



ONE WORLD • OUR APPROVAL

# Test report

336342-1TRFWL

Date of issue: August 30, 2018

Applicant:

**K4 Integration Inc.**

Product:

**TopVu® eTag® Board**

Model:

**eTag11**

Antenna Model variants:

**ET-1244 (Small antenna); ET-3025(Large antenna)**

FCC ID:

**2APX4ETAGBOARD**

IC Registration number:

**22620-ETAG11**

Specifications:

**FCC 47 CFR Part 15.225**

Operation within the band 13.110–14.010 MHz

**RSS-210 Issue 9, August 2016, Annex B.6**

Devices operating in 13.110–14.010 MHz frequency band for any application

[www.nemko.com](http://www.nemko.com)

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation

*FCC 15.225 and RSS-210 B.6.docx; Date: September 2016*



---

**Test location**

---

|              |                                                                                    |
|--------------|------------------------------------------------------------------------------------|
| Company name | Nemko Canada Inc.                                                                  |
| Address      | 303 River Road                                                                     |
| City         | Ottawa                                                                             |
| Province     | Ontario                                                                            |
| Postal code  | K1V 1H2                                                                            |
| Country      | Canada                                                                             |
| Telephone    | +1 613 737 9680                                                                    |
| Facsimile    | +1 613 737 9691                                                                    |
| Toll free    | +1 800 563 6336                                                                    |
| Website      | <a href="http://www.nemko.com">www.nemko.com</a>                                   |
| Site number  | FCC test site registration number: CA2040, IC: 2040A-4 (3 m semi anechoic chamber) |

|             |                                                 |
|-------------|-------------------------------------------------|
| Tested by   | Kevin Rose, Wireless/EMC Specialist             |
| Reviewed by | Andrey Adelberg, Senior Wireless/EMC Specialist |
| Date        | August 30, 2018                                 |
| Signature   |                                                 |

---

**Limits of responsibility**

---

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

---

**Copyright notification**

---

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

## Table of contents

|                                                                                                          |           |
|----------------------------------------------------------------------------------------------------------|-----------|
| <b>Table of contents .....</b>                                                                           | <b>3</b>  |
| <b>Section 1. Report summary .....</b>                                                                   | <b>4</b>  |
| 1.1    Applicant and manufacturer .....                                                                  | 4         |
| 1.2    Test specifications .....                                                                         | 4         |
| 1.3    Test methods .....                                                                                | 4         |
| 1.4    Statement of compliance .....                                                                     | 4         |
| 1.5    Exclusions .....                                                                                  | 4         |
| 1.6    Test report revision history .....                                                                | 4         |
| <b>Section 2. Summary of test results.....</b>                                                           | <b>5</b>  |
| 2.1    FCC Part 15 Subpart C, general requirements test results.....                                     | 5         |
| 2.2    FCC Part 15 Subpart C, intentional radiators test results.....                                    | 5         |
| 2.3    IC RSS-GEN, Issue 5, test results.....                                                            | 5         |
| 2.4    IC RSS-210, Issue 9, test results.....                                                            | 5         |
| <b>Section 3. Equipment under test (EUT) details .....</b>                                               | <b>6</b>  |
| 3.1    Sample information .....                                                                          | 6         |
| 3.2    EUT information .....                                                                             | 6         |
| 3.3    Technical information .....                                                                       | 6         |
| 3.4    Product description and theory of operation .....                                                 | 6         |
| 3.5    EUT exercise details .....                                                                        | 7         |
| 3.6    EUT setup diagram .....                                                                           | 7         |
| 3.7    EUT sub assemblies .....                                                                          | 7         |
| <b>Section 4. Engineering considerations.....</b>                                                        | <b>8</b>  |
| 4.1    Modifications incorporated in the EUT .....                                                       | 8         |
| 4.2    Technical judgment .....                                                                          | 8         |
| 4.3    Deviations from laboratory tests procedures .....                                                 | 8         |
| <b>Section 5. Test conditions .....</b>                                                                  | <b>9</b>  |
| 5.1    Atmospheric conditions .....                                                                      | 9         |
| 5.2    Power supply range .....                                                                          | 9         |
| <b>Section 6. Measurement uncertainty .....</b>                                                          | <b>10</b> |
| 6.1    Uncertainty of measurement .....                                                                  | 10        |
| <b>Section 7. Test equipment .....</b>                                                                   | <b>11</b> |
| 7.1    Test equipment list .....                                                                         | 11        |
| <b>Section 8. Testing data .....</b>                                                                     | <b>12</b> |
| 8.1    FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits .....                      | 12        |
| 8.2    FCC 15.225(a-c) and RSS-210 B.6 (a-c) Field strength within the 13.110–14.010 MHz band .....      | 14        |
| 8.3    FCC 15.225(d) and RSS-210 B.6(d) Field strength of emissions outside 13.110–14.010 MHz band ..... | 17        |
| <b>Section 9. Block diagrams of test set-ups .....</b>                                                   | <b>21</b> |
| 9.1    Radiated emissions set-up.....                                                                    | 21        |
| 9.2    Conducted emissions set-up .....                                                                  | 21        |

## Section 1. Report summary

---

### 1.1 Applicant and manufacturer

---

|                 |                       |
|-----------------|-----------------------|
| Company name    | K4 Integration Inc.   |
| Address         | 11 Mary Street Unit A |
| City            | Sudbury               |
| Province/State  | Ontario               |
| Postal/Zip code | P3C 1B4               |
| Country         | Canada                |

### 1.2 Test specifications

---

|                                                                                         |                                                                                                                 |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| FCC 47 CFR Part 15, Subpart C, Clause 15.225<br>RSS-210 Issue 9, August 2016, Annex B.6 | Operation in the 13.110–14.010 MHz<br>Devices operating in 13.110–14.010 MHz frequency band for any application |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|

### 1.3 Test methods

---

|                   |                                                                                                |
|-------------------|------------------------------------------------------------------------------------------------|
| ANSI C63.10 v2013 | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices |
|-------------------|------------------------------------------------------------------------------------------------|

### 1.4 Statement of compliance

---

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

### 1.5 Exclusions

---

None

### 1.6 Test report revision history

---

| Revision # | Details of changes made to test report |
|------------|----------------------------------------|
| TRF        | Original report issued                 |

## Section 2. Summary of test results

### 2.1 FCC Part 15 Subpart C, general requirements test results

| Part       | Test description          | Verdict                     |
|------------|---------------------------|-----------------------------|
| §15.207(a) | Conducted limits          | Pass                        |
| §15.31(e)  | Variation of power source | Pass <sup>1</sup>           |
| §15.203    | Antenna requirement       | Pass <sup>2</sup>           |
| §15.215(c) | 20 dB bandwidth           | Not applicable <sup>3</sup> |

Notes: <sup>1</sup> Measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. No noticeable output power variation was observed

<sup>2</sup> The Antennas are professional installed.

<sup>3</sup> N/A for C2PC

### 2.2 FCC Part 15 Subpart C, intentional radiators test results

| Part       | Test description                                                    | Verdict                     |
|------------|---------------------------------------------------------------------|-----------------------------|
| §15.225(a) | Field strength within 13.553–13.567 MHz band                        | Pass                        |
| §15.225(b) | Field strength within 13.410–13.553 MHz and 13.567–13.710 MHz bands | Pass                        |
| §15.225(c) | Field strength within 13.110–13.410 MHz and 13.710–14.010 MHz bands | Pass                        |
| §15.225(d) | Field strength outside 13.110–14.010 MHz band                       | Pass                        |
| §15.225(e) | Frequency tolerance of carrier signal                               | Not applicable <sup>1</sup> |

Notes: <sup>1</sup> N/A for C2PC

### 2.3 IC RSS-GEN, Issue 5, test results

| Part | Test description                                  | Verdict        |
|------|---------------------------------------------------|----------------|
| 7.3  | Receiver radiated emission limits                 | Not applicable |
| 7.4  | Receiver conducted emission limits                | Not applicable |
| 6.9  | Operating bands and selection of test frequencies | Pass           |
| 8.8  | AC power-line conducted emissions limits          | Pass           |

Notes: <sup>1</sup> According to sections 5.2 and 5.3 of RSS-Gen, Issue 5 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

EUT is an AC powered device.

### 2.4 IC RSS-210, Issue 9, test results

| Annex   | Test description                                                            | Verdict                     |
|---------|-----------------------------------------------------------------------------|-----------------------------|
| B.6 (a) | The field strength within the band 13.553–13.567 MHz                        | Pass                        |
| B.6 (b) | The field strength within the bands 13.410–13.553 MHz and 13.567–13.710 MHz | Pass                        |
| B.6 (c) | The field strength within the bands 13.110–13.410 MHz and 13.710–14.010 MHz | Pass                        |
| B.6 (d) | The field strength outside the band 13.110–14.010 MHz                       | Pass                        |
| B.6     | Carrier frequency stability                                                 | Not applicable <sup>1</sup> |

Notes: <sup>1</sup> N/A for C2PC

## Section 3. Equipment under test (EUT) details

---

### 3.1 Sample information

---

|                        |               |
|------------------------|---------------|
| Receipt date           | April 3, 2018 |
| Nemko sample ID number | Item # 1      |

### 3.2 EUT information

---

|                 |                                                  |
|-----------------|--------------------------------------------------|
| Product name    | TopVu® eTag® board                               |
| Model           | eTag11                                           |
| Antenna variant | ET-1244 (Small antenna); ET-3025 (Large antenna) |
| Serial number   | 3000                                             |

### 3.3 Technical information

---

|                           |                                                                                                                 |
|---------------------------|-----------------------------------------------------------------------------------------------------------------|
| Operating band            | 13.553–13.567 MHz                                                                                               |
| Operating frequency       | 13.56 MHz                                                                                                       |
| Modulation type           | OOK                                                                                                             |
| Occupied bandwidth (99 %) | 32.4 kHz                                                                                                        |
| Power requirements        | 120 Vac 60 Hz                                                                                                   |
| Emission designator       | 32K4A1D                                                                                                         |
| Antenna information       | EUT is designed so that the end user may replace a broken antenna. (The antennas are professionally installed.) |

### 3.4 Product description and theory of operation

---

The eTag® Board system will discover tagged assets placed on these boards – providing location data for tags in strategically identified zones. They provide a mechanism for centrally viewing the location of personnel in real time. Using a passive tag reader interface, the eTag® Boards will locate the tag on the boards and identify which zone or region the tag was placed.

The eTag® Boards consists of two general sizes and can be combined to create a matrix of multiple boards.

TopVu®'s eTag® Board is designed to be used in conjunction with the TopVu® control unit, later described in this manual. This system allows to track production, maintenance and safety personnel as well as contractors without having to change existing behavior. When connected to TopVu® software, the eTag® Board system can provide real time and historical data of the personnel tagged onto the eTag® Board as individual profiles.

A typical diagram of several eTag® Boards' connections to the eTag® Controller is shown below.

### 3.5 EUT exercise details

The EUT was controlled by software to continuously read tags.

### 3.6 EUT setup diagram

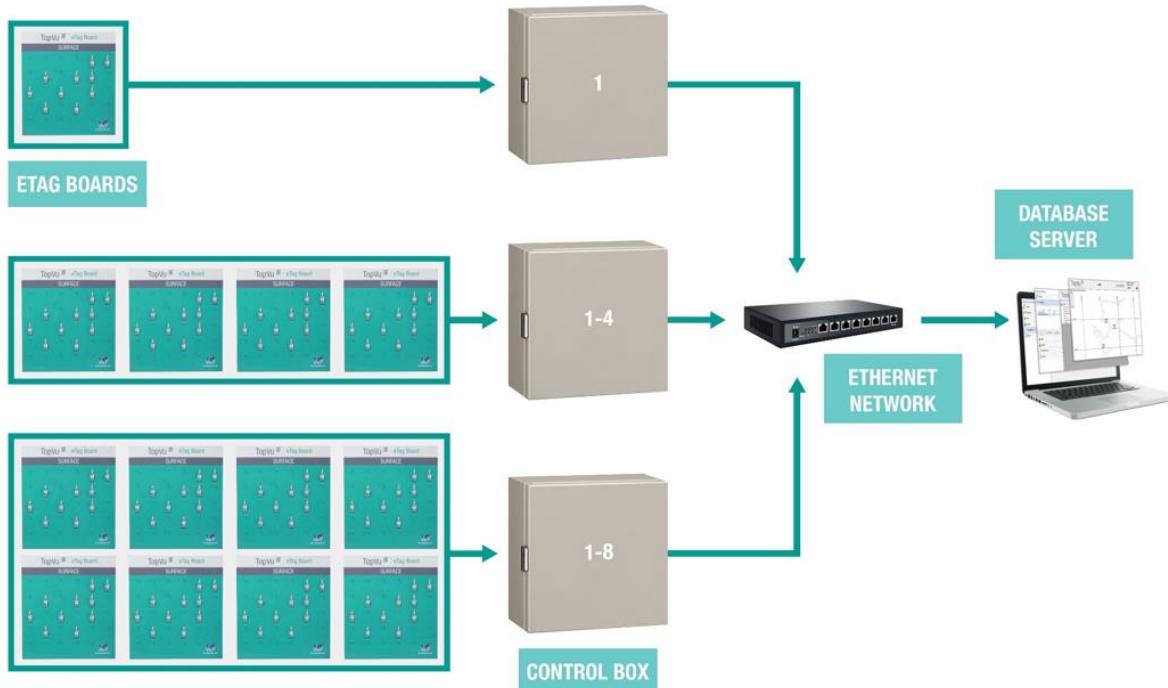



Figure 3.6-1: Setup diagram

### 3.7 EUT sub assemblies

Table 3.7-1: EUT sub assemblies

| Description | Brand name | Model/Part number | Serial number |
|-------------|------------|-------------------|---------------|
| Dell Laptop | Dell       | -                 | -             |

## Section 4. Engineering considerations

---

### 4.1 Modifications incorporated in the EUT

---

There were no modifications performed to the EUT during this assessment.

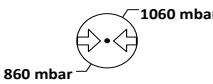
### 4.2 Technical judgment

---

None

### 4.3 Deviations from laboratory tests procedures

---


No deviations were made from laboratory procedures.

## Section 5. Test conditions

---

### 5.1 Atmospheric conditions

---

|                   |                                                                                   |               |
|-------------------|-----------------------------------------------------------------------------------|---------------|
| Temperature       |  | 15–30 °C      |
| Relative humidity |  | 20–75 %       |
| Air pressure      |  | 860–1060 mbar |

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

### 5.2 Power supply range

---

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages  $\pm 5\%$ , for which the equipment was designed.

## Section 6. Measurement uncertainty

---

### 6.1 Uncertainty of measurement

---

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of  $K = 2$  with 95% certainty.

| Test name                         | Measurement uncertainty, dB |
|-----------------------------------|-----------------------------|
| All antenna port measurements     | 0.55                        |
| Conducted spurious emissions      | 1.13                        |
| Radiated spurious emissions       | 3.78                        |
| AC power line conducted emissions | 3.55                        |

## Section 7. Test equipment

---

### 7.1 Test equipment list

---

*Table 7.1-1: Equipment list*

| Equipment                          | Manufacturer    | Model no. | Asset no. | Cal cycle | Next cal.    |
|------------------------------------|-----------------|-----------|-----------|-----------|--------------|
| 3 m EMI test chamber               | TDK             | SAC-3     | FA002532  | 2 year    | June 5/19    |
| Flush mount turntable              | Sunol           | FM2022    | FA002550  | —         | NCR          |
| Controller                         | Sunol           | SC104V    | FA002551  | —         | NCR          |
| Antenna mast                       | Sunol           | TLT2      | FA002552  | —         | NCR          |
| 3 Phase AC Power Source            | apc AC Power    | 45 kVA    | FA002677  | —         | VOU          |
| Power Meter                        | HIOKI           | PW3337    | FA002727  | 1 year    | July 25/18   |
| Receiver/spectrum analyzer         | Rohde & Schwarz | ESU 40    | FA002071  | 1 year    | Sept. 18/18  |
| Bilog antenna (20–2000 MHz)        | Sunol           | JB1       | FA002517  | 1 year    | Dec. 6/18    |
| Active loop antenna (9 kHz–30 MHz) | COM-POWER       | AL-130    | FA002722  | 1 year    | May 8/18     |
| LISN                               | Rohde & Schwarz | ENV216    | FA002515  | 1 year    | April. 30/19 |
| Environmental Chamber              | ESPEC           | EPX-4H    | FA002736  | 1 year    | May 16/18    |

Note: NCR - no calibration required, VOU - verify on use

## Section 8. Testing data

### 8.1 FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits

#### 8.1.1 Definitions and limits

##### FCC:

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50  $\Omega$  line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

##### IC:

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

**Table 8.1-1: Conducted emissions limit**

| Frequency of emission, MHz | Quasi-peak | Conducted limit, dB $\mu$ V | Average** |
|----------------------------|------------|-----------------------------|-----------|
| 0.15–0.5                   | 66 to 56*  | 56 to 46*                   |           |
| 0.5–5                      | 56         | 46                          |           |
| 5–30                       | 60         | 50                          |           |

Note: \* - The level decreases linearly with the logarithm of the frequency.

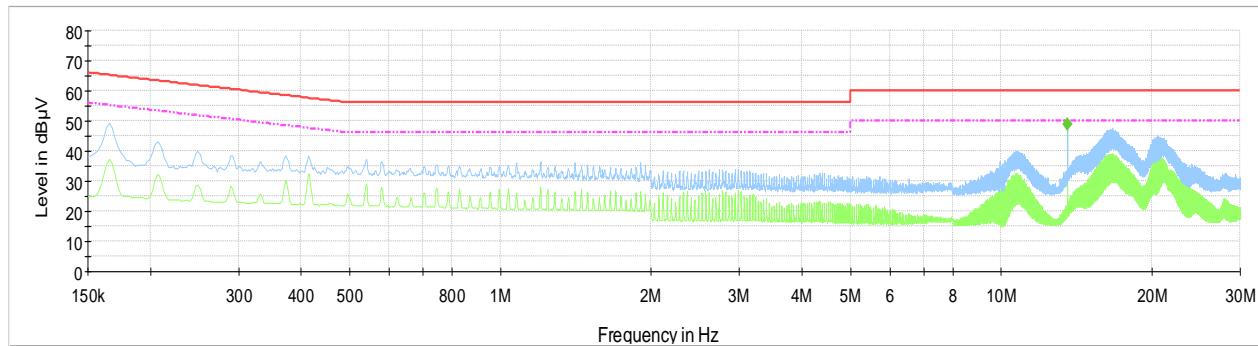
\*\* - A linear average detector is required.

#### 8.1.2 Test summary

|               |               |                   |           |
|---------------|---------------|-------------------|-----------|
| Verdict       | Pass          |                   |           |
| Test date     | April 3, 2018 | Temperature       | 24 °C     |
| Test engineer | Kevin Rose    | Air pressure      | 1006 mbar |
| Test location | Ottawa        | Relative humidity | 41 %      |

#### 8.1.3 Observations, settings and special notes

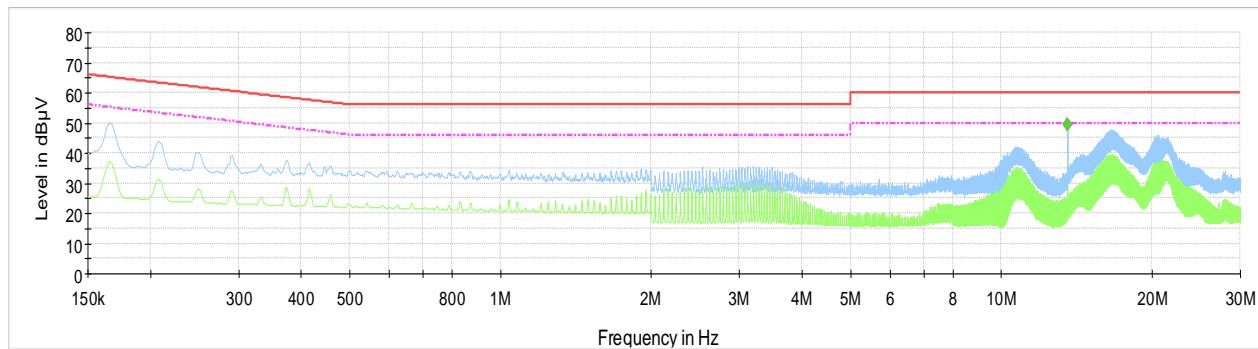
The EUT was set up as tabletop configuration.


The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Test receiver settings:

|                      |                                                                  |
|----------------------|------------------------------------------------------------------|
| Frequency span       | 150 kHz to 30 MHz                                                |
| Detector mode        | Peak and Average (preview mode); Quasi-Peak (final measurements) |
| Resolution bandwidth | 9 kHz                                                            |
| Video bandwidth      | 30 kHz                                                           |
| Trace mode           | Max Hold                                                         |
| Measurement time     | 1000 ms                                                          |


#### 8.1.4 Test data



NEX-327183 Phase 120 Vac 60 Hz A 50 Ohm Load was place at the output of the 13.56 MHz antenna

— Preview Result 2-AVG  
— Preview Result 1-PK+  
— CISPR 32 Mains Q-Peak Class B Limit  
- - - CISPR 32 Mains Average Class B Limit  
◆ Final\_Result QPK  
◆ Final\_Result CAV

**Plot 8.1-1: Conducted emissions on phase line**



NEX-327183 Neutral 120 Vac 60 Hz A 50 Ohm Load was place at the output of the 13.56 MHz antenna

— Preview Result 2-AVG  
— Preview Result 1-PK+  
— CISPR 32 Mains Q-Peak Class B Limit  
- - - CISPR 32 Mains Average Class B Limit  
◆ Final\_Result QPK  
◆ Final\_Result CAV

**Plot 8.1-2: Conducted emissions on neutral line**

**Table 8.1-2: Conducted emissions – from AC mains power ports (CAverage) results**

| Frequency (MHz) | CAverage result <sup>1</sup> and <sup>3</sup> (dBμV) | CAverage limit (dBμV) | Margin (dB) | Measurement time (ms) | Bandwidth (kHz) | Conductor | Filter | Correction factor <sup>2</sup> (dB) |
|-----------------|------------------------------------------------------|-----------------------|-------------|-----------------------|-----------------|-----------|--------|-------------------------------------|
| 13.560          | 48.7                                                 | 50.0                  | 1.27        | 100                   | 9               | L1        | ON     | 10.2                                |
| 13.560          | 49.4                                                 | 50.0                  | 0.63        | 100                   | 9               | N         | ON     | 10.2                                |

Notes:

<sup>1</sup> Result (dBμV) = receiver/spectrum analyzer value (dBμV) + correction factor (dB)

<sup>2</sup> Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)

<sup>3</sup> Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Sample calculation: 20 dBμV (result) = 10 dBμV (receiver reading) + 10 dB (Correction factor)

## 8.2 FCC 15.225(a–c) and RSS-210 B.6 (a–c) Field strength within the 13.110–14.010 MHz band

### 8.2.1 Definitions and limits

- a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15848  $\mu$ V/m (84 dB $\mu$ V/m) at 30 m.
- b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334  $\mu$ V/m (50.5 dB $\mu$ V/m) at 30 m.
- c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106  $\mu$ V/m (40.5 dB $\mu$ V/m) at 30 m.

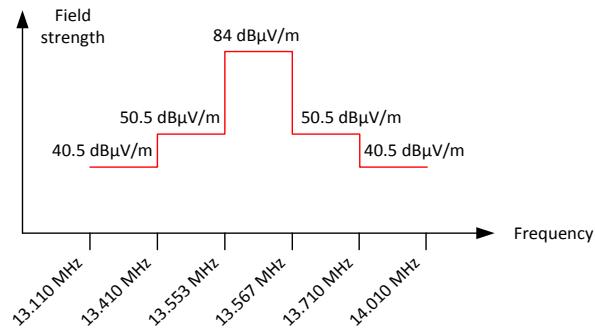


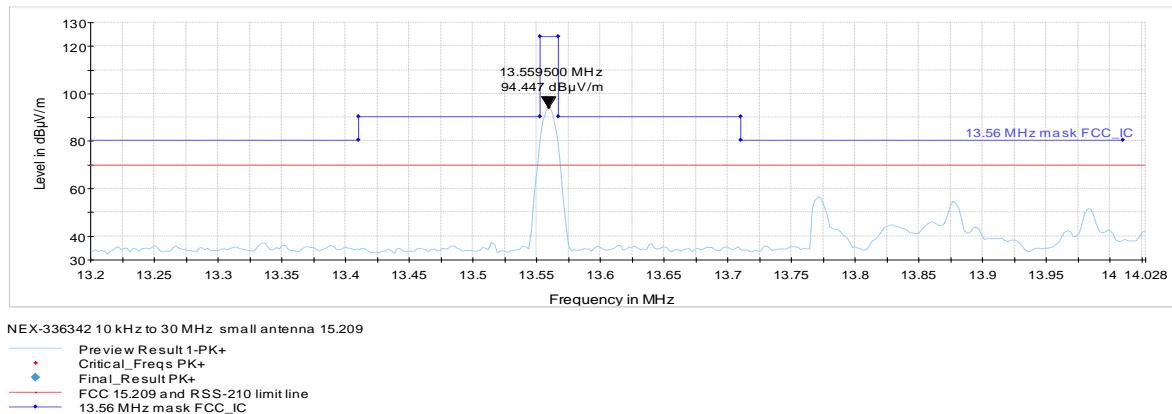

Figure 8.2-1: In-band spurious emissions limit

### 8.2.2 Test summary

|               |               |                   |           |
|---------------|---------------|-------------------|-----------|
| Test date     | April 3, 2018 | Temperature       | 24 °C     |
| Test engineer | Kevin Rose    | Air pressure      | 1006 mbar |
| Verdict       | Ottawa        | Relative humidity | 41 %      |

### 8.2.3 Observations/special notes

The measurements were performed at the distance of 3 m. 40 dB distance correction factor\* was applied to the measurement result in order to comply with 30 m limits.


\* 30 m to 3 m distance correction factor calculation (for 13 MHz band):

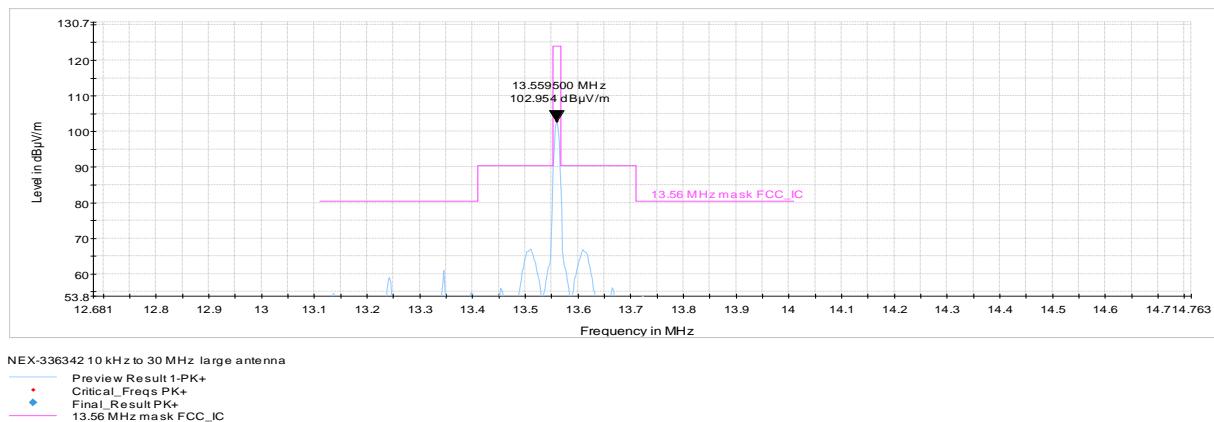
$$40 \times \text{Log}_{10} (3 \text{ m}/30 \text{ m}) = 40 \times \text{Log}_{10} (0.1) = -40 \text{ dB}$$

Spectrum analyzer settings:

|                      |          |
|----------------------|----------|
| Detector mode        | Peak     |
| Resolution bandwidth | 10 kHz   |
| Video bandwidth      | 30 kHz   |
| Trace mode           | Max Hold |

## 8.2.4 Test data




**Figure 8.2-2: Field strength within 13.11–14.01 MHz band**

**Table 8.2-1: Field strength measurement results within 13.11–14.01 MHz band at 3 m distance small antenna**

| Frequency, MHz | Field strength, dBμV/m | Limit <sub>3 m</sub> , dBμV/m | Margin, dB |
|----------------|------------------------|-------------------------------|------------|
| 13.561         | 94.45                  | 124.0                         | 29.55      |

**Table 8.2-2: Field strength measurement results within 13.11–14.01 MHz band at 30 m distance small antenna**

| Frequency, MHz | Field strength, dBμV/m | Limit <sub>30 m</sub> , dBμV/m | Margin, dB |
|----------------|------------------------|--------------------------------|------------|
| 13.561         | 54.45                  | 84.0                           | 29.55      |



**Figure 8.2-3: Field strength within 13.11–14.01 MHz band**

**Table 8.2-3: Field strength measurement results within 13.11–14.01 MHz band at 3 m distance large antenna**

| Frequency, MHz | Field strength, dBμV/m | Limit <sub>3 m</sub> , dBμV/m | Margin, dB |
|----------------|------------------------|-------------------------------|------------|
| 13.561         | 102.95                 | 124.0                         | 21.08      |

**Table 8.2-4: Field strength measurement results within 13.11–14.01 MHz band at 30 m distance Large antenna**

| Frequency, MHz | Field strength, dBμV/m | Limit <sub>30 m</sub> , dBμV/m | Margin, dB |
|----------------|------------------------|--------------------------------|------------|
| 13.561         | 62.95                  | 84.0                           | 21.08      |

## 8.3 FCC 15.225(d) and RSS-210 B.6(d) Field strength of emissions outside 13.110–14.010 MHz band

### 8.3.1 Definitions and limits

**FCC:**

The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in §15.209. The field strength of emissions appearing within restricted bands (as specified in §15.205) shall not exceed the limits from §15.209.

**ISED:**

RSS-Gen general field strength limits for frequencies outside the band 13.110–14.010 MHz.

**Table 8.3-1: FCC §15.209 and RSS-Gen – Radiated emission limits**

| Frequency,<br>MHz | Field strength of emissions |                                   | Measurement distance, m |
|-------------------|-----------------------------|-----------------------------------|-------------------------|
|                   | µV/m                        | dBµV/m                            |                         |
| 0.009–0.490       | 2400/F                      | 67.6 – 20 × log <sub>10</sub> (F) | 300                     |
| 0.490–1.705       | 24000/F                     | 87.6 – 20 × log <sub>10</sub> (F) | 30                      |
| 1.705–30.0        | 30                          | 29.5                              | 30                      |
| 30–88             | 100                         | 40.0                              | 3                       |
| 88–216            | 150                         | 43.5                              | 3                       |
| 216–960           | 200                         | 46.0                              | 3                       |
| above 960         | 500                         | 54.0                              | 3                       |

Notes: In the emission table above, the tighter limit applies at the band edges. For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

**Table 8.3-2: ISED restricted frequency bands**

| MHz               | MHz                 | MHz           | GHz         |
|-------------------|---------------------|---------------|-------------|
| 0.090–0.110       | 12.57675–12.57725   | 399.9–410     | 7.25–7.75   |
| 0.495–0.505       | 13.36–13.41         | 608–614       | 8.025–8.5   |
| 2.1735–2.1905     | 16.42–16.423        | 960–1427      | 9.0–9.2     |
| 3.020–3.026       | 16.69475–16.69525   | 1435–1626.5   | 9.3–9.5     |
| 4.125–4.128       | 16.80425–16.80475   | 1645.5–1646.5 | 10.6–12.7   |
| 4.17725–4.17775   | 25.5–25.67          | 1660–1710     | 13.25–13.4  |
| 4.20725–4.20775   | 37.5–38.25          | 1718.8–1722.2 | 14.47–14.5  |
| 5.677–5.683       | 73–74.6             | 2200–2300     | 15.35–16.2  |
| 6.215–6.218       | 74.8–75.2           | 2310–2390     | 17.7–21.4   |
| 6.26775–6.26825   | 108–138             | 2483.5–2500   | 22.01–23.12 |
| 6.31175–6.31225   | 149.9–150.05        | 2655–2900     | 23.6–24.0   |
| 8.291–8.294       | 156.52475–156.52525 | 3260–3267     | 31.2–31.8   |
| 8.362–8.366       | 156.7–156.9         | 3332–3339     | 36.43–36.5  |
| 8.37625–8.38675   | 162.0125–167.17     | 3345.8–3358   |             |
| 8.41425–8.41475   | 167.72–173.2        | 3500–4400     |             |
| 12.29–12.293      | 240–285             | 4500–5150     | Above 38.6  |
| 12.51975–12.52025 | 322–335.4           | 5350–5460     |             |

Note: Certain frequency bands listed in the table above and above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

**Table 8.3-3: FCC restricted frequency bands**

| MHz               | MHz                 | MHz           | GHz         |
|-------------------|---------------------|---------------|-------------|
| 0.090–0.110       | 16.42–16.423        | 399.9–410     | 4.5–5.15    |
| 0.495–0.505       | 16.69475–16.69525   | 608–614       | 5.35–5.46   |
| 2.1735–2.1905     | 16.80425–16.80475   | 960–1240      | 7.25–7.75   |
| 4.125–4.128       | 25.5–25.67          | 1300–1427     | 8.025–8.5   |
| 4.17725–4.17775   | 37.5–38.25          | 1435–1626.5   | 9.0–9.2     |
| 4.20725–4.20775   | 73–74.6             | 1645.5–1646.5 | 9.3–9.5     |
| 6.215–6.218       | 74.8–75.2           | 1660–1710     | 10.6–12.7   |
| 6.26775–6.26825   | 108–121.94          | 1718.8–1722.2 | 13.25–13.4  |
| 6.31175–6.31225   | 123–138             | 2200–2300     | 14.47–14.5  |
| 8.291–8.294       | 149.9–150.05        | 2310–2390     | 15.35–16.2  |
| 8.362–8.366       | 156.52475–156.52525 | 2483.5–2500   | 17.7–21.4   |
| 8.37625–8.38675   | 156.7–156.9         | 2690–2900     | 22.01–23.12 |
| 8.41425–8.41475   | 162.0125–167.17     | 3260–3267     | 23.6–24.0   |
| 12.29–12.293      | 167.72–173.2        | 3332–3339     | 31.2–31.8   |
| 12.51975–12.52025 | 240–285             | 3345.8–3358   | 36.43–36.5  |
| 12.57675–12.57725 | 322–335.4           | 3600–4400     | Above 38.6  |
| 13.36–13.41       |                     |               |             |

### 8.3.2 Test summary

|               |               |                   |           |
|---------------|---------------|-------------------|-----------|
| Test date     | April 3, 2018 | Temperature       | 24 °C     |
| Test engineer | Kevin Rose    | Air pressure      | 1006 mbar |
| Verdict       | Ottawa        | Relative humidity | 41 %      |

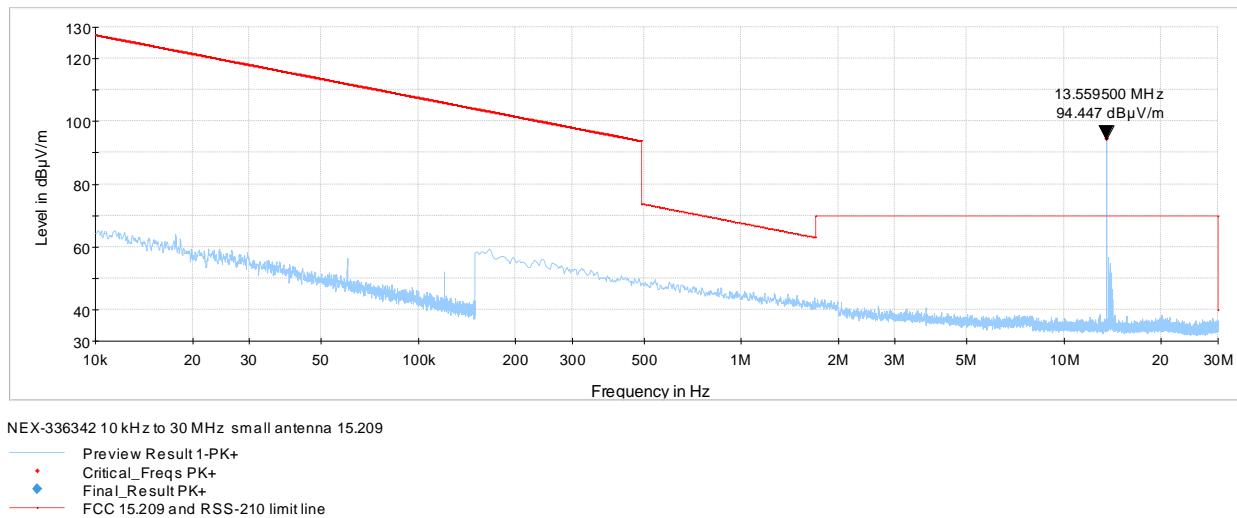
### 8.3.3 Observations, settings and special notes

The spectrum was searched from 10 kHz to 1 GHz.

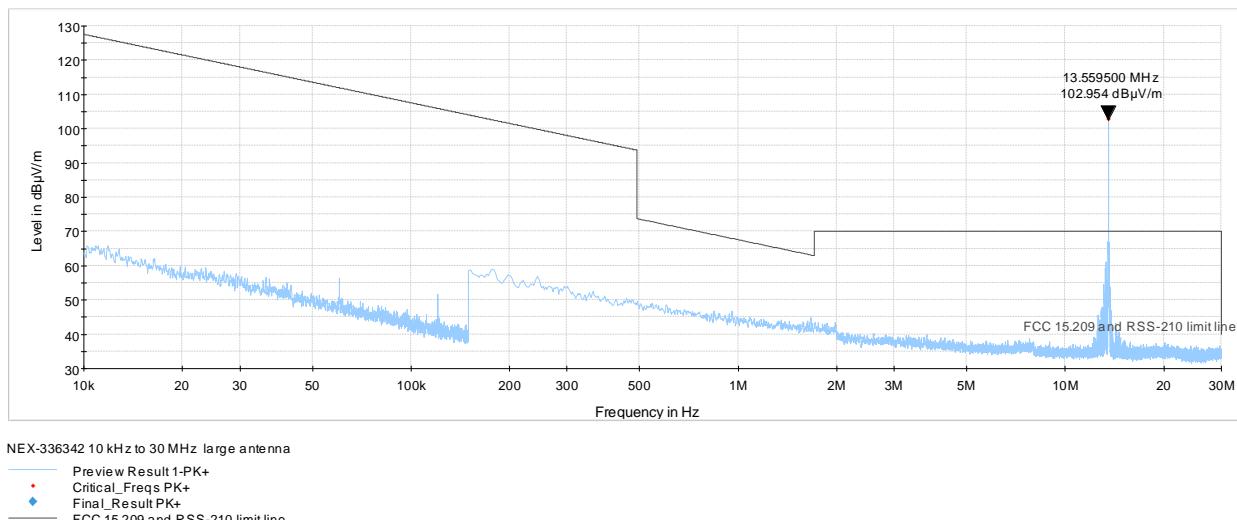
Radiated measurements were performed at a distance of 3 m.

Spectrum analyzer settings for frequencies below 150 kHz:

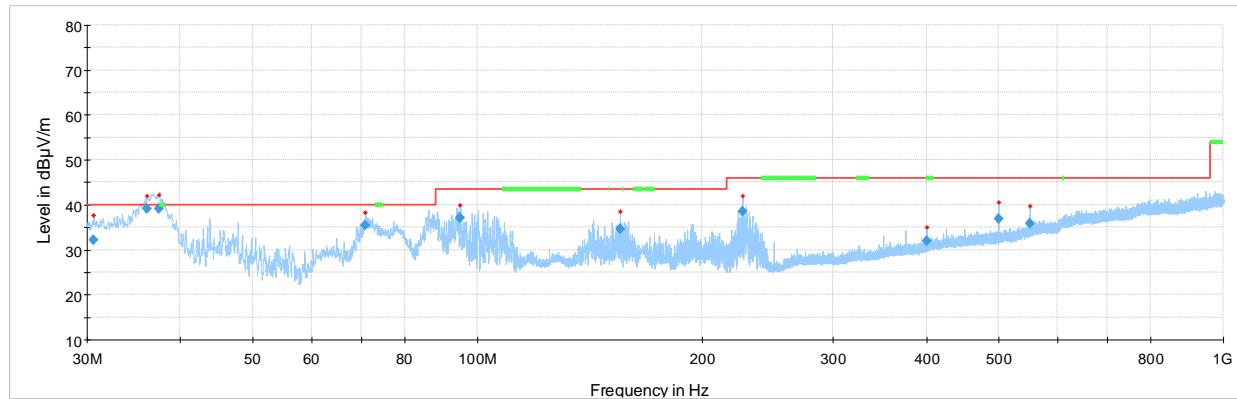
|                      |            |
|----------------------|------------|
| Detector mode        | Quasi-Peak |
| Resolution bandwidth | 300 Hz     |
| Video bandwidth      | 9 kHz      |
| Trace mode           | Max Hold   |
| Measurement time     | 100 ms     |


Spectrum analyzer settings for frequencies below 30 MHz:

|                      |            |
|----------------------|------------|
| Detector mode        | Quasi-Peak |
| Resolution bandwidth | 9 kHz      |
| Video bandwidth      | 30 kHz     |
| Trace mode           | Max Hold   |
| Measurement time     | 100 ms     |

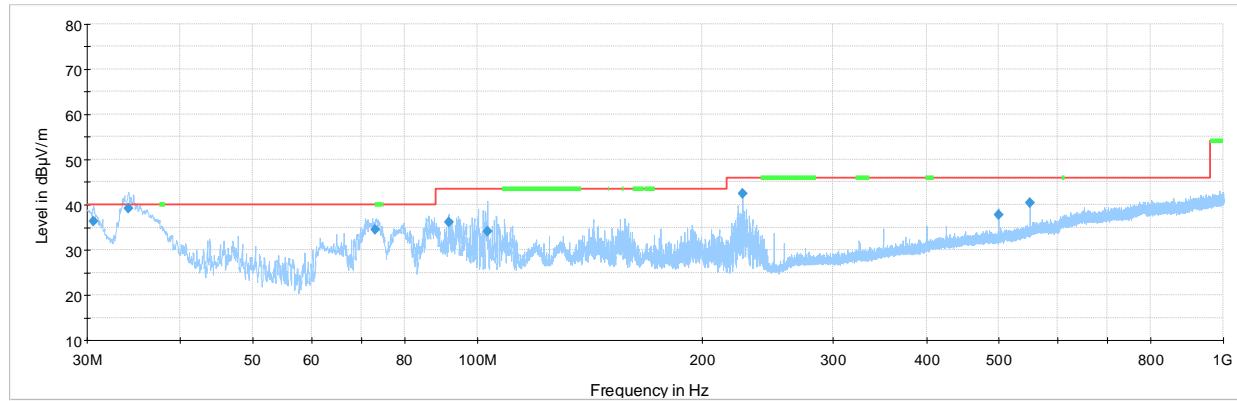

Spectrum analyzer settings for frequencies above 30 MHz:

|                      |          |
|----------------------|----------|
| Detector mode        | Peak     |
| Resolution bandwidth | 100 kHz  |
| Video bandwidth      | 300 kHz  |
| Trace mode           | Max Hold |
| Measurement time     | 100 ms   |


### 8.3.4 Test data



**Figure 8.3-1:** Field strength of spurious emissions below 30 MHz small antenna

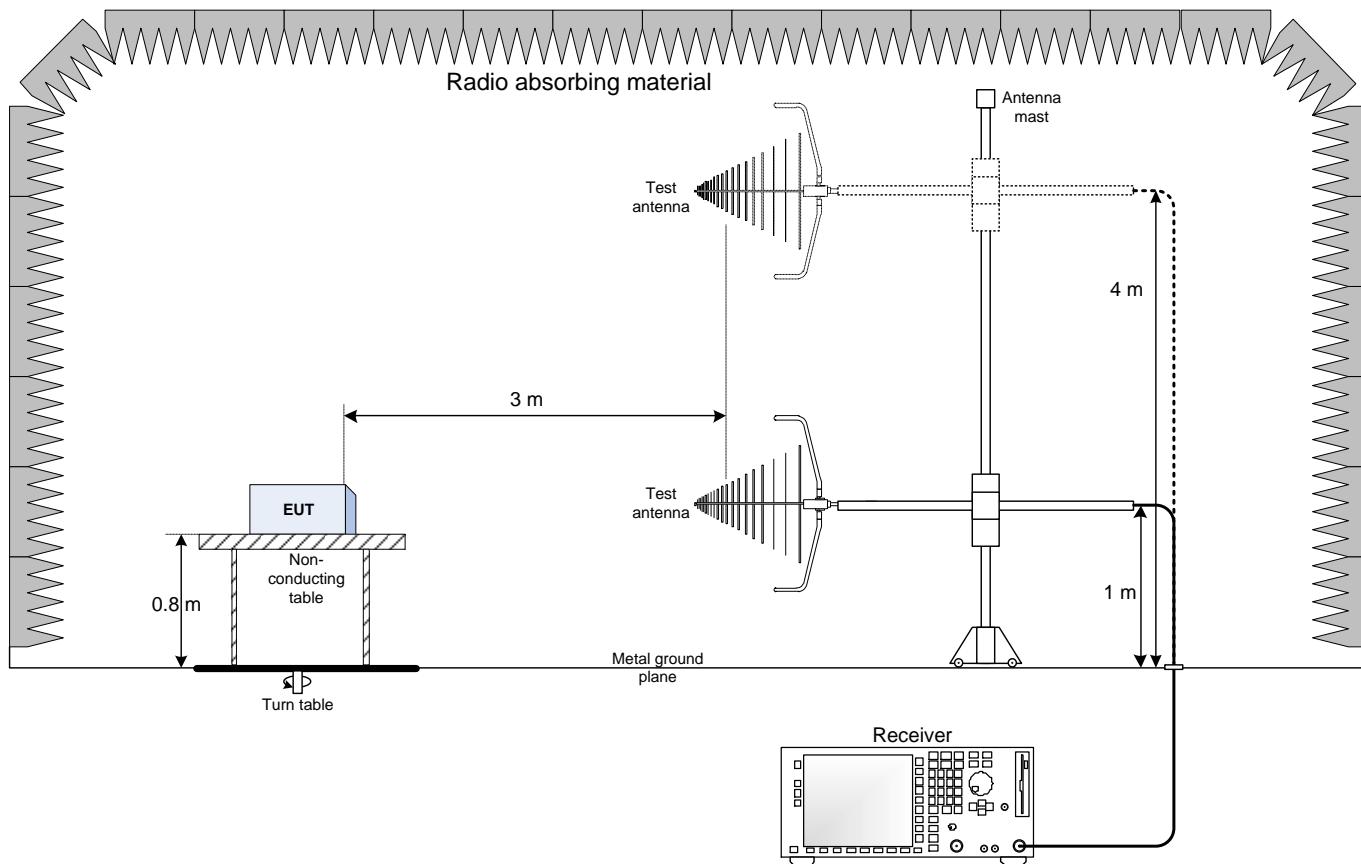



**Figure 8.3-2:** Field strength of spurious emissions below 30 MHz large antenna

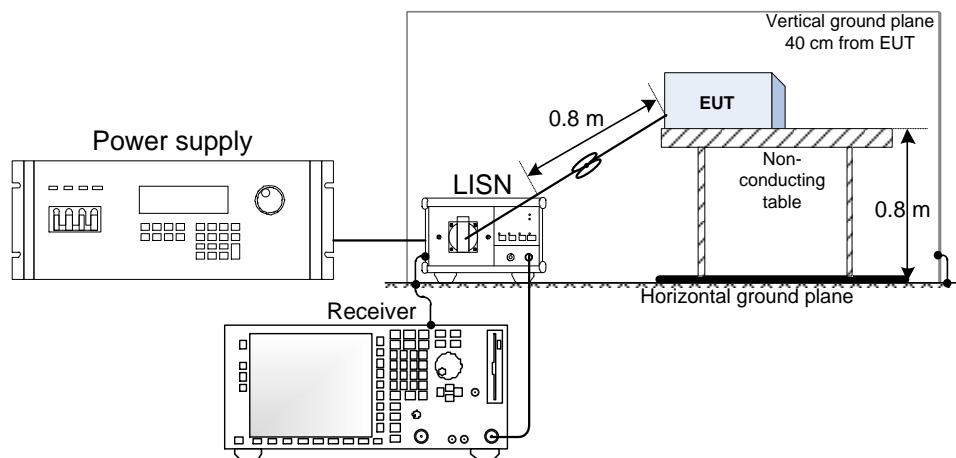


**Figure 8.3-3:** Field strength of spurious emissions above 30 MHz large antenna

Note: No Transmitter related emission within 10 dB of the 15.209 limit




**Figure 8.3-4:** Field strength of spurious emissions above 30 MHz small antenna


Note: No Transmitter related emission within 10 dB of the 15.209 limit

## Section 9. Block diagrams of test set-ups

### 9.1 Radiated emissions set-up



### 9.2 Conducted emissions set-up

