

DKL 1613_V.1 User Manual

Single Chip 2.4GHz Module

FEATURES

- Low Power
 - 16mA TX at 0dBm output power
 - > 15mA RX at 1Mbps air data rate
 - > 2uA in power down
- Low Cost BOM
 - Few external components
 Four Capacitors, One crystal oscillator
- High Performance
 - > Excellent Receiver sensitivity
 - -88dBm@1Mbps
 - -93dBm@250Kbps
 - Programmable Output Power Up to 13dBm

APPLICATIONS

- TV and STB remote controls
- Wireless Mouse and keyboard
- Toys and wireless audio
- Wireless gamepads
- Active RFID
- Smart home automation

GENERAL DESCRIPTION

The XN297L is a single chip 2.4GHz transceiver, designed for operation in the worldwide ISM frequency band at 2.400~2.483GHz. The XN297L integrates radio frequency (RF) transmitter and receiver, frequency synthesizer, crystal oscillator, baseband GFSK modem, and other function blocks. The XN297L supports multiple networks and communication with ACK. TX power, frequency channel, and data rate can be set by SPI.

<u> </u>	
1Mbps, 250kbps optional data rate	Up to 8Mbps SPI interface rate
Support 32 and 64 bytes payload length	Compact 20-pin 3×3mm QFN package
Support ±20ppm 16MHz crystal	Operating voltage is 2.2V~3.3V
GFSK Modulation	Support automatic reply and automatic
	retransmission
Support RSSI detector	Support Data whitening and CRC

1 Electrical Characteristics

Table1 XN297L Electrical Characteristics

C. was la a l	Condition		Parameter					
Symbol	at VCC = 3V±5%, T=25°C	Min	Тур	Max	Unit			
	Sleep		2		uA			
	Standby I		30		uA			
	Standby III		650		uA			
	Standby II		780		uA			
	TX at -35dBm output		9		mA			
	power				IIIA			
	TX at -20dBm output		9.5		mA			
ICC	power		1.0		^			
	TX at 0dBm output power		16		mA			
	TX at 2dBm output power		19		mA			
	TX at 8dBm output power		30		mA			
	TX at 13dBm output power		66		mA			
	RX at 1Mbps		15.5		mA			
	RX at 250kbps		15		mA			
	Genera	ıl RF	<u> </u>	<u>l</u>	1			
f_{OP}	Operating frequency	2400		2483	MHz			
PLL_{res}	PLL Programming		1		MHz			
_	resolution							
$f_{\it XTAL}$	Crystal frequency		16		MHz			
DR	Data rate	0.25		1	Mbp s			
Δf_{250K}	Frequency deviation at 250kbps		125		KHz			
Δf_{1M}	Frequency deviation at		160	250	KHz			
	1Mbps							
FCH_{250K}	Channel spacing at 250Kbps		1		MHz			
FCH_{1M}	Channel spacing at 1Mbps		1		MHz			
			†					
Transmitter								
PRF	Typical output power	2	8	13	dBm			
PRFC	Output Power Range	-35		13	dBm			
PBW2	20dB Bandwidth for Modulated Carrier at		1		MHz			
	1Mbps							

				10112 1	-0 0-0-1
PBW3	20dB Bandwidth for Modulated Carrier at 250Kbps		500		KHz
	Recei	ver			
RX_{\max}	Maximum received signal at <0.1% BER		0		dBm
RXSENS2	Sensitivity (0.1%BER) @1Mbps		-87		dBm
RXSENS3	Sensitivity (0.1%BER) @250Kbps		-93		dBm
C/I_{CO}	C/I Co-channel (@1Mbps)		10		dBc
C/I_{1ST}	1st Adjacent Channel Selectivity C/I		1		dBc
C/I_{2ND}	2nd Adjacent Channel Selectivity C/I		-18		dBc
C/I_{3RD}	3rd Adjacent Channel Selectivity C/I		-23		dBc
$C/I_{_{4TH}}$	4th Adjacent Channel Selectivity C/I		-28		dBc
C/I_{5TH}	5th Adjacent Channel Selectivity C/I		-32		dBc
C/I_{6TH}	6th Adjacent Channel Selectivity C/I		-35		dBc
C/I_{CO}	C/I Co-channel (@250Kbps)		2		dBc
C/I_{1ST}	1st Adjacent Channel Selectivity C/I		-8		dBc
C/I_{2ND}	2nd Adjacent Channel Selectivity C/I		-18		dBc
C/I_{3RD}	3rd Adjacent Channel Selectivity C/I		-24		dBc
C/I_{4TH}	4th Adjacent Channel Selectivity C/I		-28		dBc
C/I_{5TH}	5th Adjacent Channel Selectivity C/I		-32		dBc
C/I_{6TH}	6th Adjacent Channel Selectivity C/I		-35		dBc
	Operating co	onditions			
VDD	Supply voltage	2.2	3	3.3	V
VSS	Ground		0		V
$V_{\scriptscriptstyle OH}$	Output high level voltage	VDD-0. 3		VDD	V
V_{OL}	Output low level voltage	VSS		VSS+0. 3	V
$V_{I\!H}$	Input high level voltage	2.0	3	3.6	V

$V_{I\!L}$	Input low level voltage	VSS		VSS+0. 3	V	
------------	-------------------------	-----	--	-------------	---	--

^{*} Note: In the channels, such as 2416 and 2432 MHz, integer times of 16MHz crystal, receiver sensitivity degrades about 2dB; and modulation quality of the emission signal (EVM) falls by 10%.

2 Absolute Maximum Ratings

Table 2 XN297L Absolute Maximum Ratings

Symbo	ymbo Condition		Parameter			
I	Condition	Min	Тур	Max	Unit	
	maximum ı	ratings				
V_{DD}	Supply voltage	-0.3		3.6	V	
V_I	Input voltage	-0.3		5	V	
V_{O}	Output voltage	VSS		VDD		
Pd	Pd Total Power Dissipation (TA=-40°C~85°C)			300	mW	
T_{OP}	Operating Temperature	-40		85	°C	
T_{STG}	Storage Temperature	-40		125	°C	

^{*} Note: Exceeding one or more of the limiting values may cause permanent damage to XN297L.

^{*} Note: In 250Kbps mode, payload length should not be more than 16 bytes, because of frequency drift in open-loop transmitting mode.

^{*} Caution: Electrostatic sensitive device, comply with protection rules when operating.

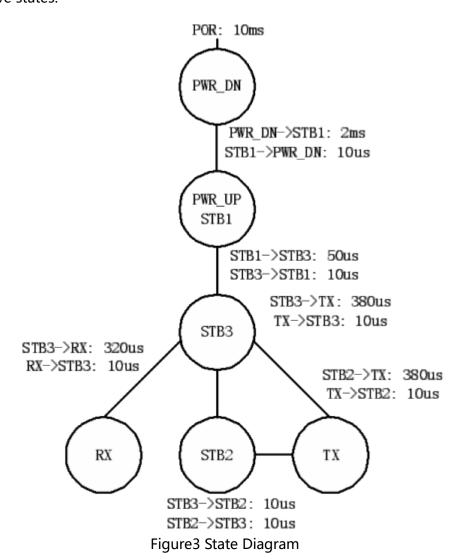
5 Operational Modes

This chapter describes XN297L' s all kinds of working modes, and is used to control the chip into the working mode method. XN297L' s state machine is controlled by chip internal registers configuration values and external signal pin.

5.1 State Diagram

Table 4 shows six kinds of work modes, which gives the corresponding mode of control registers and FIFO registers.

Table 4 Control BIT and Function Description


MODE	PWR_DN	STB1	STB3	STB2	RX	TX
CONTROL						
BIT						
PWR_UP	0	1	1	1	1	1
EN_PM	0	0	1	1	1	1
CE	0	0	0	1	1	1
PRIM_RX	X	Χ	Χ	0	1	0
FUNCTION						
DESCRIPTIO						
N			1	1		
SPI operation	√	√	√	√	√	√
Keep register	V	\checkmark	V	V	V	\checkmark
value	•	V	· v	•	v	v
Crystal						
oscillator	Х	\checkmark	√	√	√	√
work						
Crystal					,	,
oscillator	Х	Χ	Х	√	√	√
output						
Main power	V	V	,	,	,	
management	Х	Χ	√	√	√	√
work	V	V	V	V	V	,
TX work	X	X	X	X	X	√
RX work	X	Χ	X	X	√	X

5.2 State Diagram

Figure 3 shows XN297L' s working state diagram, giving six working modes between jump XN297L in VDD is larger than 2.2V to work properly into sleeping

mode, the MCU can be sent via SPI configuration commands and CE pin into the other five states.

5.3 IRQ PIN

When the status register TX_DS RX_DR or MAX_RT is 1, reporting and the corresponding interrupt enable bit is 0, IRQ pins interrupts trigger. The MCU writes 1 to the corresponding interrupt source, clear the interrupt. IRQ pins interrupt trigger can be blocked or enabled, report by setting the interrupt enable bit is 1, ban IRQ pins interrupt triggered.

6 DATA FIFO

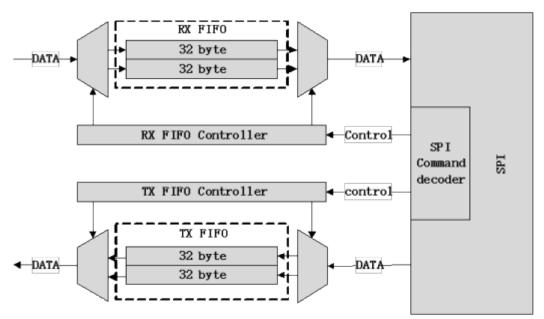


Figure 4 FIFO Block Diagram

The XN297L contains TX FIFO and RX FIFO. It is sent via SPI read/write command. It writes TX FIFO in TX mode by W_TX_PAYLOAD and W_TX_NO_ACK instructions. If MAX_RT interruption, data will be cleared in the TX FIFO. It reads PAYLOAD in RX FIFO in receiving mode by R_RX_PAYLOAD, and it reads the length of the PAYLOAD by R_RX_PL_WID instruction. FIFO_STATUS register indicates FIFO states.

7 SPI CONTROL

The XN297L is controlled by SPI port for read and write registers, and command. The XN297L is a slave terminal, SPI transfer rate depends on the MCU interface speed, and the maximum data transfer rate is 8 Mbps.

SPI interface is a standard SPI interface are shown in table 5, you can use the general I/O for MCU simulation SPI interface. CSN pin to 0, SPI interface instructions to be performed. From 1 to 0 a CSN pin changes execute one instruction. After the change from 1 to 0 CSN pin can be read by MISO status register contents.

I/O **FUNCTION** PIN **DIRECTION DESCRIPTION** CSN **SPI Chip Select** Input SCK Clock Input MOS Input Serial Data Input MIS Output Serial Data Output 0

Table 5 SPI Port

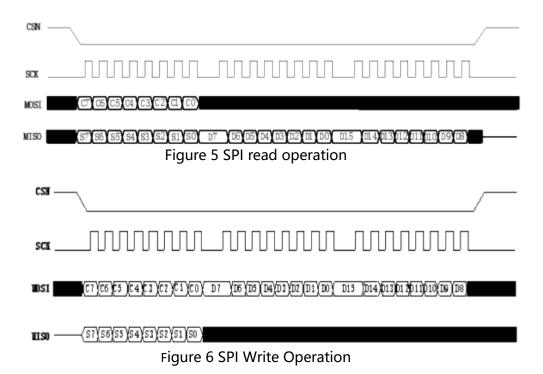
7.1 SPI Commands

Table 6 SPI Command Format

<Command word: MSBit to LSBit (one byte)>

<Data bytes: LSByte to MSByte, MSBit in each byte first>

COMMAND	COMMAN D WORD (BINARY)	DATA BYTES	OPERATION
R_REGISTER	000A AAAA	1 to 5	Read registers. AAAAA =5 bit Register Map Address
W_REGISTER	001A AAAA	1 to 5	Write registers. AAAAA = 5 bit Register Map Address Executable in power down or standby modes only.
R_RX_PAYLOAD	0110 0001	1 to 32/64	Read RX-payload. A read operation starts at byte 0. Payload is deleted from RX



			=== 0 (:
			FIFO after it is read. Used in RX mode.
W_TX_PAYLOAD	1010 0000	1 to 32/64	Write TX-payload. A write operation starts at byte 0. Used in TX payload.
FLUSH_TX	1110 0001	0	Flush TX FIFO, used in TX mode
FLUSH_RX	1110 0010	0	Flush RX FIFO, used in RX mode
REUSE_TX_PL	1110 0011	0	Used for a PTX device, reuse last transmitted payload. Packets are repeatedly retransmitted as long as CE is high. TX payload reuse is active until W_TX_PAYLOAD or FLUSH_TX is executed.
ACTIVATE	0101 0000	1	This write command followed by data 0x73 activates the following features: • R_RX_PL_WID • W_TX_PAYLOAD_NOACK • W_ACK_PAYLOAD This is executable in power down or standby modes only. This write command followed
DEACTIVE			by data 0x8C deactivates the following features:
R_RX_PL_WID	0110 0000	0	Read RX-payload width for the top, R_RX_PAYLOAD in the RX FIFO.
W_ACK_PAYLOAD	1010 1PPP	1 to 32/64	Used in RX mode. Write Payload to be transmitted together with ACK packet on PIPE PPP. (PPP valid in the range from 000 to 101). Maximum two ACK packet payloads can be pending. Payloads with same PPP are handled using first in first out principle.
W_TX_PAYLOAD_NO ACK	1011 0000	1 to 32/64	Write Payload to be transmitted, used in TX mode. Disable auto ACK on this packet.
CE_FSPI_ON	1111 1101	1	SPI command CE internal logic 1, use the command followed by the data 0x00

CE_FSPI_OFF	1111 1100	1	SPI command CE internal logic 0, use the command followed by the data 0x00
RST_FSPI_HOLD			With the command followed by data 0x5A, makes the XN297L into reset and maintain
	0101 0011	1	
RST_FSPI_RELS			With the command followed by data 0xA5, release the XN297 reset and start to work normally
NOP	1111 1111	0	No Operation.

The R_REGISTER and W_REGISTER commands can operate on single or multi-byte registers. When accessing multi-byte registers, firstly read or write the MSBit of LSByte. Terminate the writing before all bytes in a multi-byte register are written, then it leaves the unwritten MSByte(s) unchanged. For example, the LSByte of RX_ADDR_PO can be modified by writing only one byte to the RX_ADDR_PO register.

7.2 SPI Timing

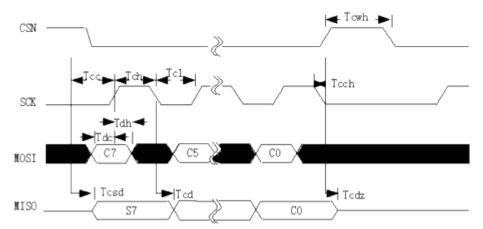


Figure 7 SPI NOP Timing Diagram

8 Control Registers

You can configure and control XN297L by accessing the register map through the SPI by using read and write commands.

Table 9 Control Registers (The Registers with * need to be modified)

ADDRESS (HEX)	REGISTERS	BIT	DEFAULT VALUE AFTER RESTORATION	READ AND WRITE	EXPLANATION
00*	CONFIG				Configuration Register
	EN_PM	7	0	R/W	Into STB3 mode (When PWR_UP=1) 1: Into STB3 mode 0: Into STB1 mode (When changing to other modes, wait more than 50us in STB3 mode)
	MASK_RX_DR	6	0	R/W	The interrupt when receiving data successfully reports to the Enable_bit. 1: Interrupt not reflected on the IRQ pin. 0: Reflect RX_DR as active low interrupt on the IRQ pin.
	MASK_TX_DS	5	0	R/W	The interrupt when sending data successfully reports to the Enable_bit. 1: interrupt not reflect on the IRQ pin. 0: reflect TX_DS as active low interrupt on the IRQ pin.

	MASK_MAX_RT	4	0	R/W	The interrupt reaching maximum transmission times when sending data unsuccessfully reports to the Enable_bit 1: interrupt not reflected on the IRQ pin. 0: reflect MAX_RT as active low interrupt on the IRQ pin. Enable CRC
	EN_CRC	3	1	R/W	1: CRC enable, 2byte 0: CRC disable and verification.
	N/A	2	0	R/W	Retain and set to 1
	PWR_UP	1	0	R/W	The Enable_bit 1: POWER_UP 0: POWER_DOWN
	PRIM_RX	0	0	R/W	RX/TX Control 1: PRX 0: PTX
01	EN_AA Enhanced Burst				The auto_response enable of reception channel (If the EN_AA of receiving terminal isn' t 0X00, the system is set to enhancement mode)
	Reserved	7:6	00	R/W	Only 00 allowed
	ENAA_P5	5	0	R/W	Enable pipe5 auto-response
	ENAA_P4	4	0	R/W	Enable pipe4 auto-response
	ENAA_P3	3	0	R/W	Enable pipe3 auto-response
	ENAA_P2	2	0	R/W	Enable pipe2 auto-response
	ENAA_P1	1	0	R/W	Enable pipe1 auto-response
	ENAA_P0	0	1	R/W	Enable pipe0 auto-response
02	EN_RXADDR				Enable reception channel
	Reserved	7:6	00	R/W	Only 00 allowed
	ERX_P5	5	0	R/W	enable data pipe 5
	ERX_P4	4	0	R/W	enable data pipe 4
	ERX_P3	3	0	R/W	enable data pipe 3
	ERX_P2	2	0	R/W	enable data pipe 2
	ERX_P1	1	0	R/W	enable data pipe 1
	ERX_P0	0	1	R/W	enable data pipe 0
03	SETUP_AW				Setup of Address Widths
	Reserved	7:2	000000	R/W	Only 000000 allowed
	AW	1:0	11	R/W	RX/TX Address Field Width 00: Illegal 01: 3 bytes 10: 4 bytes 11: 5 bytes LSByte is used if address width is below 5 bytes

04	SETUP_RETR				Setup of Automatic Retransmission
	ARD	7:4	0000	R/W	Auto Retransmit Delay 0000 :250μs 0001 :500μs 0010 :750μs 1111: 4000μs
	ARC	3:0	0011	R/W	Auto retransmit count 0000: re-transmit disabled 0001 ~ 1111: Enhance mode 0001: up to 1 re-transmit on fail of AA 0010: up to 2 re-transmit on fail of AA 1111: up to 15 re-transmit on fail of AA
05	RF_CH				RF channel
	Reserved	7	0	R/W	Only 0 allowed
	RF_CH	6:0	1001110	R/W	Set the frequency channel RF_CH + 2400
06*	RF_SETUP				RF Setup Register
	RF_DR	7:6	00	R/W	Data rate 01: retain 00: 1Mbps 11: 250kbps 10: retain
	PA_GC	5:3	111	R/W	The output amplitude of PA's driver can adjust the transmitting power. 111: The amplitude is high 000: The amplitude is low.
	PA_PWR	2:0	111	R/W	The output amplitude of PA's output power can adjust the transmitting power. 111: The output power is high 000: The output power is low.
07	STATUS				Status Registers
	Reserved	7	0	R/W	Only 0 allowed
	RX_DR	6	0	R/W	Data ready RX FIFO interrupt. Asserted when new data arrives RX FIFO. Write 1 to clear bit.
	TX_DS	5	0	R/W	Data sent TX FIFO interrupt. Asserted when packet transmitted on TX. if AUTO_ACK is activated, this bit is set high only when ACK is received. Write 1 to clear bit.

	MAX_RT	4	0	R/W	Maximum number of TX retransmits interrupt write 1 to clear bit. If MAX_RT is asserted it must be cleared to enable furtuer communication.
	RX_P_NO	3:1	111	R	Data pipe number for the payload available for reading from RX_FIFO. 000-101: pipe number 110: Not Used 111: RX_FIFO empty
	TX_FULL	0	0	R	TX FIFO full flag 1: TX FIFO full 0: Available locations in TX FIFO
08	OBSERVE_TX				Transmit Observe Register
	PLOS_CNT	7:4	0	R	Count lost packets. The counter is overflow protected to 15, and discontinues at max until reset. The counter is reset by writing to RF_CH.
	ARC_CNT	3:0	0	R	Count retransmitted packets. The counter is reset when transmission of a new packet starts.
09*	DATAOUT				Data read registers (DATAOUT_SEL=0)
	ANADATA7	7	0	R	The 3rd bit of receiver's RSSI value(the maxmum bit)(for test)
	ANADATA6	6	0	R	The 2nd bit of receiver's RSSI value(the maxmum bit)(for test)
	ANADATA5	5	0	R	The 1st bit of receiver's RSSI value(the maxmum bit)(for test)
	ANADATA4	4	0	R	The 0 bit of receiver's RSSI value(the maxmum bit)(for test)
	ANADATA3	3	0	R	The 3 rd bit of receiver' s receiving packet(the maximum bit)
	ANADATA2	2	0	R	The 2nd bit of receiver's receiving packet
	ANADATA1	1	0	R	The 1st bit of receiver's receiving packet
	ANADATA0	0	0	R	The 0 bit of receiver's receiving packet
0A	RX_ADDR_P0	39:0	0xE7E7E 7E7E7	R/W	Receive address data pipe 0.5 bytes maximum length.(LSByte is written first. Write the number of bytes defined by SETUP_AW)
ОВ	RX_ADDR_P1	39:0	0xC2C2C 2C2C2	R/W	Receive address data pipe 1 bytes maximum length.(LSByte is written first. Write the number of bytes defined by SETUP_AW)

			I		
0C	RX_ADDR_P2	7:0	0xC3	R/W	Receive address data pipe 2 bytes maximum length. Only LSB. MSBytes is equal to RX_ADDR_P1[39:8]
0D	RX_ADDR_P3	7:0	0xC4	R/W	Receive address data pipe 3 bytes maximum length. Only LSB. MSBytes is equal to RX_ADDR_P1[39:8]
OE	RX_ADDR_P4	7:0	0xC5	R/W	Receive address data pipe 4 bytes maximum length. Only LSB. MSBytes is equal to RX_ADDR_P1[39:8]
OF	RX_ADDR_P5	7:0	0xC6	R/W	Receive address data pipe 5 bytes maximum length. Only LSB. MSBytes is equal to RX_ADDR_P1[39:8]
10	TX_ADDR	39:0	0xE7E7E 7E7E7	R/W	Transmit address. Used for a PTX device only.(LSByte is written first) Set RX_ADDR_P0 equal to this address to handle automatic acknowledge if this is a PTX Device with enhanced shockburst enabled.
11	RX_PW_P0				The data length of data pipe 0' s RX payload
	Reserved	7	0	R/W	Only 0 allowed
	RX_PW_P0	6:0	0000000	R/W	Number of bytes in RX payload in data pipe 0(1 to 32/64 bytes) 0 pipe not used 1=1 byte 32/64=32/64 bytes
12	RX_PW_P1				The data length of data pipe 1' s RX payload.
	Reserved	7	0	R/W	Only 0 allowed
	RX_PW_P1	6:0	0000000	R/W	Number of bytes in RX payload in data pipe 1(1 to 32/64 bytes) 0 pipe not used 1=1 byte 32/64=32/64 bytes
13	RX_PW_P2				The data length of data pipe 2' s RX payload.
	Reserved	7	0	R/W	Only 0 allowed
	RX_PW_P2	6:0	0000000	R/W	Number of bytes in RX payload in data pipe 2(1 to 32/64 bytes) 0 pipe not used 1=1 byte 32/64 = 32/64 bytes

	PANCHIP			•	Z. TOIIZ MOUUIC
14	RX_PW_P3				The data length of data pipe 3' s RX payload.
	Reserved	7	0	R/W	Only 0 allowed
	RX_PW_P3	6:0	0000000	R/W	Number of bytes in RX payload in data pipe 3(1 to 32/64 bytes) 0 pipe not used 1=1 byte 32/64 = 32/64 bytes
15	RX_PW_P4				The data length of data pipe 4' s RX payload.
	Reserved	7	0	R/W	Only 0 allowed
	RX_PW_P4	6:0	0000000	R/W	Number of bytes in RX payload in data pipe 4(1 to 32/64 bytes) 0 pipe not used 1=1 byte 32/64 = 32/64 bytes
16	RX_PW_P5				The data length of data pipe 5' s RX payload.
	Reserved	7	0	R/W	Only 0 allowed
	RX_PW_P5	6:0	0000000	R/W	Number of bytes in RX payload in data pipe 5(1 to 32/64 bytes) 0 pipe not used 1=1 byte 32/64 = 32/64 bytes
17*	FIFO STATUS				FIFO Status Register
	N/A	7	0	R	retain
	TX_REUSE	6	0	R	Reuse last transmitted data packet if set high. the packet repeatedly retransmitted as long as CE is high. TX_REUSE is set by the SPI command REUSE_TX_PL, and is reset by the SPI commands W_TX_PAYLOAD_NOACK、DEACTIVATE、FLUSH TX.。
	TX_FULL	5	0	R	TX FIFO full flag. 1:TX FIFO full. 0:Available locations in TX FIFO.
	TX_EMPTY	4	1	R	TX FIFO empty flag. 1:TX FIFO empty. 0:Data in TX FIFO.
	N/A	3	0	R	Retain
	N/A	2	0	R	Retain
	RX_FULL	1	0	R	RX FIFO full flag. 1: RX FIFO full.

RX_EMPTY 0 1 R RX_FIFO empty flag. 1: RX_FIFO						0: Available locations in RX FIFO.
RX_EMPTY 0 1 R 1: RX FIFO empty. 0: Data in RX FIFO. Written by separate SPI command TX data payload register 2-32 bytes or 1-64 bytes FIFO. Written by separate SPI command RX data payload register 2-32 bytes or 1-64 bytes FIFO. Written by separate SPI command RX data payload register 2-32 bytes or 1-64 bytes FIFO. All RX channels share the same FIFO. All RX channels share the same FIFO. Modulation-demodulation parameter registers/configure by program) Configure if the chip is in test mode 1: Enter test mode 0: Quit test mode Configure if the chip is in carrier test mode 0: Quit test mode Configure if the chip is in carrier test mode 1: Enter test mode Configure if the chip is in carrier test mode 1: Enter single carrier mode and the chip is set to 1 00: Quit single carrier mode and the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W Scramble_en 0 1 R/W Scramble_en 0 1 R/W RAW REF_CAL2 47:0 R/W Retain N/A 47:46 01 R/W Retain The bandwidth of filter						
N/A TX_PLD 255:0 X W data payload register 2-32 bytes or 1-64 bytes FIFO. N/A RX_PLD 255:0 X R R 64 bytes FIFO. Written by separate SPI command TX data payload register 2-32 bytes or 1-64 bytes FIFO. Written by separate SPI command RX data payload register 2-32 bytes or 1-64 bytes FIFO. All RX_Channels share the same FIFO. Modulation-demodulation parameter registers(configure by program) CHIP 7 0 R/W I: Enter test mode CARR 6:5 00 R/W I: Enter test mode COnfigure if the chip is in carrier test mode CONFigure if the chip is in carrier test mode The amplitude adjustment of signal from Gaussian filter to DAC, which is one of the key factor to decide the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W Scramble_en 0 1 R/W Scramble_en 0 1 R/W RF_CAL2 47:0 R/W N/A 47:46 01 R/W RETAIN Written by separate SPI command TX data payload register 2-32 bytes or 1-64 bytes FIFO. Written by separate SPI command TX data payload register 2-32 bytes or 1-64 bytes FIFO. Written by separate SPI command TX data payload register 2-32 bytes or 1-64 bytes FIFO. Written by separate SPI command TX data payload register 2-32 bytes or 1-64 bytes FIFO. All RX channels share the same FIFO. Modulation-demodulation parameter registers(Default value is recommended) 11 Enter test mode 12 Enter test mode 13 Enter test mode 14 Extremely for the payload register 2-32 bytes or 1-64 bytes FIFO. Written by separate SPI command TX data payload register 2-32 bytes or 1-64 bytes FIFO. All RX channels share the same FIFO. Modulation-demodulation parameter registers(Default value is recommended) Written by separate SPI command TX data payload register 2-32 bytes or 1-64 bytes or 1-64 bytes FIFO. All RX the payload register 2-32 bytes or 1-64 bytes fiFO. All RX the payload register 2-32 bytes or 1-64 bytes fiFO. All RX the payload register 2-32 bytes or 1-64 bytes fiFO. All RX the payload register 2-32 bytes or 1-64 bytes fiFO. All RX the payload register (Chip is payload to payload register (Chip i		RX EMPTY	0	1	R	
N/A TX_PLD 255:0 X W Written by separate SPI command TX data payload register 2-32 bytes or 1-64 bytes FIFO. N/A RX_PLD 255:0 X R Written by separate SPI command RX data payload register 2-32 bytes or 1-64 bytes FIFO. All RX channels share the same FIFO. Modulation-demodulation parameter registers/configure by program) Configure if the chip is in test mode 1: Enter test mode 0: Quit test mode CARR 6:5 00 R/W 1: Enter test mode 0: Quit test mode 11: Enter test mode 10: Quit test mode 11: Enter single carrier mode and the chip is set to 1 00: Quit single carrier mode and the chip is set to 1 00: Quit single carrier mode and the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W 1111: The amplitude is high				-		. ,
N/A TX_PLD 255:0 X W data payload register 2-32 bytes or 1-64 bytes FIFO. N/A RX_PLD 255:0 X R N/A RET_CAL2 R5:0 X R N/A RET_CAL2 R5:0 R N/A RET_CAL5 R5:0 R N/A R5-CAL5 R5:0 R N/A R5-CAL						
N/A RX_PLD 255:0 X R Written by separate SPI command RX data payload register 2-32 bytes or 1-64 bytes FIFO. 19* DEMOD_CAL 7:0	N/A	TX PLD	255:0	Х	l w	· · · · · · · · · · · · · · · · · · ·
N/A RX_PLD 255:0 X R R 64 bytes FIFO. Modulation-demodulation parameter registers(configure by program) CHIP 7 0 R/W CARR 6:5 00 R/W 11: Enter test mode 0: Quit test mode 0: Quit test mode 0: Quit test mode 1: Enter single carrier mode and the chip is set to 1 00: Quit single carrier mode and the chip is set to 1 00: Quit single carrier mode and the chip is set to 1 00: Quit single carrier mode 1: The amplitude adjustment of signal from Gaussian filter to DAC, which is one of the key factor to decide the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W 1111: The amplitude is high 1000: The amplitude is high 1: The scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain The bandwidth of filter	, , , .	.,, ==		, ,	"	1
N/A RX_PLD 255:0 X R data payload register 2-32 bytes or 1-64 bytes FIFO. 19* DEMOD_CAL 7:0 Modulation-demodulation parameter registers(configure by program) CHIP 7 0 R/W Configure if the chip is in test mode 1: Enter test mode 2: Quit test mode 2: Configure if the chip is in carrier test mode 3: Enter test mode 4: Enter test mode 5: Quit test mode 6: Quit test mode 7: Enter test mode 8: Enter single carrier mode 8: Enter single carrier mode 8: Enter single carrier mode 9: Quit test mode 9: Quit test mode 9: Quit test mode 1: Enter single carrier mode 9: Quit test mode 1: Enter single carrier mode 9: Quit single sin						
N/A RA_PLD 233.0 A R 64 bytes FIFC. All RX channels share the same FIFO. Modulation-demodulation parameter registers(configure by program) CHIP 7 0 R/W 1: Enter test mode 0: Quit test mode 1: Enter test mode 0: Quit test mode 1: Enter test mode 0: Quit test mode 1: Enter test mode 1: Enter test mode 0: Quit test to 1 00: Quit single carrier mode and the chip is set to 1 00: Quit single carrier mode and the chip is set to 1 00: Quit single carrier mode and the chip is set to 1 00: Quit single carrier mode IThe amplitude adjustment of signal from Gaussian filter to DAC, which is one of the key factor to decide the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W 1111: The amplitude is high 1000: The amplitude is high 1000: The amplitude is high If the scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function 0: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain The bandwidth of filter						
All RX channels share the same FIFO. Modulation-demodulation parameter registers(configure by program)	N/A	RX_PLD	255:0	Х	R	64 hytes FIFO
DEMOD_CAL 7:0 Modulation-demodulation parameter registers(configure by program)						All RX channels share the same FIFO
registers(configure by program) CHIP 7 0 R/W 1: Enter test mode 0: Quit test mode 0: Quit test mode 1: Enter test mode 0: Quit test mode 1: Enter is the chip is in test mode 1: Enter is mode 1						
CHIP 7 0 R/W 1: Enter test mode 1: Enter test mode 0: Quit test mode 1: Enter test mode 0: Quit test mode Configure if the chip is in carrier test mode 11: Enter single carrier mode and the chip is set to 1 00: Quit single carrier mode and the chip is set to 1 00: Quit single carrier mode and the chip is set to 1 00: Quit single carrier mode The amplitude adjustment of signal from Gaussian filter to DAC, which is one of the key factor to decide the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W 1111: The amplitude is high 1000: The amplitude is high 0000: The amplitude is high If the scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function 0: Turn off scrambler function 0: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain The bandwidth of filter	19*	DEMOD_CAL	7:0			•
CHIP 7 0 R/W 1: Enter test mode 0: Quit test mode Configure if the chip is in carrier test mode CARR 6:5 00 R/W 11: Enter single carrier mode and the chip is set to 1 00: Quit single carrier mode The amplitude adjustment of signal from Gaussian filter to DAC, which is one of the key factor to decide the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W 1111: The amplitude is high 1000: The amplitude is high lf the scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function 1A* RF_CAL2 47:0 Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain The bandwidth of filter						
CARR 6:5 00 R/W 11: Enter single carrier mode and the chip is set to 1 00: Quit single carrier mode and the chip is set to 1 00: Quit single carrier mode The amplitude adjustment of signal from Gaussian filter to DAC, which is one of the key factor to decide the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W 1111: The amplitude is high 1 1000: The amplitude is h		CHID	7	n	R /\/	
CARR 6:5 00 R/W 11. The trip is in carrier test mode CARR 6:5 00 R/W 11. The trip is set to 1 00: Quit single carrier mode and the chip is set to 1 00: Quit single carrier mode The amplitude adjustment of signal from Gaussian filter to DAC, which is one of the key factor to decide the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W 1111: The amplitude is high 1000: The amplitude is high If the scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-tosent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1. Enable scrambler function 0: Turn off scrambler function function 0: Turn off scrambler function 0: Turn off scrambler function function 0: Turn off scrambler function function 0: Turn off scrambler function function function function function function functi		Criir	/	U	17,44	
CARR 6:5 00 R/W 11: Enter single carrier mode and the chip is set to 1 00: Quit single carrier mode The amplitude adjustment of signal from Gaussian filter to DAC, which is one of the key factor to decide the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W 1111: The amplitude is high 1000: The amplitude is high 1000: The amplitude is average 0000: The amplitude is nigh If the scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function 0: Turn off scrambler function 0: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain The bandwidth of filter					1	
CARR 6:5 00 R/W 11: Enter single carrier mode and the chip is set to 1 00: Quit single carrier mode The amplitude adjustment of signal from Gaussian filter to DAC, which is one of the key factor to decide the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W 1111: The amplitude is high 1000: The amplitude is high 0000: The amplitude is high lf the scrambler function is enabled. Open scrambler function can make a venacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function 0: Turn off scrambler function 1 Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain The bandwidth of filter						,
Chip is set to 1 00: Quit single carrier mode The amplitude adjustment of signal from Gaussian filter to DAC, which is one of the key factor to decide the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W 1111: The amplitude is high 1000: The amplitude is high 0000: The amplitude is high If the scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function 0: Turn off scrambler function 0: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain The bandwidth of filter		CARP	6.5	00	D /\A/	
GAUS_CAL 4:1 0111 R/W GAUS_CAL 4:1 0111 R/W GAUS_CAL 4:1 0111 R/W Scramble_en 0 1 R/W Scramble_en 0 1 R/W RF_CAL2 47:0 RF_CAL2 47:0 R/W N/A 47:46 01 R/W Retain RM The amplitude adjustment of signal from Gaussian filter to DAC, which is one of the key factor to decide the value of transmitting modulation frequency offset. R/W 1111: The amplitude is high 1000: The amplitude is high lif the scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function 0: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain The bandwidth of filter		CAININ	0.5	00	19 00	
The amplitude adjustment of signal from Gaussian filter to DAC, which is one of the key factor to decide the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W 1111: The amplitude is high 1000: The amplitude is high lf the scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1 Enable scrambler function 0: Turn off scrambler function 0: Turn off scrambler function 0: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain The bandwidth of filter						•
from Gaussian filter to DAC, which is one of the key factor to decide the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W 1111: The amplitude is high 1000: The amplitude is high If the scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function 0: Turn off scrambler function 0: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain The bandwidth of filter						
one of the key factor to decide the value of transmitting modulation frequency offset. GAUS_CAL 4:1 0111 R/W 1111: The amplitude is high 1000: The amplitude is high If the scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function O: Turn off scrambler function O: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain The bandwidth of filter						
Value of transmitting modulation frequency offset. R/W 1111: The amplitude is high 1000: The amplitude is high If the scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1. Enable scrambler function O: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain RW 500K 45 0 R/W The bandwidth of filter						
GAUS_CAL 4:1 0111 R/W Scramble_en 0 1 R/W						
GAUS_CAL 4:1 0111 R/W 1111: The amplitude is high 1000: The amplitude is average 0000: The amplitude is high If the scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function 1A* RF_CAL2 47:0 Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain The bandwidth of filter						
Scramble_en Scramble_en Arion Ario						inequency onset.
Scramble_en Scramble_en O 1 R/W RF_CAL2 47:0 RW 500K Add RF registers(Default value is recommended) N/A 47:46 O 1000: The amplitude is high If the scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function O: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 O R/W Retain The bandwidth of filter		GAUS_CAL	4:1	0111	R/W	
Scramble_en Scramble_en O 1 R/W RF_CAL2 47:0 RW 500K Add RF registers(Default value is recommended) N/A 47:46 O 1000: The amplitude is high If the scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function O: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 O R/W Retain The bandwidth of filter						1111: The amplitude is high
Scramble_en Scramble_en O 1 R/W RF_CAL2 47:0 RW 500K Add RF registers(Default value is recommended) N/A 47:46 O 0000: The amplitude is high If the scrambler function is enabled. Open scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function O: Turn off scrambler function Add RF registers(Default value is recommended) R/W Retain The bandwidth of filter						Trini ampheac is mgn
Scramble_en Scramble_en O 1 R/W RF_CAL2 47:0 RW 500K Add RF registers(Default value is recommended) N/A 47:46 O 0000: The amplitude is high If the scrambler function is enabled. Open scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function O: Turn off scrambler function Add RF registers(Default value is recommended) R/W Retain The bandwidth of filter						1000. The amplitude is average
Scramble_en O 1 R/W RF_CAL2 A7:0 N/A A7:46 Open scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function O: Turn off scrambler function Add RF registers(Default value is recommended) N/A A7:46 O R/W Retain The bandwidth of filter						
Scramble_en O 1 R/W RF_CAL2 A7:0 N/A A7:46 Open scrambler function is enabled. Open scrambler function can make a vernacular operation to the ready-to-sent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function O: Turn off scrambler function Add RF registers(Default value is recommended) N/A A7:46 O R/W Retain The bandwidth of filter						0000: The amplitude is high
Scramble_en O 1 R/W RF_CAL2 A7:0 N/A 47:46 BW 500K A5 Open scrambler function can make a vernacular operation to the ready-tosent data, which reduces the length of 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function O: Turn off scrambler function Add RF registers(Default value is recommended) R/W Retain The bandwidth of filter					1	
Scramble_en O 1 R/W R/W R/W R/W RF_CAL2 N/A A7:46 RW R/W R/W R/W R/W R/W R/W R/W						
Scramble_en O 1 R/W Scramble_en O 1 R/W Scramble_en R/W Scramble_en R/W Scramble_en R/W Scramble_en R/W Scramble_en Scramble_en R/W Scramble_en Scramble_en Scramble_en Scramble scrambler function needs a same configuration in both of the receiving and transmitting terminals. Scramble_en R/W Scramble_en Scramble_en Scramble_en Scramble scrambler function O: Turn off scrambler function Add RF registers(Default value is recommended) N/A Scramble_en Scramble_en Scramble_function R/W Scramble scrambler function R/W Scramble scrambler function Scramble scrambler function R/W Scramble scrambler function Scramble scramble scrambler function Scramble scrambler function Scramble scrambler function						•
Scramble_en O 1 R/W 1 & the length of 0. enable srambler function needs a same configuration in both of the receiving and transmitting terminals. 1: Enable scrambler function 0: Turn off scrambler function 0: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 O R/W The bandwidth of filter						•
function needs a same configuration in both of the receiving and transmitting terminals. 1. Enable scrambler function 0: Turn off scrambler function 0: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain BW 500K 45 0 R/W The bandwidth of filter						
both of the receiving and transmitting terminals. 1: Enable scrambler function 0: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain BW 500K 45 0 R/W The bandwidth of filter		Scramble_en	0	1	R/W	
terminals. 1: Enable scrambler function 0: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain BW 500K 45 0 R/W The bandwidth of filter						
1: Enable scrambler function 0: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain BW 500K 45 0 R/W The bandwidth of filter						
1A* RF_CAL2 47:0 0: Turn off scrambler function Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain BW 500K 45 0 R/W The bandwidth of filter						
1A* RF_CAL2 47:0 Add RF registers(Default value is recommended) N/A 47:46 01 R/W Retain BW 500K 45 0 R/W The bandwidth of filter						
recommended) N/A 47:46 01 R/W Retain BW 500K 45 0 R/W The bandwidth of filter	4 4 4	DE CALO	47.0			
BW 500K 45 0 RAW The bandwidth of filter	1A*	KF_CAL2	47:0			_
I BW 500K I 45 I () I B/W I		N/A	47:46	01	R/W	Retain
5 ^{vv} _300N ⁻³ 0. Narrow handwidth		BW 500K	45	<u></u>	R /\//	
O. Nariow bandwidth		D 11 _ 500K		0	19 77	0: Narrow bandwidth

				1: Wide bandwidth
				The gain of filter
GC 500K	44	1	R/W	0 : Low gain
			.,	1 : High gain
				If the output of IRQ(EN PA)is inverse.
IRO inv sel	43	0	R/W	1 : The output is inverse
IRQ_inv_sel	73		14, 44	0 : The output isn't inverse
				If the pin of CLKOUT is output in high
				resistance.
CLYOUT 7 and	42	0	D /\A/	
CLKOUT_Z_sel	42	0	R/W	1 : CLKOUT PIN is output in high
				resistance.
				0 : CLKOUT PIN is as output.
				If the pins of CE weak pulldown
				resistors are enabled.
CE_L_sel	41	0	R/W	1: The pins of CE weak pulldown
GG		·	.,	resistors are enabled
				0: The pins of CE weak pulldown
				resistors aren't enabled.
				If the pins of MISO is output in high
				resistance.
$MISO_Z_sel$	40	0	R/W	1: MISO PIN is output in high
				resistance.
				0 : MISO PIN is output.
				If the pins of IRQ are output in high
				resistance.
IRQ_Z_sel	39	0	R/W	1: IRQ PIN is output in high
				resistance.
				0 : IRQ PIN is output.
				Choose the way of PA ramp up
				00 : No ramp up
PA ramp sel	38:37	01	R/W	01 : 4us ramp each step
				10 : ramp begins with half current
				11 : 2us ramp each step
				Choose OSC's exciting current
OSC_IC	36	1	R/W	1 : ×1
<u>-</u>			, ,	0 : ×0.75
				Choose the output frequency of
				internal crystal signal.
				00: 16MHz
CLK_SEL	35:34	10	R/W	01: 8MHz
				10: 4MHz
				11: 2MHz
				PTX terminal enters standby-II mode
CNI CTDII DVOT				briefly when converting from
EN_STBII_RX2T	33	1	R/W	transmitting mode into receiving
Χ			-	mode. The other LDOs except DVDD
				are powered down once when
				entering standy-II mode.

				1: Enable 0: Disenable
BPF_CTRL_BW	32	0	R/W	Choose the bandwidth of 1dB receiving intermediate-frequency filter. 1: ×1 0: ×0.85
BPF_CTRL_GAIN	31	1	R/W	Choose the gain of receiving intermediate-frequency filter. 1: 5dB 0: 19dB
VCOBUF_IC	30:29	01	R/W	Choose the driving MIXH current. 00: 600uA 01: 800uA 10: 1mA 11: 1.2mA
VCO_CT	28:27	01	R/W	Choose the VCO load capacitors. 00: There are few capacitors, and the frequency of VCO is high. 11: There are more capacitors, and the frequency of VCO is low.
CAL_VREF_SEL	26	1	R/W	Choose the autocorrection reference voltage. 1: 1.15V 0: 1.25V
SPI_CAL_EN	25	0	R/W	The process of VCO single trigger autocorrection when this bit is configured from 0 to 1. In addition, when changing work channel and entering sending and receiving state, the VCO can also be autocorrected.
PREAMP_CTM	24:22	011	R/W	Choose the driver load capacitors. 000: 399fF 100: 171fF 111: 0fF
DA_LPF_BW	21	1	R/W	Choose the DAC's filtering bandwidth. 1: Wide bandwidth 0: Narrow bandwidth
RX_CTM	20:19	01	R/W	Choose LNA's resonant frequency(load capacitors) 00: 2.45GHz 01: 2.52GHz 10: 2.59GHz 11: 2.66GHz
RCCAL_EN	18	1	R/W	Enable Receiving bandwidth filter's autocorrenction function. 1: Enable

					0: Disable
	EN_VCO_CAL	17	1	R/W	The bit to enable VCO's autocorrenction 1: Enable 0: Disable
	PRE_BC	16:14	100	R/W	Choose the prescaler's direct current 000: ×1 001&010: ×1.5 100&011: ×2 101&110: ×2.5 111: ×3
	VCO_CODE_IN	13:10	1000	R/W	Choose VCO's frequency band Only enable when EN_VCO_CAL is 0 1111: High frequency band 0000: Low frequency band
	RCCAL_IN	9:4	010100	R/W	Configure the receiving band-pass filter's intermediate frequency correction. Only available when RCCAL_EN is 0 111111: Low intermediate midfrequency 000000: High intermediate midfrequency
	CPSEL	3:2	01	R/W	Configure the PLL charge pump's current. RX TX 00: 26uA 26uA 01: 26uA 52uA 10: 52uA 78uA 11: 78uA 104uA
	DATAOUT_SEL	1	0	R/W	Configure the data-read bit to 0.
	RSSI_SEL	0	1	R/W	Choose RSSI signal sampling points. 1: The RSSI signal goes through filter. 0: The RSSI signal doesn't go through filter.
1B	DEM_CAL2	23:0			Replenish and demodulate reference registers(use default value in general)
	PIN	23:21	000	R/W	Configure the output PIN after the chip entering test mode(MISO pin/IRQ pin) 000(the chip is 0) operation mode data output and interrupt output 000(the chip is 1) testing sensitivity mode demodulate data and clock output 110(the chip is 1) testing receiving mode output in 2 different ways in

II .	T		ī		
					both limit I and Q
	EN_RX	20	0	R/W	If both the receiving channel and PLL are open at the same time 1: Open at the same time 0: Open at the different time
	DELAY1	19	0	R/W	If the PLL' s open loop is enabled, the enabling of PLL' s open loop state can test the transmitting of carrier drift 1: PLL open loop enables. 0: PLL open loop is controlled by state machine.
	DELAY0	18	0	R/W	If the demodulator can add the initial offset, the demodulator which doesn' t add the initial offset can test the receiving sensitivity. 1: do not add initial offset. 0: add initial offset, counteract the error code in receiving state.
	TH1	17	1	R/W	In standby-II mode, if the LDO(except DVDD' s LDO) is enabled, in test mode, the bit is configured to 1 when testing transmitting single carrier and receiving sensitivity. 1: Enable 0: Dienable
	PTH	16:13	0110	R/W	Configure the threshold value of receiver digital demodulator's lead code. The threshold of 24bits lead code=PTH+16 1000: 24bits 0110: 22bits 0000: 16bits
	SYNC_SEL	12	1	R/W	Receiver digital demodulator's 4 times sampling, calculate some relevant data. 1: 3bit 0: 2bit
	DECOD_INV	11	1	R/W	If reverse the lead code, configure to 1 in general. Enable this function in the both the receiving and transmitting terminals. 1: Do not reverse in bits 0: Reverse in bits
	GAIN1	10:7	1110	R/W	Adjust the central amplitude of the loop reference waveform, configure to 1110
	GAIN2	6:1	000101	R/W	Adjust the speed of the loop reference waveform, configure to 000101

			1	I	
					Choose the speed of demodulator's
					code unit rate synchronizaton
	AGGRESSIVE	0	1	R/W	1: Adjust in large steps, the speed is
				.,	fast
					0: Adjust in small steps, the speed is
					low
1C	DYNPD				Enable dynamic PAYLOAD's length
	Reserved	7:6	00	R/W	Only 00 allowed
					Enable the length of PIPE 5's dynamic
	DPL_P5	5	0	R/W	PAYLOAD(EN_DPL and ENAA_P5 are
					needed)
					Enable the length of PIPE 4's dynamic
	DPL P4	4	0	R/W	PAYLOAD(EN DPL and ENAA P4 are
	_			·	needed)
					Enable the length of PIPE 3's dynamic
	DPL P3	3	0	R/W	PAYLOAD(EN DPL and ENAA P3 are
	5.2.3	J		.,,.,	needed)
					Enable the length of PIPE 2's dynamic
	DPL P2	2	0	R/W	PAYLOAD(EN DPL and ENAA P2 are
	DFL_FZ	۷		17, 44	needed)
					Enable the length of PIPE 1's dynamic
	DDI D1	1	0	D ///	_
	DPL_P1	1		R/W	PAYLOAD(EN_DPL and ENAA_P1 are
					needed)
	551.50	•		5.44	Enable the length of PIPE 0's dynamic
	DPL_P0	0	0	R/W	PAYLOAD(EN_DPL and ENAA_P0 are
					needed)
1D*	FEATURE	7:0		R/W	Feature registers
	Reserved	7	0	R/W	Only 00 allowed
					Choose IRQ signal output or EN_PA
	MILIV DA IDO	6	0	R/W	signal output to PIN
	MUX_PA_IRQ	O	0	I IT/ VV	0 : IRQ signal output to PIN
					1 : EN_PA signal output to PIN
					Open CE with command mode
	CE_SEL	5	0	R/W	0 : CE is controlled by pins
	_				1 : CE is controlled by command
					Choose the length of data
	DATA LEN SEL	4:3	00	R/W	11: 64byte (512bit) mode
	3,			'', ''	00: 32byte (256bit) mode
					Enable the length of dynamic
	EN_DPL	2	0	R/W	PAYLOAD
	EN ACK PAY	1	0	R/W	Enable ACK which has PAYLOAD
					enable
	EN_NOACK	0	0	R/W	W TX PAYLOAD NOACK command
1E*	RF_CAL	23:0		R/W	RF parameter registers(configure by
	_				programme)
	ENI CI V OLIT	23	0	R/W	Choose the external crystal signal
	EN_CLK_OUT	23		r\/ VV	1: clock signal output to CLK_OUT' s
					<u> </u>

11-	PANCHIP				Z. TOIIZ MOUUIE
					PAD
	DA_VREF_MB	22:20	101	R/W	2: no output The reference voltage of DAC's comparison circuit If the reference voltage is high, the DAC's output range is high 111: positive reference voltage is high 000: positive reference voltage is low
	DA_VREF_LB	19:17	110	R/W	The reference voltage of DAC's comparison circuit If the reference voltage is high, the DAC's output range is high 111: negative reference voltage is high 000: negative reference voltage is low
	DA_LPF_CTRL	16	1	R/W	The command bit of DAC's output range 1: output range×0.8 0: output range×0.5倍
	RSSI_EN	15	0	R/W	Enable RSSI 1: RSSI enable 0: RSSI disenable
	RSSI_Gain_CTR	14:13	01	R/W	The bit to choose RSSI's signal gain attenuation. 00: no attenuation 01: -6dB 10: -12dB 11: -18dB
	MIXL_GC	12	1	R/W	Choose the gain of receiving MIXL 1: 14dB 0: 8dB
	PA_BC	11:10	11	R/W	Choose PA's output direct current 00: ×1 01: ×2 10: ×3 11: ×4
	LNA_GC	9:8	11	R/W	Choose LNA's gain 11: 17dB 10: 11dB 01: 5.4dB 00: -0.4dB
	VCO_BIAS	7:5	111	R/W	Configure VCO' s current 000: 900uA 001: 1050uA 010: 1200uA 011: 1350uA 100: 1500uA 101: 1650uA 110: 1800uA

					111: 1950uA
	RES_SEL	4:3	10		Choose chip offset current load 00: 26kR 01: 24kR 10: 22kR 11: 20kR
	LNA_HCURR	2	1	R/W	Configure LNA's high current 1: high current 0: low current
	MIXL_BC	1	1	R/W	Choose MIXL's receiving current 1: ×1 0: ×0.5
	IB_BPF_TRIM	0	0	R/W	Choose receiving bandwidth filter's current 1: ×1 0: ×0.5
1F*	BB_CAL	7:0 15:8 23:16 31:24 39:32		R/W	Digital base bandwidth registers(default value in general)
	Reserved	39:32	01000110	R/W	Only 0X01000110 allowed
	INVERTER	31	1	R/W	If reverse the data before entering RX_block 1: reverse 0: retain
	DAC_MODE	30	0	R/W	If dac_out[5:0] need to be reversed, dac_out[5:0] is DAC's output terminal 1:dac_out[5:0] <= [0:5] 0:dac_out[5:0] <= [5:0]
	DAC BASAL	29:24	011100	R/W	Pre-sending DAC's initial value
	TRX_TIME	23:21	011	R/W	The internal from PLL's open-loop state to data-sending state, the length of time is: TRX_TIME×8+7.5, the unit is us
	EX_PA_TIME	20:16	00111	R/W	The internal of Transmitting PLL enabling PA, the length of time is: EX_PA_TIME×16 , the unit is us
	TX_SETUP_TIME	15:11	01101	R/W	The internal of Transmitting PLL enabling PA, the length of time is: TX_SETUP_TIME×16 , the unit is us
	RX_SETUP_TIME	10:6	10100	R/W	The stable time of RF RX circuit: RX_SETUP_TIME×16, the unit is us
	RX_ACK_TIME	5:0	001010	R/W	The longest time of PTX converting to receiving mode, it's a failure when time is out.
					

	The length of time in 1Mbps mode:
	RX_ACK_TIME×32 , the unit is us
	The length of time in 250kbps mode:
	RX_ACK_TIME×128, the unit is us

9 Packet Format Description

9.1 Packet Format for Normal Burst

Table 7 Packet Format for Normal Burst

Preamble	Address	Payload	CRC
(3 byte)	(3~5	(1~32/64	(0/2
	byte)	byte)	byte)

It can choose Address and Payload part to scramble, according to scrambler configuration bits.

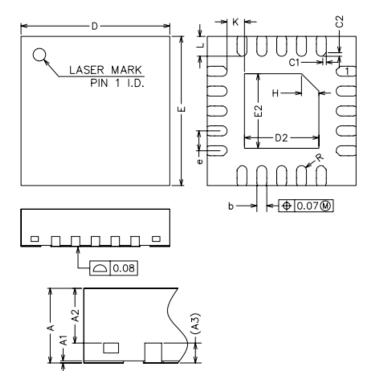
9.2 Packet Format for Enhanced Burst

Table 8 Packet Format for Enhanced Burst

Preambl	Addres	Package control field (10bit)			Payload	CRC
e (3 byte)	s (3~5 byte)	Payload PID NO_ACH length (7bit) (2bit) (1bit)		NO_ACK (1bit)	(1~32/64 byte)	(0/2 byte)

It can choose Address, Package control field and Payload part to scramble, according to scrambler configuration bits.

9.3 Packet Format for Enhanced Burst ACK


Table 9 Packet Format for Enhanced Burst ACK

Preambl	Addres	Package	CRC		
e (3 byte)	s (3~5 byte)	Payload length (7bit)	PID (2bit)	NO_ACK (1bit)	(0/2 byte)

It can choose Address, Package control field to scramble, according to scrambler

11 Package Size

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	0.70	0.75	0.80
A1	0	0.02	0.05
A2	0.50	0.55	0.60
A3	0.20REF		
b	0.15	0.20	0.25
D	2.90	3.00	3.10
E	2.90	3.00	3.10
D2	1.40	1.50	1.60
E2	1.40	1.50	1.60
e	0.30	0.40	0.50
Н	0.35REF		
K	0.35REF		
L	0.35	0.40	0.45
R	0.085	-	-
C1	-	0.07	_
C2	_	0.07	-

Figure 9 QFN20L 0303 Package Size

Specification

Operation frequency:2402MHz~2465MHz

Maximum power: 6.27dBm(EIRP)

Statement

- 1. The device complies with RF specifications when the device used at 0mm form your body.
- 2. This product is a category 1 receiver device.
- 3. The operating temperature of the EUT can't exceed 55 $^{\circ}$ C and shouldn't be lower than -20 $^{\circ}$ C.
- 4. This product can be used across EU member states.

Hereby, DA KAI INDUSTRIES LIMITED. declares that the product compliance with essential requirements and other relevant provisions of Directive 2014/53/EU.

configuration bits.

FCC Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -- Reorient or relocate the receiving antenna.
- -- Increase the separation between the equipment and receiver.
- -- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -- Consult the dealer or an experienced radio/TV technician for help.

§15.19 Labeling requirements.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

§15.21 Information to user.

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

RF exposure

This equipment complies with FCC and ISED radiation exposure limits set forth for an uncontrolled environment. The RF exposure compliance of the distance of 0 mm between the radiator and your body. Antenna gain must be below 0.4dBi. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. The host end product must include a user manual that clearly defines operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines.

For portable devices, in addition to above, a separate approval is required to satisfy the SAR requirements of FCC Part 2.1093. If the device is used for other equipment that separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations.

Labelling Requirements for the Host device

The host device shall be properly labeled to identify the modules within the host device. The certification label of the module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labelled to display the FCC ID and ISED of the module, preceded by the words "Contains transmitter module", or the word "Contains", or similar wording expressing the same meaning, as follows:

Model: 2.4G module

Contains FCC ID: 2APYU-DKL1613

The host OEM user manual must also contain clear instructions on how end users canfind and/or access the module and the FCC

ID and ISED.

Model: 2.4G module

Contains FCC ID: 2APYU-DKL1613

The transmitter module may not be co-located with any other transmitter or antenna. Module Antenna Type: Integral Antenna, ANT Gain: 0.4dBi

OEM Statement

- a. The module manufacturer must show how compliance can be demonstrated only for specific host or hosts
- b. The module manufacturer must limit the applicable operating conditions in which t transmitter will be used, and
- **C.** The module manufacturer must disclose that only the module grantee can make the te evaluation that the module is compliant in the host. When the module grantee either refuses to make this evaluation, or does not think it is necessary, the module certification is rendered invalid for use in the host, and the host manufacturer has no choice other than to use a different module, or take responsibility (§ 2.929) and obtain a new FCC ID for the product.
- d. The module manufacturer must provide the host manufacturer with the follow requirements:
- **e.** The host manufacturer is responsible for additional testing to verify compliance as composite system. When testing the host device for compliance with Part 15 Subpart B, the host manufacturer is required to show compliance with Part 15 Subpart B while the transmitter module(s) are installed and operating. The modules should be transmitting and the evaluation should confirm that the module's intentional emissions are compliant (i.e. fundamental and out of band emissions).

Validity of using the module certification:

In the event that these conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization for this module in combination with the host equipment is no longer considered valid and the FCC ID of the module cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization. In such cases, please involve a FCC certification specialist in order to determine if a Permissive Class II Change or new Certification is required.

However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.). The end-product may need Verification testing, Declaration of Conformity testing, a Permissive Class II Change or new Certification. Please involve a FCC certification specialist in order to determine what will be exactly applicable for the end-product.

KDB Ref	Requirements of	Description		
Sect	KDB 996369 D03	55551.[6151]		
2.2	List of applicable FCC rules	This product compliance with FCC Part 15C section 15.249, section		
		15.203,section 15.207,section 15.209, section 15.215.		
2.3	Summarize the specific	This product has an Integral antenna		
	operational use conditions			
2.4	Limited module procedures	This product is a limited module		
2.5	Trace antenna designs	This product without trace antenna designs		
2.6	RF exposure considerations	race antenna designs compliance RF exposure limits		
2.7	Antennas	This product has an Integral antenna		
2.8	Label and compliance	The host system using this module , should label in a visible area indicated		
	information	the following texts: "Contains FCC ID : 2APYU-DKL1613"		
2.9	Information on test modes and	Data transfer module demo can control the EUT works in RF test mode and		
	additional testing requirements	specified channel		
2.10	Additional testing, Part 15	The module without unintentional-radiator digital circuit, so the module does		
	Subpart B disclaimer	not require an evaluation by FCC part 15 Subpart B. The host should be		
		evaluated by FCC part 15 Subpart B		