11-22 - Page 21 of 33 -

Detailed Test Log

Direct charging with the drone:

Test Point	Applied Level [kV]	Discharge Type	Discharges per test level	Required Criteria	Complied Criteria	Result
Enclosure, plastic parts	±4, ±8	Air	10	В	Α	PASS
All cable	±4, ±8	Air	10	В	А	PASS
LEDs	±4, ±8	Air	10	В	А	PASS
Connector, metallic parts	±2, ±4	Contact	10	В	Α	PASS
HCP	±2, ±4	Contact	10	В	Α	PASS
VCP	±2, ±4	Contact	10	В	А	PASS

Charging outside the drone:

Test Point	Applied Level [kV]	Discharge Type	Discharges per test level	Required Criteria	Complied Criteria	Result
Enclosure, plastic parts	±4, ±8	Air	10	В	Α	PASS
All cable	±4, ±8	Air	10	В	А	PASS
LEDs	±4, ±8	Air	10	В	А	PASS
Connector, metallic parts	±2, ±4	Contact	10	В	А	PASS
HCP	±2, ±4	Contact	10	В	А	PASS
VCP	±2, ±4	Contact	10	В	Α	PASS

Note: ND = No Discharge, indicates discharge attempts, which have given no actual observable discharge.

OBSERVATIONS

No malfunctions were recorded during or after the applied test(s). Observations showed no unintended responses during test(s).

Date: 2018-11-22 - Page 22 of 33 -

Report No. E18275.00

RADIATED RF DISTURBANCE IMMUNITY

TEST DESCRIPTION

V	let	h	^	•
		n		

Date: 2018-11-22

The reference method t	for this test is listed in	n the table under clause	TEST SUMMARY.
Set-up The tests were perform	ed at 3 meter antenr	na distance in an anecho	ic chamber.
		m support 10 cm above t styrofoam table 80 cm a	
arranged so that 100 cr Interconnecting cables length. Interconnecting cables	n of each cable was specified ≤ 300 cm w specified > 300 cm a	exposed to the electrom whose length exceeded 1	100 cm were bundled to achieve 100 cm ted to the specimen are exposed for 100
polarization of the field	requires testing each		ed by one or more antennas. The vice, once with the antenna horizontally t was 150 cm.
` '	ecimen: p (handheld) ttom (handheld)		
Frequency range: □ 80MHz – 1000MHz □ 1400MHz – 2000MH □ 2000MHz – 2700MH ⊠ 80MHz – 3000MHz □ 80MHz – 6000MHz		@ 1000Hz @ 400Hz	Uncertainty figures: Field level: ± 2.4 dB
A functional test was pe exposure in order to de			specimen was observed during
Instruments used dur	ing measurement		
Instrument list:	Amplifier, RF: R&S / Antenna Log-period Field Meter: ETS / F Field probe: ETS / F Generator, RF: R&S Power Sensor: R&S	/ BBA150-BC500 (LR-17 / BBA150-D110E100 (LF ic: AR / ATR80M6G (LR II-6113 (LR-1723) (N/A) II-6153 (LR-1722) (04/20 S / SMB100A (LR-1688) G / NRP6AN (LR-1719) (G G / NRP6AN (LR-1718) (G	R-1721) (N/A) -1724) (N/A) 019) (06/2019) 03/2019)

Conformity Verdict:

Test engineer:

PASS TD

- Page 23 of 33 -

Report No. E18275.00

DETAILED TEST LOG

Direct charging with the drone

Frequency range [MHz]	Field strength [V/m]	Polarization	Required Criteria	Complied Criteria	Result
80 - 1000	3	HOR	Α	Α	PASS
80 - 1000	3	VER	Α	Α	PASS
1000 - 3000	3	HOR	А	А	PASS
1000 - 3000	3	VER	Α	Α	PASS

Charging outside the drone

Frequency range [MHz]	Field strength [V/m]	Polarization	Required Criteria	Complied Criteria	Result
80 - 1000	3	HOR	Α	Α	PASS
80 - 1000	3	VER	Α	Α	PASS
1000 - 3000	3	HOR	А	Α	PASS
1000 - 3000	3	VER	Α	Α	PASS

OBSERVATIONS

No malfunctions were recorded during or after the applied test(s). Observations showed no unintended responses during test(s).

Date: 2018-11-22 - Page 24 of 33 -

ELECTRIC FAST TRANSIENTS IMMUNITY

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

Mains power was supplied to the specimen via the coupling network. The specimen was energized and in normal operating condition.

☑ The specimen and its cables were elevated 10 cm above the reference ground plan	ne.
☐ Artificial hand was applied during test (for location see photos).	

Procedure

Transients were applied at increasing levels to each single line at the AC or DC input port using a coupling network, and to relevant signal ports using a capacitive coupling clamp.

Duration:	Repetition frequency:	Uncertainty figures:
□ 1 minute	⊠ 5kHz	Peak voltage: ± 10 %
⊠ 2 minutes	☐ 100kHz	Transient shape: ± 30 %
□ 5 minutes		·

A functional test was performed before and after the exposure. The specimen was observed during exposure in order to detect unintended responses.

Instruments used during measurement

Instrument list: Generator: EMTest / UCS 500 N7 (LR-1608) (05/2020)

Conformity

Verdict: PASS
Test engineer: THT

DETAILED TEST LOG

Direct charging with the drone

Port	Applied Level [kV]	Injection Method	Required Criteria	Complied Criteria	Result
AC Input Port (N+L1+PE)	±0.5kV	CDN	В	Α	PASS
AC Input Port (N+L1+PE)	±1kV	CDN	В	А	PASS

Charging outside the drone

Port	Applied Level [kV]	Injection Method	Required Criteria	Complied Criteria	Result
AC Input Port (N+L1+PE)	±0.5kV	CDN	В	Α	PASS
AC Input Port (N+L1+PE)	±1kV	CDN	В	А	PASS

OBSERVATIONS

No malfunctions were recorded during or after the applied test(s). Observations showed no unintended responses during test(s).

Date: 2018-11-22 - Page 25 of 33 -

SURGE IMMUNITY

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

Mains power was supplied to the specimen via the coupling network. The specimen was energized and in normal operating condition. The specimen and its cables were elevated 10 cm above the reference ground plane

Procedure

The surge test was only applied to the supply terminals.

Differential mode surges were applied line-to-neutral and line-to-line, with a source impedance of 2Ω . Common mode surges were applied line-to-ground and neutral-to-ground, with a source impedance of 12Ω .

Phase angles:	Repetition rate:	Impulses per test level:	Uncertainty figures:
⊠ 0° □ N/A (DC)	☐ 20 sec.		Peak voltage: ± 10 %
⊠ 90°	⊠ 60 sec.	☐ Other:	Rise time: ± 30 %
⊠ 180°	☐ Other:		Duration: ± 20 %
⊠ 270°			

A functional test was performed before and after the exposure. The specimen was observed during exposure in order to detect unintended responses.

Instruments used during measurement

Instrument list: Generator: EMTest / UCS 500 N7 (LR-1608) (05/2020)

Conformity

Verdict: PASS
Test engineer: THT/TD

DETAILED TEST LOG

Direct charging with the drone

Line	Source impedanc e	CDN	Applied Level [kV]	Required Criteria	Complied Criteria	Result
AC Input Port (N to PE)	12Ω	MCN	±0.5kV	В	Α	PASS
AC Input Port (N to PE)	12Ω	MCN	±1kV	В	Α	PASS
AC Input Port (N to PE)	12Ω	MCN	±2kV	В	Α	PASS
AC Input Port (L1 to PE)	12Ω	MCN	±0.5kV	В	Α	PASS
AC Input Port (L1 to PE)	12Ω	MCN	±1kV	В	Α	PASS
AC Input Port (L1 to PE)	12Ω	MCN	±2kV	В	Α	PASS
AC Input Port (N to L1)	2Ω	MCN	±0.5kV	В	Α	PASS
AC Input Port (N to L1)	2Ω	MCN	±1kV	В	Α	PASS

Note: MCN = Mains coupling network; ICN = Coupling network for interconnecting lines; D = Direct coupling (shielded lines)

Date: 2018-11-22 - Page 26 of 33 -

Charging outside the drone

Line	Source impedanc e	CDN	Applied Level [kV]	Required Criteria	Complied Criteria	Result
AC Input Port (N to PE)	12Ω	MCN	±0.5kV	В	Α	PASS
AC Input Port (N to PE)	12Ω	MCN	±1kV	В	А	PASS
AC Input Port (N to PE)	12Ω	MCN	±2kV	В	А	PASS
AC Input Port (L1 to PE)	12Ω	MCN	±0.5kV	В	Α	PASS
AC Input Port (L1 to PE)	12Ω	MCN	±1kV	В	А	PASS
AC Input Port (L1 to PE)	12Ω	MCN	±2kV	В	Α	PASS
AC Input Port (N to L1)	2Ω	MCN	±0.5kV	В	Α	PASS
AC Input Port (N to L1)	2Ω	MCN	±1kV	В	А	PASS

OBSERVATIONS

No malfunctions were recorded during or after the applied test(s). Observations showed no unintended responses during test(s).

Date: 2018-11-22 - Page 27 of 33 -

CONDUCTED RF DISTURBANCE IMMUNITY

TEST DESCRIPTION

ΝЛ	~+	h	_	-
IVI		n		и.

The reference method for this test is listed in the table under clause TEST SUMMARY.

Mains power was supplied to the specimen vi	ia the coupling network.	The specimen v	vas energized a	and in
normal operating condition.				

☑ The specimen was elevated 10 cm above the reference ground plane.
□ Cables were elevated 5 cm above the reference ground plane.
☐ Artificial hand was applied during test (for location see photos).

All specimen ports, which are not subject to testing, are furnished with decoupling networks to achieve RF isolation of the specimen during test. A return path was created according to the priority given in §7.2 of the reference standard.

Procedure

Disturbance was applied via a coupling/decoupling network (CDN) or an electromagnetic coupling clamp (EM Clamp) to each port separately.

Frequency range: ⊠ 150kHz – 80MHz □ 150kHz – 230MHz □ Spot frequencies	Modulation: ⊠ 80% AM @ 1000Hz □ 80% AM @ 400Hz □ 50% PM @ 217Hz	Frequency sweep rate: ☑ 1% step with 3 sec dwell time ☐ 1.5x10 ⁻³ decades/sec ☐ Other:
☐ Spot frequencies	☐ 50% PM @ 217H2	□ Other:

Measurement uncertainty: ± 2.8 dB (150 kHz - 26 MHz); ± 3.7 dB (26 MHz - 80 MHz)

A functional test was performed before and after the exposure. The specimen was observed during exposure in order to detect unintended responses.

Instruments used during measurement

Instrument list: Amplifier, RF: AR / 75A250 (N-3816) (N/A)

CDN: TESEQ / CDN-M316 (LR-1653) (N/A)

Generator, signal: R&S / SMB100A (LR-1649) (05/2019)

Power Meter: R&S / NRP2 (LR-1652) (10/2019)

Conformity

Verdict: PASS
Test engineer: THT

Date: 2018-11-22 - Page 28 of 33 -

Report No. E18275.00

DETAILED TEST LOG

Direct charging with the drone

Tested Port	Injection Method	Return Path	Applied Level [Vrms]	Required Criteria	Complied Criteria	Result
AC Input Port	CDN-M3	Capacitive	3 Vrms	Α	Α	PASS

□ Additional tests were performed at discrete spot frequencies with 10Vrms test level. Spot frequencies which were tested are; 2 MHz, 3 MHz, 4 MHz, 6,2 MHz, 8,2 MHz, 12,6 MHz, 16,5 MHz, 18,8 MHz, 22 MHz and 25 MHz.

Charging outside the drone

Tested Port	Injection Method	Return Path	Applied Level [Vrms]	Required Criteria	Complied Criteria	Result
AC Input Port	CDN-M3	Capacitive	3 Vrms	Α	Α	PASS

OBSERVATIONS

No malfunctions were recorded during or after the applied test(s). Observations showed no unintended responses during test(s).

Date: 2018-11-22 - Page 29 of 33 -

VOLTAGE DIPS AND INTERRUPTIONS IMMUNITY

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

Only the general laboratory conditions were applied. No special requirements are defined for the configuration of the specimen. The main supply port of the specimen was connected to the power simulator system which generates the dips and interruptions. The specimen was energized and in normal operating condition.

Procedure

The specimen was subject to voltage reductions a given number of times, separated by a sufficient interval for the specimen to recover. The reductions were fired at different phase angles according to the

requirements of the te		re fired at different phase angles	according to the
Repetition rate: ☐ 10 sec. ☑ 20 sec. ☐ Other:	Repetitions: ☑ 3 occurrences. ☐ Other:	Phase angle: ☐ N/A (DC supply). ☐ Only at 0°. ☐ Only at zero crossings (0°) ☐ 0-270°; each 90°. ☑ 0-315°; each 45°.	and 180º).
Measurement uncertain	nty: Voltage level: ± 5 %	Zero crossing control: ± 10°; Pha	ase relationship: ± 10°
	performed before and after etect unintended respons	er the exposure. The specimen was	as observed during
Instruments used du	ring measurement		
Instrument list:		CS 500 N7 (LR-1608) (05/2020) est / MV 2616 (LR-1610) (05/202	0)
		Conformity	
		\/oud!ot.	DACC

Verdict: Test engineer: THT

Date: 2018-11-22 - Page 30 of 33 -

DETAILED TEST LOG

Direct charging with the drone

Valtana Baduatian	Voltage Levels		Duration	Required	Complied	Dooult
Voltage Reduction	Nominal	Test	[cycles]	Criteria	Criteria	Result
30% Dip	230	161	25	В	А	PASS
60% Dip	230	92	25	В	Α	PASS
>95% Dip	230	0	0.5/1	В	А	PASS
100% Interruption	230	0	250	В	B¹	PASS

¹ The charging function is interrupted and EUT restarted by itself.

Charging outside the drone

Valtage Reduction	Voltage Levels		Duration	Required	Complied	Result
Voltage Reduction	Nominal	Test	[cycles]	Criteria	Criteria	Result
30% Dip	230	161	25	В	Α	PASS
60% Dip	230	92	25	В	Α	PASS
>95% Dip	230	0	0.5/1	В	А	PASS
100% Interruption	230	0	250	В	B¹	PASS

¹ The charging function is interrupted and EUT restarted by itself.

OBSERVATIONS

No malfunctions were recorded after the applied test(s).

Date: 2018-11-22 - Page 31 of 33 -

¹ The charging function is interrupted during 5sec interruptions but the EUT restarted by itself.

Annexes

Date: 2018-11-22 - Page 32 of 33 -

PHOTOS

Test set-up for EMC emissions measurements	
See photo in separate document	
Test set-up for EMC immunity tests	
See photo in separate document	

Date: 2018-11-22 - Page 33 of 33 -