

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

198 Kezhu Road, Scientech Park, Guangzhou Economic & Technological
Development District, Guangzhou, China 510663

Telephone: +86 (0) 20 82155555
Fax: +86 (0) 20 82075059
Email: ee.guangzhou@sgs.com

Report No.: GZEM180700421302
Page: 1 of 42
FCC ID: 2APW8000R

TEST REPORT

Application No.: GZEM1807004213CR
Applicant: Wiral Technologies AS
Address of Applicant: Alfred Getz veg 3, 7034 Trondheim, Norway
Manufacturer: Jetta Company Limited
Address of Manufacturer: Jetta House, 19 On Kui Street, On Lok Tsuen, Fanling, Hong Kong
Factory: Jetta (Guangzhou Industries) Co., Ltd
Address of Factory: XinKai Village, Chengjiao Jie, Conghua City, Guangzhou, China
Equipment Under Test (EUT):
EUT Name: Wiral Lite Remote
FCC ID: 2APW8000R
Model No.: WLR-001
Trade Mark: Wiral Lite
Standard(s) : 47 CFR Part 15, Subpart C 15.247
Date of Receipt: 2018-07-24
Date of Test: 2018-08-08 to 2018-08-17
Date of Issue: 2018-08-27

Test Result:	Pass*
---------------------	-------

* In the configuration tested, the EUT complied with the standards specified above.

Kobe Jian
Lab Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com/en/Terms-and-Conditions.aspx> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Revision Record				
Version	Chapter	Date	Modifier	Remark
01		2018-08-27		Original

Authorized for issue by:			
Tested By		Kevin Zhang	
		Kevin_Zhang /Project Engineer	
		2018-08-08 to 2018-08-17	
		Date	
Checked By		Ricky Liu	
		Ricky Liu /Reviewer	
		2018-08-27	
		Date	

2 Test Summary

Radio Spectrum Technical Requirement				
Item	Standard	Method	Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass

Radio Spectrum Matter Part				
Item	Standard	Method	Requirement	Result
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.9.1	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass

3 Contents

	Page
1 Cover Page	1
2 Test Summary	3
3 Contents	4
4 General Information	6
4.1 Details of E.U.T	6
4.2 Environment parameter	6
4.3 Description of Support Units	8
4.4 Measurement Uncertainty	8
4.5 Test Location	8
4.6 Test Facility	9
4.7 Deviation from Standards	10
4.8 Abnormalities from Standard Conditions	10
5 Equipment List	11
6 Radio Spectrum Technical Requirement	14
6.1 Antenna Requirement	14
6.1.1 Test Requirement	14
6.1.2 Conclusion	14
7 Radio Spectrum Matter Test Results	15
7.1 Minimum 6dB Bandwidth	15
7.1.1 E.U.T. Operation	15
7.1.2 Test Setup Diagram	15
7.1.3 Measurement Procedure and Data	15
7.2 Conducted Peak Output Power	16
7.2.1 E.U.T. Operation	16
7.2.2 Test Setup Diagram	16
7.2.3 Measurement Procedure and Data	16
7.3 Power Spectrum Density	17
7.3.1 E.U.T. Operation	17
7.3.2 Test Setup Diagram	17
7.3.3 Measurement Procedure and Data	17
7.4 Conducted Band Edges Measurement	18
7.4.1 E.U.T. Operation	18
7.4.2 Test Setup Diagram	18
7.4.3 Measurement Procedure and Data	18
7.5 Conducted Spurious Emissions	19
7.5.1 E.U.T. Operation	19
7.5.2 Test Setup Diagram	19
7.5.3 Measurement Procedure and Data	19
7.6 Radiated Emissions which fall in the restricted bands	20
7.6.1 E.U.T. Operation	20
7.6.2 Test Setup Diagram	20
7.6.3 Measurement Procedure and Data	21
7.7 Radiated Spurious Emissions	24

7.7.1	E.U.T. Operation.....	24
7.7.2	Test Setup Diagram.....	24
7.7.3	Measurement Procedure and Data	25
8	Appendix	30
8.1	Appendix 15.247	30

4 General Information

4.1 Details of E.U.T.

Power Supply:	DC 3.0V (2×1.5V "AAA" battery)
Test Voltage:	DC 3.0V
Cable:	N/A
Antenna Gain:	0dBi
Antenna Type:	Integrated Antenna
Channel Spacing:	2MHz
Modulation Type:	GFSK
Number of Channels:	40
Operation Frequency:	2402MHz to 2480MHz
Bluetooth Version:	4.0 BLE
Fixed Fre. Software:	J-Link RTT Viewer V6.32h

4.2 Environment parameter

Environment Parameter	Selected Values During Tests	
Relative Humidity	Ambient	
Value	Temperature(°C)	Voltage(V)
TNVN	25	3.0
TLVN	-10	3.0
THVN	45	3.0

Note:

VN: Normal Voltage
TN: Normal Temperature
TL: Low Extreme Test Temperature
TH: High Extreme Test Temperature

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Using test software was control EUT work in continuous transmitter and receiver mode.and select test channel as below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Description of Support Units

The EUT has been tested as an independent unit.

4.4 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	$\pm 5.5 \times 10^{-8}$
2	Duty cycle	$\pm 0.57\%$
3	Occupied Bandwidth	$\pm 3\%$
4	RF Conducted power	$\pm 0.68\text{dB}$
5	RF Power Density	$\pm 1.50\text{dB}$
6	Conducted Spurious Emissions	$\pm 1.04\text{dB}$
7	RF Radiated Power	$\pm 4.5\text{dB}$ (below 1GHz)
		$\pm 4.8\text{dB}$ (above 1GHz)
8	Radiated Spurious Emission Test	$\pm 4.5\text{dB}$ (30MHz-1GHz)
		$\pm 4.8\text{dB}$ (1GHz-18GHz)
9	Temperature	$\pm 0.4^\circ\text{C}$
10	Humidity	$\pm 1.3\%$
11	Supply Voltages	\pm
12	Time	$\pm 3\%$

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou Branch EMC Laboratory,
198 Kezhu Road, Scientech Park, Guangzhou Economic & Technology Development District,
Guangzhou, China 510663

Tel: +86 20 82155555 Fax: +86 20 82075059

No tests were sub-contracted.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

● **NVLAP (Lab Code: 200611-0)**

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 200611-0.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

● **ACMA**

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our NVLAP accreditation.

● **SGS UK(Certificate No.: 32), SGS-TUV SAARLAND and SGS-FIMKO**

Have approved SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory as a supplier of EMC TESTING SERVICES and SAFETY TESTING SERVICES.

● **CNAS (Lab Code: L0167)**

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been assessed and in compliance with CNAS-CL01:2006 accreditation criteria for testing laboratories (identical to

ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

● **FCC Recognized 2.948 Listed Test Firm(Registration No.: 282399)**

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 282399, May 31, 2002.

● **FCC Recognized Accredited Test Firm(Registration No.: 486818)**

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: CN5016, Test Firm Registration Number: 486818, Jul 13, 2017.

● **Industry Canada (Registration No.: 4620B-1)**

The 3m/10m Alternate Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd., has been registered by Certification and Engineering of Industry Canada for radio equipment testing with Registration No. 4620B-1.

● **VCCI (Registration No.: R-2460, C-2584, G-449 and T-1179)**

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2460, C-2584, G-449 and T-1179 respectively.

● **CBTL (Lab Code: TL129)**

SGS-CSTC Standards Technical Services Co., Ltd., E&E Laboratory has been assessed and fully comply with the requirements of ISO/IEC 17025:2005, the Basic Rules, IEC60068-2-27 and Rules of procedure IEC60068-2-27, and the relevant IEC60068-2-27 CB-Scheme Operational documents.

4.7 Deviation from Standards

None

4.8 Abnormalities from Standard Conditions

None

5 Equipment List

Minimum 6dB Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EXA Signal Analyzer	Agilent Technologies	N9010A	EMC2138	2017-11-15	2018-11-14
6dB Attenuator	HP	8491A	EMC2062	2018-04-04	2020-04-03
Test Software JS1120-3	HangTianXing	V2.6	GZE100-69	N/A	N/A

Conducted Peak Output Power					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EXA Signal Analyzer	Agilent Technologies	N9010A	EMC2138	2017-11-15	2018-11-14
6dB Attenuator	HP	8491A	EMC2062	2018-04-04	2020-04-03
Test Software JS1120-3	HangTianXing	V2.6	GZE100-69	N/A	N/A

Power Spectrum Density					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EXA Signal Analyzer	Agilent Technologies	N9010A	EMC2138	2017-11-15	2018-11-14
6dB Attenuator	HP	8491A	EMC2062	2018-04-04	2020-04-03
Test Software JS1120-3	HangTianXing	V2.6	GZE100-69	N/A	N/A

Conducted Band Edges Measurement					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
MXA Signal Analyzer	Agilent Technologies	N9020A	SEM004-10	2018-03-10	2019-03-09
ESG Vector Signal Generator	Keysight	E4438C	SEM006-03	2018-04-10	2019-04-10
EXG Analog Signal Generator	Agilent Technologies	N5171B	SEM006-04	2017-07-26	2020-07-25
Power Meter	Agilent Technologies	U2021XA_Ch2	SEM009-02	2017-09-19	2018-09-18
Power Meter	Agilent Technologies	U2021XA_Ch3	SEM009-03	2017-09-19	2018-09-18
EXA Signal Analyzer	Agilent Technologies	N9010A	EMC2138	2017-11-15	2018-11-14
6dB Attenuator	HP	8491A	EMC2062	2018-04-04	2020-04-03
Test Software JS1120-3	HangTianXing	V2.6	GZE100-69	N/A	N/A

Conducted Spurious Emissions					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EXA Signal Analyzer	Agilent Technologies	N9010A	EMC2138	2017-11-15	2018-11-14
6dB Attenuator	HP	8491A	EMC2062	2018-04-04	2020-04-03
Test Software JS1120-3	HangTianXing	V2.6	GZE100-69	N/A	N/A

Radiated Emissions which fall in the restricted bands					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test Receiver	Rohde & Schwarz	ESIB26	EMC0522	2018-01-19	2019-01-18
EMI Test Receiver	Rohde & Schwarz	ESCI	EMC0056	2018-01-19	2019-01-18
Chamber cable	HangTianXing	N/A	EMC0542	2017-06-30	2019-06-30
Trilog Broadband Antenna 30MHz-1GHz	SCHWARZBECK MESS-ELEKTRONIK	VULB 9160	EMC2025	2016-09-08	2019-09-07
Bi-log Type Antenna	Schaffner -Chase	CBL6112B	EMC0524	2016-09-08	2019-09-07
Bi-log Type Antenna	Schaffner -Chase	CBL6143	EMC0519	2017-05-04	2020-05-03
Horn Antenna 1GHz-18GHz	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120D	EMC2026	2016-09-09	2019-09-08
1GHz-26.5 GHz Pre-Amplifier	Agilent	8449B	EMC0521	2018-01-08	2019-01-07
Amplifier	HP	8447F	EMC2065	2018-06-01	2019-05-31
Pre-Amplifier MH648A	ANRITSU CORP	MH648A	EMC2086	2017-11-20	2018-11-19
Active Loop Antenna	EMCO	6502	EMC0523	2018-02-24	2019-02-23
High Pass Filter (915MHz)	FSY MICROWAVE	HM1465-9SS	EMC2079	2018-01-19	2019-01-18
2.4GHz Filter	Micro-Tronics	BRM 50702	EMC2069	2018-01-08	2019-01-07
10m Semi-Anechoic Chamber	ETS	N/A	EMC0530	2017-06-18	2019-06-18
966 Anechoic Chamber	C.R.T	9m x 6m x 6m	EMC2142	2017-11-29	2018-11-28
MXE EMI Receiver	Keysight	N9038A	EMC2139	2017-11-15	2018-11-14
EXA Signal Analyzer	Keysight	N9010A	EMC2138	2017-11-15	2018-11-14
Test Software E3	Audix	Ver.6.120110a	GZE100-61	N/A	N/A

Radiated Spurious Emissions					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test Receiver	Rohde & Schwarz	ESIB26	EMC0522	2018-01-19	2019-01-18
EMI Test Receiver	Rohde & Schwarz	ESCI	EMC0056	2018-01-19	2019-01-18
Chamber cable	HangTianXing	N/A	EMC0542	2017-06-30	2019-06-30
Trilog Broadband Antenna 30MHz-1GHz	SCHWARZBECK MESS-ELEKTRONIK	VULB 9160	EMC2025	2016-09-08	2019-09-07
Bi-log Type Antenna	Schaffner -Chase	CBL6112B	EMC0524	2016-09-08	2019-09-07
Bi-log Type Antenna	Schaffner -Chase	CBL6143	EMC0519	2017-05-04	2020-05-03
Horn Antenna 1GHz-18GHz	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120D	EMC2026	2016-09-09	2019-09-08
1GHz-26.5 GHz Pre-Amplifier	Agilent	8449B	EMC0521	2018-01-08	2019-01-07
Amplifier	HP	8447F	EMC2065	2018-06-01	2019-05-31
Pre-Amplifier MH648A	ANRITSU CORP	MH648A	EMC2086	2017-11-20	2018-11-19
Active Loop Antenna	EMCO	6502	EMC0523	2018-02-24	2019-02-23
High Pass Filter (915MHz)	FSY MICROWAVE	HM1465-9SS	EMC2079	2018-01-19	2019-01-18
2.4GHz Filter	Micro-Tronics	BRM 50702	EMC2069	2018-01-08	2019-01-07
10m Semi-Anechoic Chamber	ETS	N/A	EMC0530	2017-06-18	2019-06-18
966 Anechoic Chamber	C.R.T	9m x 6m x 6m	EMC2142	2017-11-29	2018-11-28
MXE EMI Receiver	Keysight	N9038A	EMC2139	2017-11-15	2018-11-14
EXA Signal Analyzer	Keysight	N9010A	EMC2138	2017-11-15	2018-11-14
Test Software E3	Audix	Ver.6.120110a	GZE100-61	N/A	N/A

General used equipment					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DMM	Fluke	73	EMC0006	2018-07-20	2019-07-19
DMM	Fluke	73	EMC0007	2018-07-19	2019-07-18

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

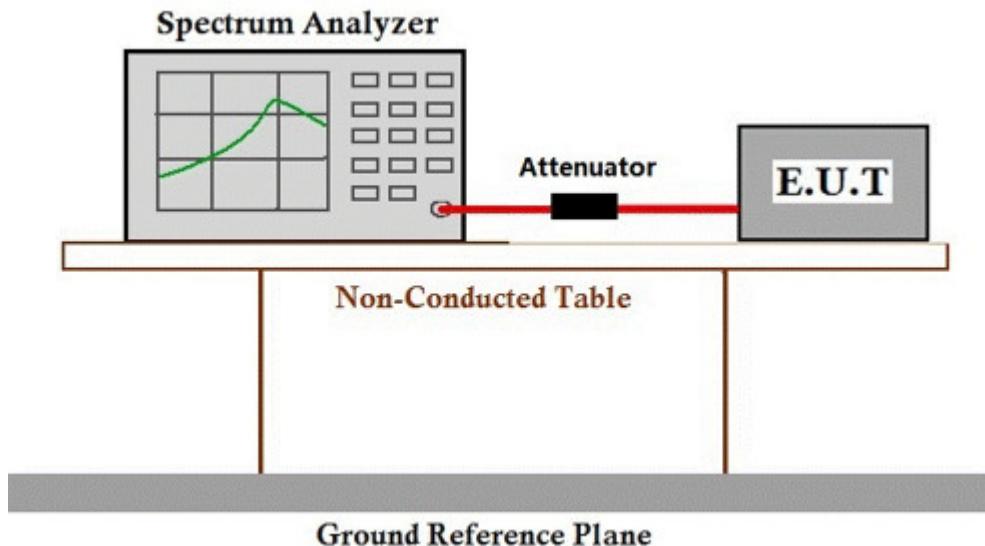
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

7 Radio Spectrum Matter Test Results


7.1 Minimum 6dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.247a(2)
Test Method: ANSI C63.10 (2013) Section 11.8.1
Limit: ≥ 500 kHz

7.1.1 E.U.T. Operation

Operating Environment:
Temperature: 24.7 °C Humidity: 63.5 % RH Atmospheric Pressure: 1020 mbar
Test Mode: a: TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.1.2 Test Setup Diagram

7.1.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

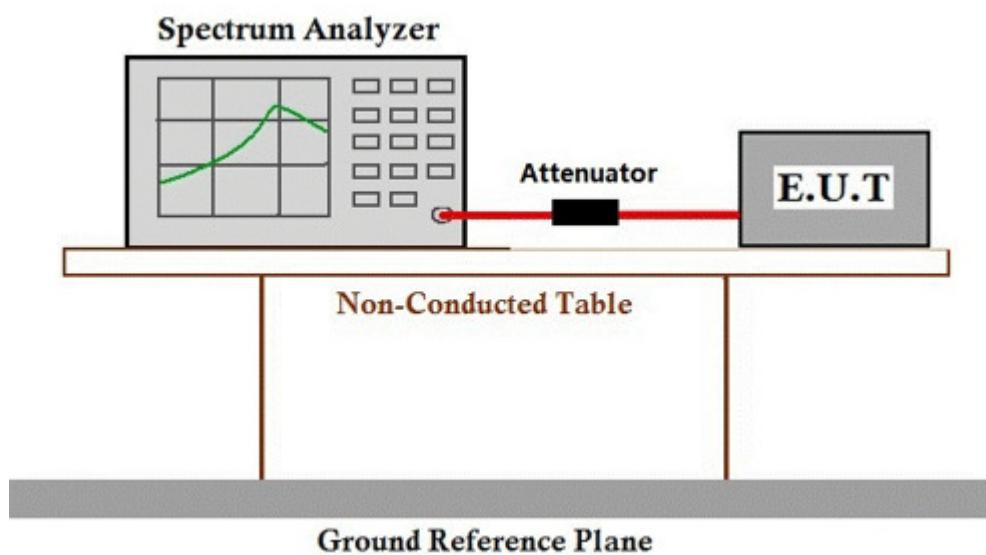
7.2 Conducted Peak Output Power

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(3)

Test Method: ANSI C63.10 (2013) Section 11.9.1

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)
902-928	1 for ≥ 50 hopping channels
	0.25 for $25 \leq$ hopping channels < 50
	1 for digital modulation
2400-2483.5	1 for ≥ 75 non-overlapping hopping channels
	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation


7.2.1 E.U.T. Operation

Operating Environment:

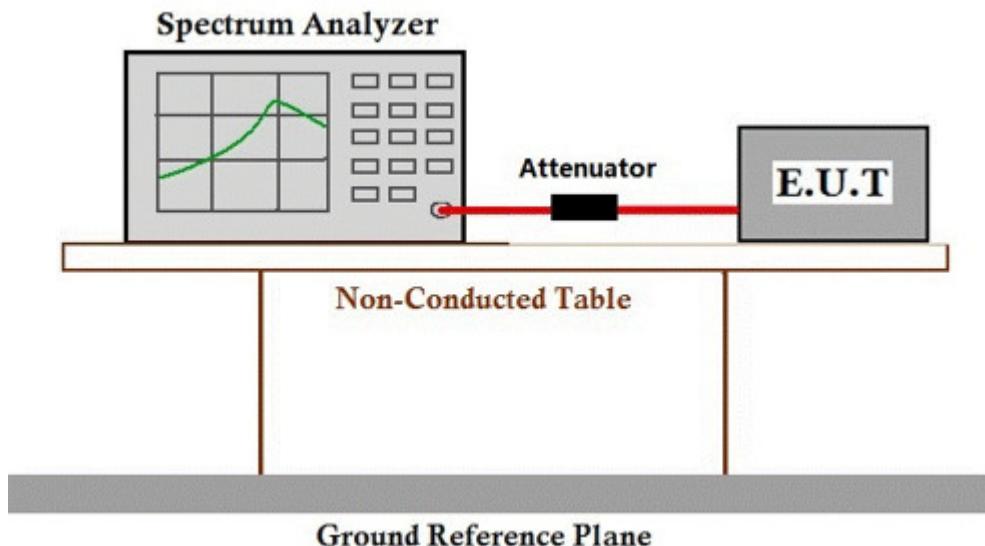
Temperature: 24.7 °C Humidity: 63.5 % RH Atmospheric Pressure: 1020 mbar

Test Mode: a: TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.2.2 Test Setup Diagram

7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247


7.3 Power Spectrum Density

Test Requirement 47 CFR Part 15, Subpart C 15.247(e)
Test Method: ANSI C63.10 (2013) Section 11.10.2
Limit: $\leq 8\text{dBm}$ in any 3 kHz band during any time interval of continuous transmission

7.3.1 E.U.T. Operation

Operating Environment:
Temperature: 24.7 °C Humidity: 63.5 % RH Atmospheric Pressure: 1020 mbar
Test Mode: a: TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

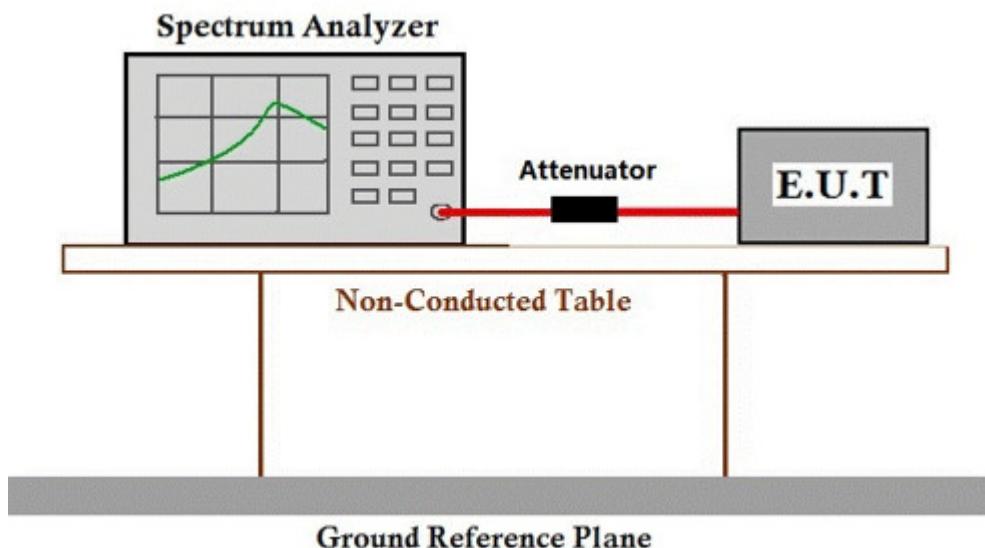
7.3.2 Test Setup Diagram

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

7.4 Conducted Band Edges Measurement

Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 11.13.3.2
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))


7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 24.7 °C Humidity: 63.5 % RH Atmospheric Pressure: 1020 mbar

Test Mode: a: TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

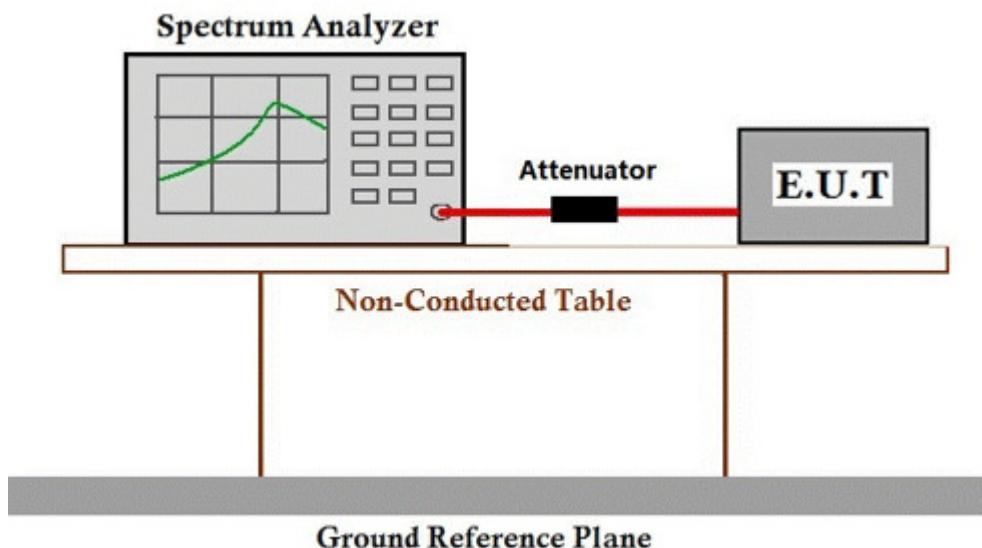
7.4.2 Test Setup Diagram

7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

7.5 Conducted Spurious Emissions

Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 11.11
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))


7.5.1 E.U.T. Operation

Operating Environment:

Temperature: 24.7 °C Humidity: 63.5 % RH Atmospheric Pressure: 1020 mbar

Test Mode: a: TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.5.2 Test Setup Diagram

7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

7.6 Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

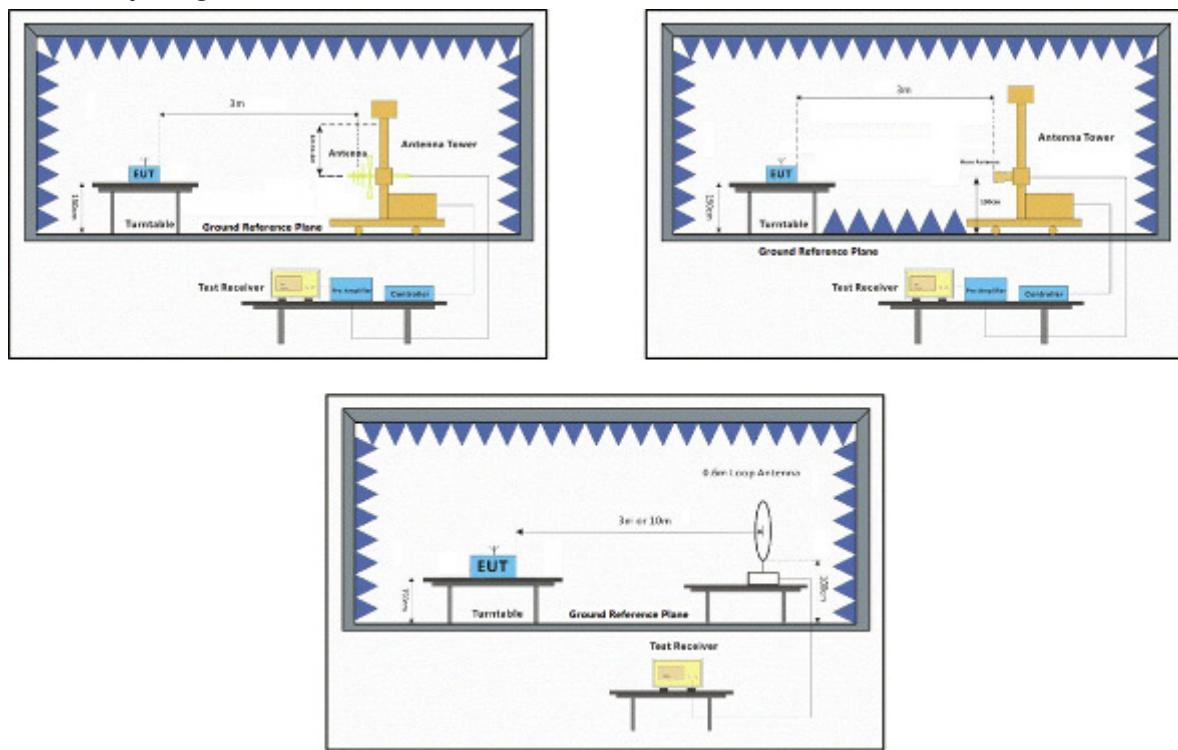
Test Method: ANSI C63.10 (2013) Section 6.10.5

Measurement Distance: 3m

Limit:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


7.6.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 55 % RH Atmospheric Pressure: 1020 mbar

Test Mode: a: TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.6.2 Test Setup Diagram

7.6.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Level=Read Level + Antenna Factor + Cable Loss - Preamp Factor

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:Low

Freq	ReadAntenna		Cable		Preamp	Level	Limit	Over	Pol/Phase	Remark
	Level	Factor	Loss	Factor						
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	2310.000	37.33	26.25	5.03	38.08	30.53	54.00	-23.47	HORIZONTAL	Average
2	2310.000	48.11	26.25	5.03	38.08	41.31	74.00	-32.69	HORIZONTAL	Peak
3	2390.000	36.23	26.43	4.88	37.92	29.62	54.00	-24.38	HORIZONTAL	Average
4	2390.000	45.99	26.43	4.88	37.92	39.38	74.00	-34.62	HORIZONTAL	Peak
5	2483.500	42.90	26.58	5.23	38.37	36.34	54.00	-17.66	HORIZONTAL	Average
6	2483.500	54.31	26.58	5.23	38.37	47.75	74.00	-26.25	HORIZONTAL	Peak
7	2500.000	36.39	26.60	4.95	38.10	29.84	54.00	-24.16	HORIZONTAL	Average
8	2500.000	46.27	26.60	4.95	38.10	39.72	74.00	-34.28	HORIZONTAL	Peak

Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:Low

Freq	ReadAntenna		Cable		Preamp	Level	Limit	Over	Pol/Phase	Remark
	Level	Factor	Loss	Factor						
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	2310.000	36.18	26.25	5.03	38.08	29.38	54.00	-24.62	VERTICAL	Average
2	2310.000	47.72	26.25	5.03	38.08	40.92	74.00	-33.08	VERTICAL	Peak
3	2390.000	36.38	26.43	4.88	37.92	29.77	54.00	-24.23	VERTICAL	Average
4	2390.000	45.35	26.43	4.88	37.92	38.74	74.00	-35.26	VERTICAL	Peak
5	2483.500	36.73	26.58	5.23	38.37	30.17	54.00	-23.83	VERTICAL	Average
6	2483.500	48.15	26.58	5.23	38.37	41.59	74.00	-32.41	VERTICAL	Peak
7	2500.000	36.01	26.60	4.95	38.10	29.46	54.00	-24.54	VERTICAL	Average
8	2500.000	46.17	26.60	4.95	38.10	39.62	74.00	-34.38	VERTICAL	Peak

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:High

Freq	ReadAntenna		Cable		Preamp	Level	Limit	Over	Pol/Phase	Remark
	Level	Factor	Loss	Factor						
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	2310.000	35.82	26.25	5.03	38.08	29.02	54.00	-24.98	HORIZONTAL	Average
2	2310.000	46.14	26.25	5.03	38.08	39.34	74.00	-34.66	HORIZONTAL	Peak
3	2390.000	36.34	26.43	4.88	37.92	29.73	54.00	-24.27	HORIZONTAL	Average
4	2390.000	45.95	26.43	4.88	37.92	39.34	74.00	-34.66	HORIZONTAL	Peak
5	2483.500	39.47	26.58	5.23	38.37	32.91	54.00	-21.09	HORIZONTAL	Average
6	2483.500	50.03	26.58	5.23	38.37	43.47	74.00	-30.53	HORIZONTAL	Peak
7	2500.000	35.34	26.60	4.95	38.10	28.79	54.00	-25.21	HORIZONTAL	Average
8	2500.000	45.70	26.60	4.95	38.10	39.15	74.00	-34.85	HORIZONTAL	Peak

Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:High

Freq	ReadAntenna		Cable		Preamp	Level	Limit	Over	Pol/Phase	Remark
	Level	Factor	Loss	Factor						
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	2310.000	36.07	26.25	5.03	38.08	29.27	54.00	-24.73	VERTICAL	Average
2	2310.000	45.79	26.25	5.03	38.08	38.99	74.00	-35.01	VERTICAL	Peak
3	2390.000	34.73	26.43	4.88	37.92	28.12	54.00	-25.88	VERTICAL	Average
4	2390.000	45.44	26.43	4.88	37.92	38.83	74.00	-35.17	VERTICAL	Peak
5	2483.500	40.47	26.58	5.23	38.37	33.91	54.00	-20.09	VERTICAL	Average
6	2483.500	51.79	26.58	5.23	38.37	45.23	74.00	-28.77	VERTICAL	Peak
7	2500.000	35.58	26.60	4.95	38.10	29.03	54.00	-24.97	VERTICAL	Average
8	2500.000	45.91	26.60	4.95	38.10	39.36	74.00	-34.64	VERTICAL	Peak

7.7 Radiated Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

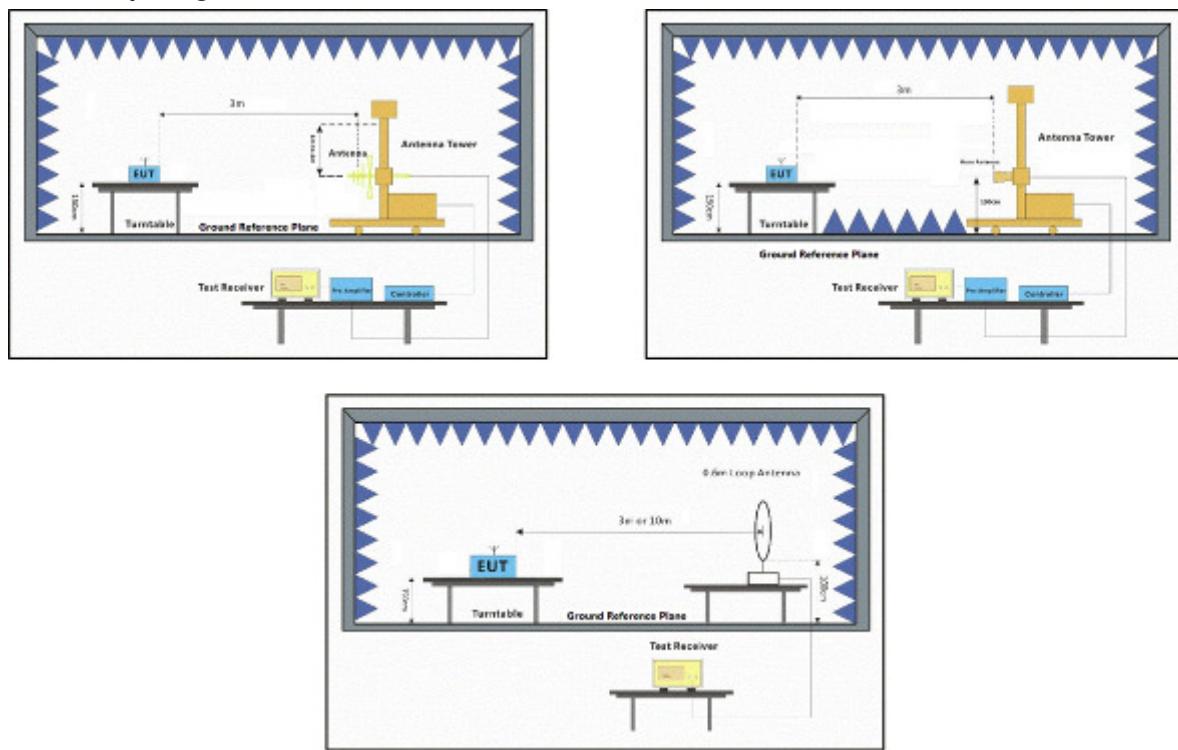
Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6

Measurement Distance: 3m

Limit:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


7.7.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 55 % RH Atmospheric Pressure: 1020 mbar

Test Mode: a: TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.7.2 Test Setup Diagram

7.7.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:Low

Freq	ReadAntenna		Cable		Preamp		Limit	Over	Pol/Phase	Remark
	Level	Factor	Loss	Factor	Level	Line				
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	43.506	21.99	12.72	0.69	24.29	11.11	40.00	-28.89	HORIZONTAL	QP
2	70.090	25.67	10.80	0.72	25.52	11.67	40.00	-28.33	HORIZONTAL	QP
3	180.649	27.46	12.67	1.34	28.09	13.38	43.50	-30.12	HORIZONTAL	QP
4	299.316	29.12	13.99	1.78	29.19	15.70	46.00	-30.30	HORIZONTAL	QP
5	440.196	29.31	17.09	1.88	29.46	18.82	46.00	-27.18	HORIZONTAL	QP
6	721.726	28.93	21.63	3.60	29.56	24.60	46.00	-21.40	HORIZONTAL	QP

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:Low

Freq	ReadAntenna		Cable		Preamp		Limit	Over	Pol/Phase	Remark
	Level	Factor	Loss	Factor	Level	Line				
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	2774.030	34.03	27.43	4.72	37.98	28.20	54.00	-25.80	HORIZONTAL	Average
2	2774.030	45.44	27.43	4.72	37.98	39.61	74.00	-34.39	HORIZONTAL	Peak
3	3746.792	32.50	28.76	7.58	38.06	30.78	54.00	-23.22	HORIZONTAL	Average
4	3746.792	45.82	28.76	7.58	38.06	44.10	74.00	-29.90	HORIZONTAL	Peak
5	4804.948	34.42	30.79	5.87	38.10	32.98	54.00	-21.02	HORIZONTAL	Average
6	4804.948	45.54	30.79	5.87	38.10	44.10	74.00	-29.90	HORIZONTAL	Peak
7	7206.052	30.93	35.45	7.34	37.42	36.30	54.00	-17.70	HORIZONTAL	Average
8	7206.052	42.80	35.45	7.34	37.42	48.17	74.00	-25.83	HORIZONTAL	Peak
9	9608.151	30.59	37.51	8.15	37.40	38.85	54.00	-15.15	HORIZONTAL	Average
10	9608.151	43.04	37.51	8.15	37.40	51.30	74.00	-22.70	HORIZONTAL	Peak
11	12010.760	28.24	39.50	10.67	37.45	40.96	54.00	-13.04	HORIZONTAL	Average
12	12010.760	43.55	39.50	10.67	37.45	56.27	74.00	-17.73	HORIZONTAL	Peak

Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:Low

Freq	ReadAntenna		Cable		Preamp		Limit	Over	Pol/Phase	Remark
	Level	Factor	Loss	Factor	Level	Line				
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	59.025	22.42	12.25	0.58	25.21	10.04	40.00	-29.96	VERTICAL	QP
2	115.321	26.82	11.23	0.91	28.04	10.92	43.50	-32.58	VERTICAL	QP
3	178.133	26.16	12.74	1.34	28.08	12.16	43.50	-31.34	VERTICAL	QP
4	303.544	26.90	14.04	1.78	29.25	13.47	46.00	-32.53	VERTICAL	QP
5	480.528	29.73	18.01	2.09	29.49	20.34	46.00	-25.66	VERTICAL	QP
6	716.682	28.38	21.57	3.49	29.51	23.93	46.00	-22.07	VERTICAL	QP

Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:Low

Freq	ReadAntenna		Cable		Preamp		Limit	Over	Pol/Phase	Remark
	Level	Factor	Loss	Factor	Level	Line				
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	2774.030	35.13	27.43	4.72	37.98	29.30	54.00	-24.70	VERTICAL	Average
2	2774.030	45.93	27.43	4.72	37.98	40.10	74.00	-33.90	VERTICAL	Peak
3	3629.540	34.30	28.24	6.59	37.93	31.20	54.00	-22.80	VERTICAL	Average
4	3629.540	45.02	28.24	6.59	37.93	41.92	74.00	-32.08	VERTICAL	Peak
5	4804.948	35.65	30.79	5.87	38.10	34.21	54.00	-19.79	VERTICAL	Average
6	4804.948	45.63	30.79	5.87	38.10	44.19	74.00	-29.81	VERTICAL	Peak
7	7206.052	31.13	35.45	7.34	37.42	36.50	54.00	-17.50	VERTICAL	Average
8	7206.052	43.64	35.45	7.34	37.42	49.01	74.00	-24.99	VERTICAL	Peak
9	9608.164	29.65	37.51	8.15	37.40	37.91	54.00	-16.09	VERTICAL	Average
10	9608.164	42.99	37.51	8.15	37.40	51.25	74.00	-22.75	VERTICAL	Peak
11	12010.760	29.99	39.50	10.67	37.45	42.71	54.00	-11.29	VERTICAL	Average
12	12010.760	43.71	39.50	10.67	37.45	56.43	74.00	-17.57	VERTICAL	Peak

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:middle

Freq	ReadAntenna		Cable		Preamp	Level	Limit	Over	Pol/Phase	Remark
	Level	Factor	Loss	Factor						
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	2973.293	33.71	27.87	4.67	37.98	28.27	54.00	-25.73	HORIZONTAL	Average
2	2973.293	45.44	27.87	4.67	37.98	40.00	74.00	-34.00	HORIZONTAL	Peak
3	3768.513	32.06	28.87	7.71	38.08	30.56	54.00	-23.44	HORIZONTAL	Average
4	3768.513	44.67	28.87	7.71	38.08	43.17	74.00	-30.83	HORIZONTAL	Peak
5	4880.948	32.66	30.93	6.66	38.13	32.12	54.00	-21.88	HORIZONTAL	Average
6	4880.948	44.14	30.93	6.66	38.13	43.60	74.00	-30.40	HORIZONTAL	Peak
7	7320.309	29.86	35.74	7.39	37.46	35.53	54.00	-18.47	HORIZONTAL	Average
8	7320.309	43.14	35.74	7.39	37.46	48.81	74.00	-25.19	HORIZONTAL	Peak
9	9760.151	31.03	37.70	8.33	37.38	39.68	54.00	-14.32	HORIZONTAL	Average
10	9760.151	43.88	37.70	8.33	37.38	52.53	74.00	-21.47	HORIZONTAL	Peak
11	12200.520	27.88	39.27	10.93	37.33	40.75	54.00	-13.25	HORIZONTAL	Average
12	12200.520	42.95	39.27	10.93	37.33	55.82	74.00	-18.18	HORIZONTAL	Peak

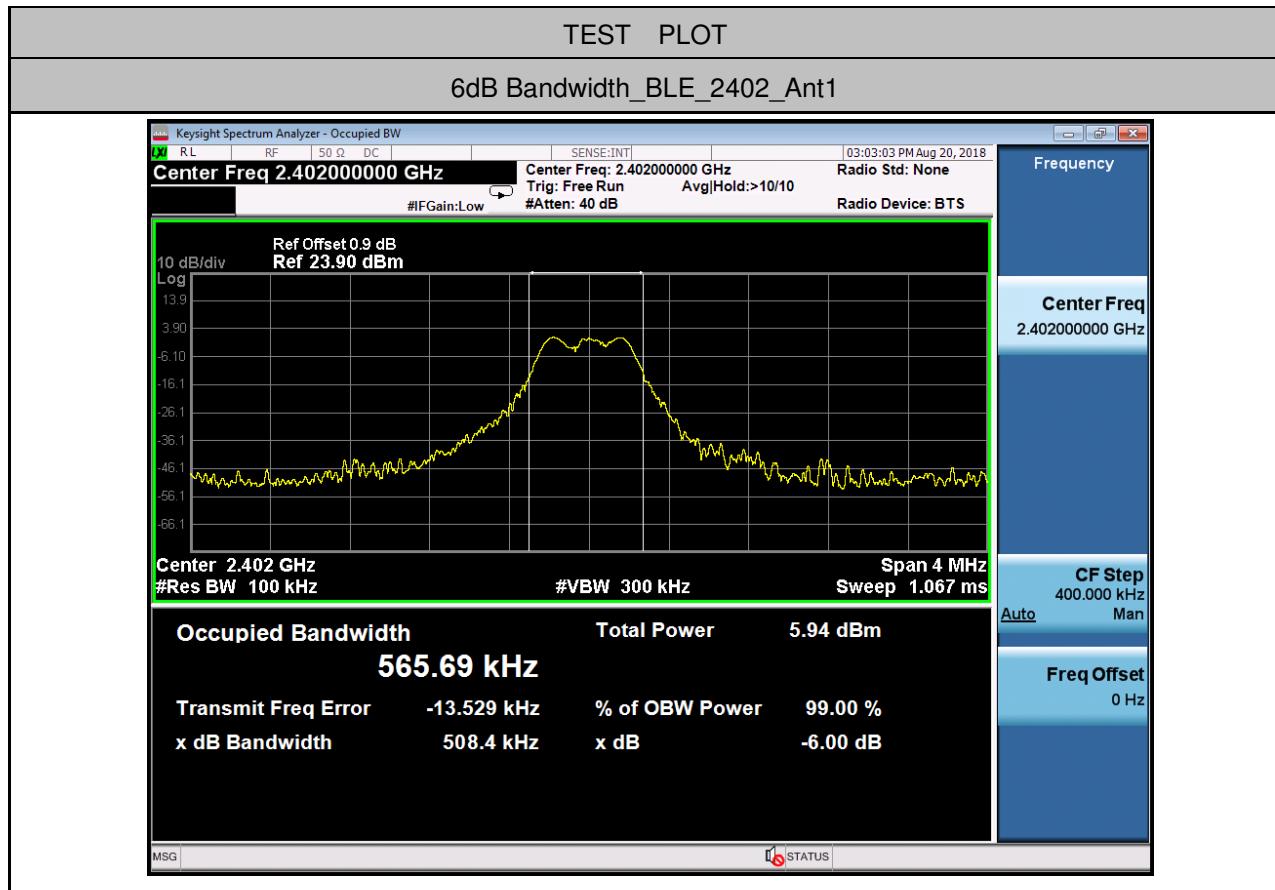
Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:middle

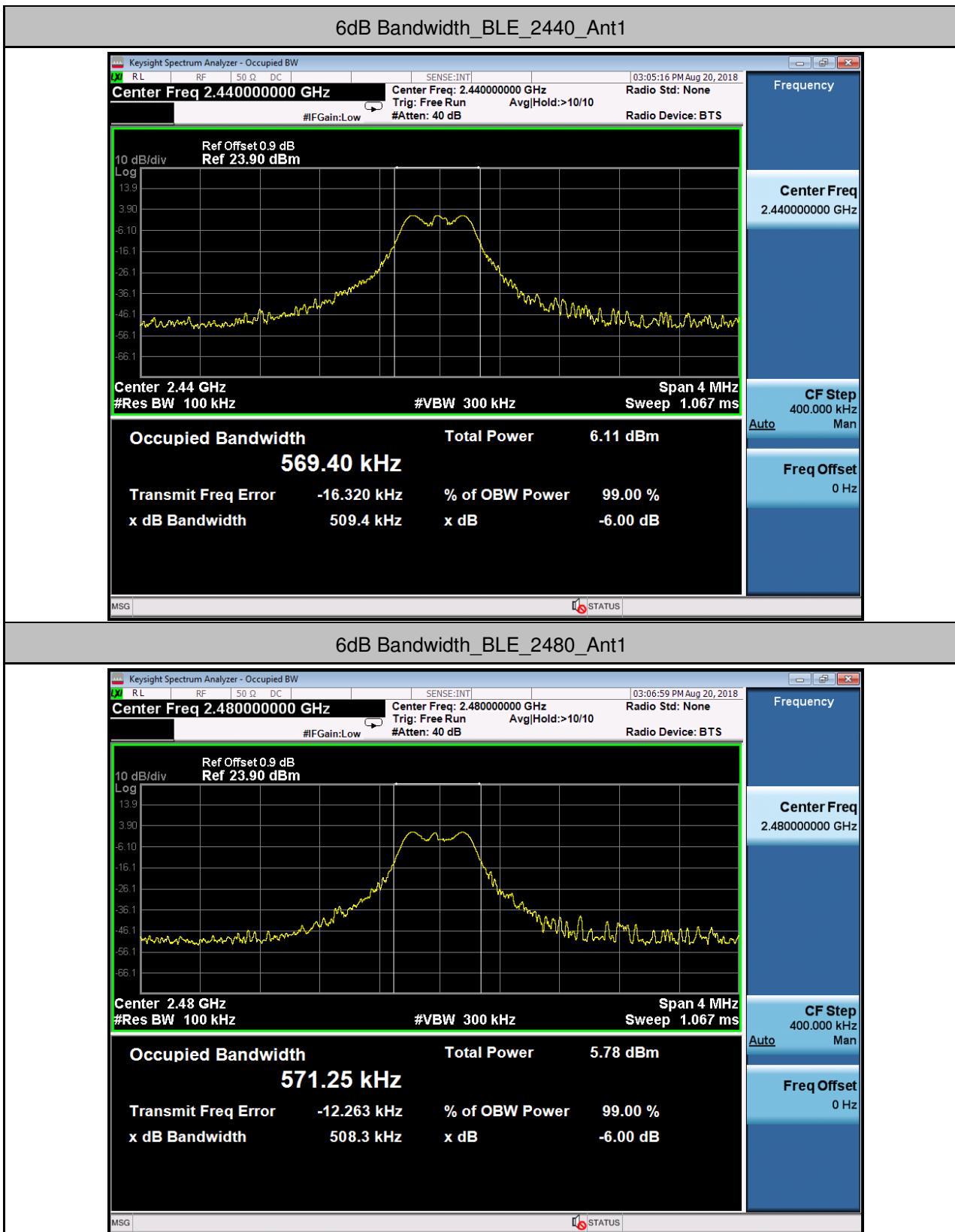
Freq	ReadAntenna		Cable		Preamp	Level	Limit	Over	Pol/Phase	Remark
	Level	Factor	Loss	Factor						
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	2664.019	35.14	26.95	4.95	37.90	29.14	54.00	-24.86	VERTICAL	Average
2	2664.019	46.51	26.95	4.95	37.90	40.51	74.00	-33.49	VERTICAL	Peak
3	3629.540	34.82	28.24	6.59	37.93	31.72	54.00	-22.28	VERTICAL	Average
4	3629.540	44.83	28.24	6.59	37.93	41.73	74.00	-32.27	VERTICAL	Peak
5	4880.110	34.53	30.93	6.66	38.13	33.99	54.00	-20.01	VERTICAL	Average
6	4880.110	45.73	30.93	6.66	38.13	45.19	74.00	-28.81	VERTICAL	Peak
7	7320.015	30.44	35.74	7.39	37.46	36.11	54.00	-17.89	VERTICAL	Average
8	7320.015	44.40	35.74	7.39	37.46	50.07	74.00	-23.93	VERTICAL	Peak
9	9760.151	30.63	37.70	8.33	37.38	39.28	54.00	-14.72	VERTICAL	Average
10	9760.151	44.35	37.70	8.33	37.38	53.00	74.00	-21.00	VERTICAL	Peak
11	12200.580	29.31	39.27	10.93	37.33	42.18	54.00	-11.82	VERTICAL	Average
12	12200.580	43.41	39.27	10.93	37.33	56.28	74.00	-17.72	VERTICAL	Peak

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:High

Freq	ReadAntenna		Cable Preamp		Limit Line	Over Limit	Pol/Phase	Remark
	Level	Factor	Loss	Factor				
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB
1	2750.080	34.34	27.33	4.77	37.95	28.49	54.00	-25.51 HORIZONTAL Average
2	2750.080	45.46	27.33	4.77	37.95	39.61	74.00	-34.39 HORIZONTAL Peak
3	3556.843	34.82	28.03	6.24	37.93	31.16	54.00	-22.84 HORIZONTAL Average
4	3556.843	46.27	28.03	6.24	37.93	42.61	74.00	-31.39 HORIZONTAL Peak
5	4960.058	31.47	31.05	7.84	38.18	32.18	54.00	-21.82 HORIZONTAL Average
6	4960.058	43.64	31.05	7.84	38.18	44.35	74.00	-29.65 HORIZONTAL Peak
7	7440.646	30.33	35.92	7.43	37.49	36.19	54.00	-17.81 HORIZONTAL Average
8	7440.646	42.53	35.92	7.43	37.49	48.39	74.00	-25.61 HORIZONTAL Peak
9	9920.525	29.52	37.92	8.63	37.34	38.73	54.00	-15.27 HORIZONTAL Average
10	9920.525	44.13	37.92	8.63	37.34	53.34	74.00	-20.66 HORIZONTAL Peak
11	12400.620	28.11	38.93	11.17	37.21	41.00	54.00	-13.00 HORIZONTAL Average
12	12400.620	43.56	38.93	11.17	37.21	56.45	74.00	-17.55 HORIZONTAL Peak

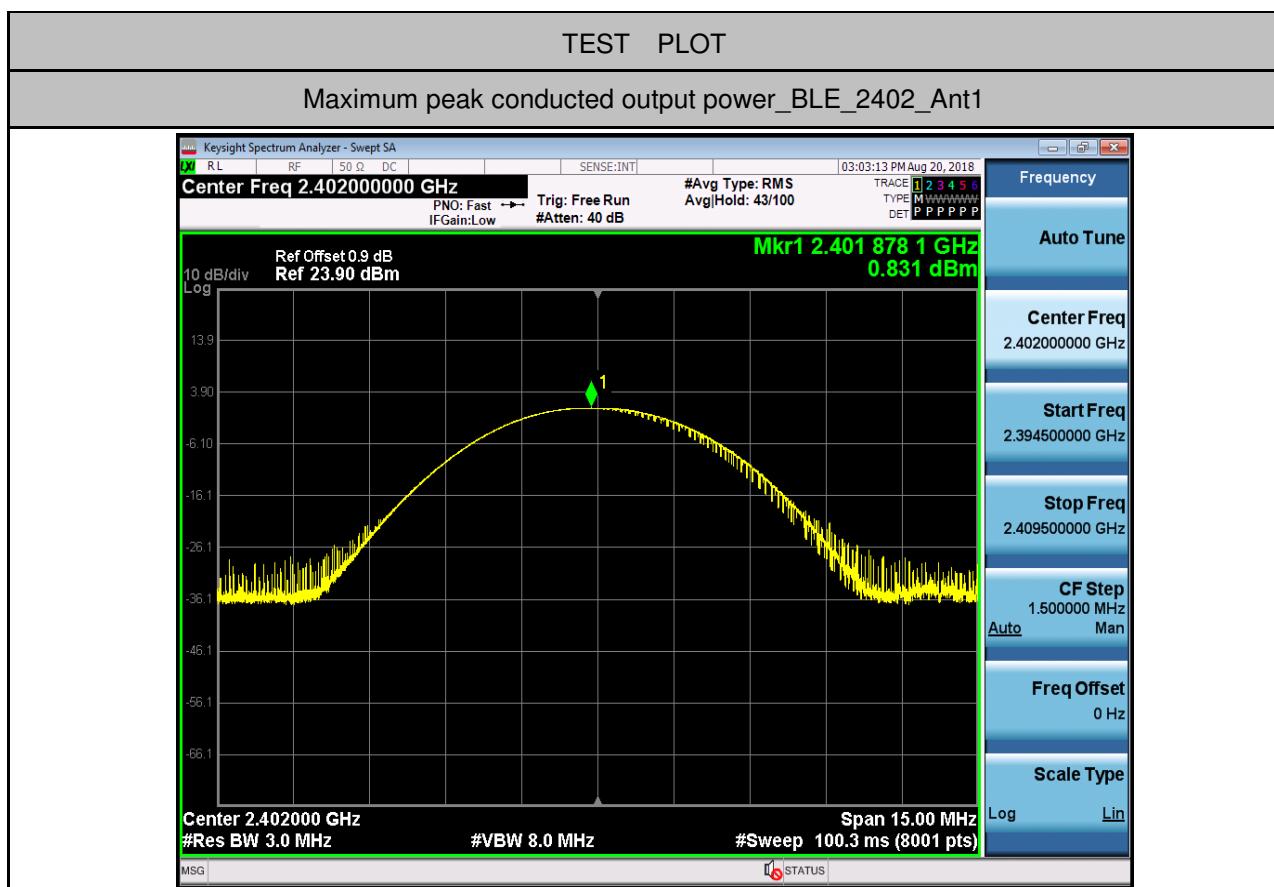
Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:High

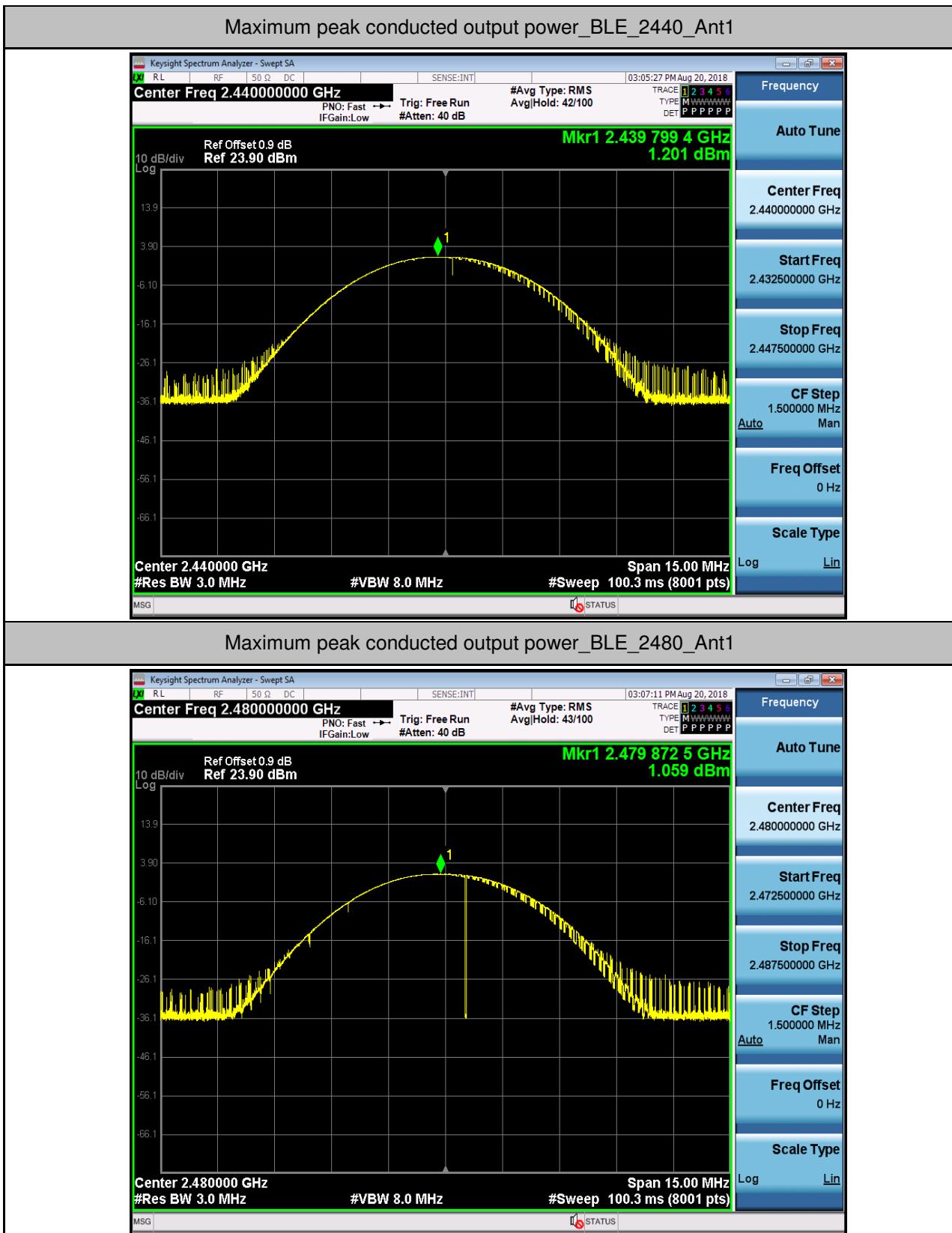

Freq	ReadAntenna		Cable Preamp		Limit Line	Over Limit	Pol/Phase	Remark
	Level	Factor	Loss	Factor				
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB
1	3214.623	34.12	27.90	5.91	38.47	29.46	54.00	-24.54 VERTICAL Average
2	3214.623	45.87	27.90	5.91	38.47	41.21	74.00	-32.79 VERTICAL Peak
3	4354.454	33.42	29.98	6.19	38.11	31.48	54.00	-22.52 VERTICAL Average
4	4354.454	44.50	29.98	6.19	38.11	42.56	74.00	-31.44 VERTICAL Peak
5	4960.307	34.96	31.05	7.84	38.18	35.67	54.00	-18.33 VERTICAL Average
6	4960.307	46.57	31.05	7.84	38.18	47.28	74.00	-26.72 VERTICAL Peak
7	7440.267	31.46	35.92	7.43	37.49	37.32	54.00	-16.68 VERTICAL Average
8	7440.267	43.76	35.92	7.43	37.49	49.62	74.00	-24.38 VERTICAL Peak
9	9920.789	30.99	37.92	8.63	37.34	40.20	54.00	-13.80 VERTICAL Average
10	9920.789	44.13	37.92	8.63	37.34	53.34	74.00	-20.66 VERTICAL Peak
11	12400.950	30.58	38.93	11.17	37.21	43.47	54.00	-10.53 VERTICAL Average
12	12400.950	44.27	38.93	11.17	37.21	57.16	74.00	-16.84 VERTICAL Peak


8 Appendix

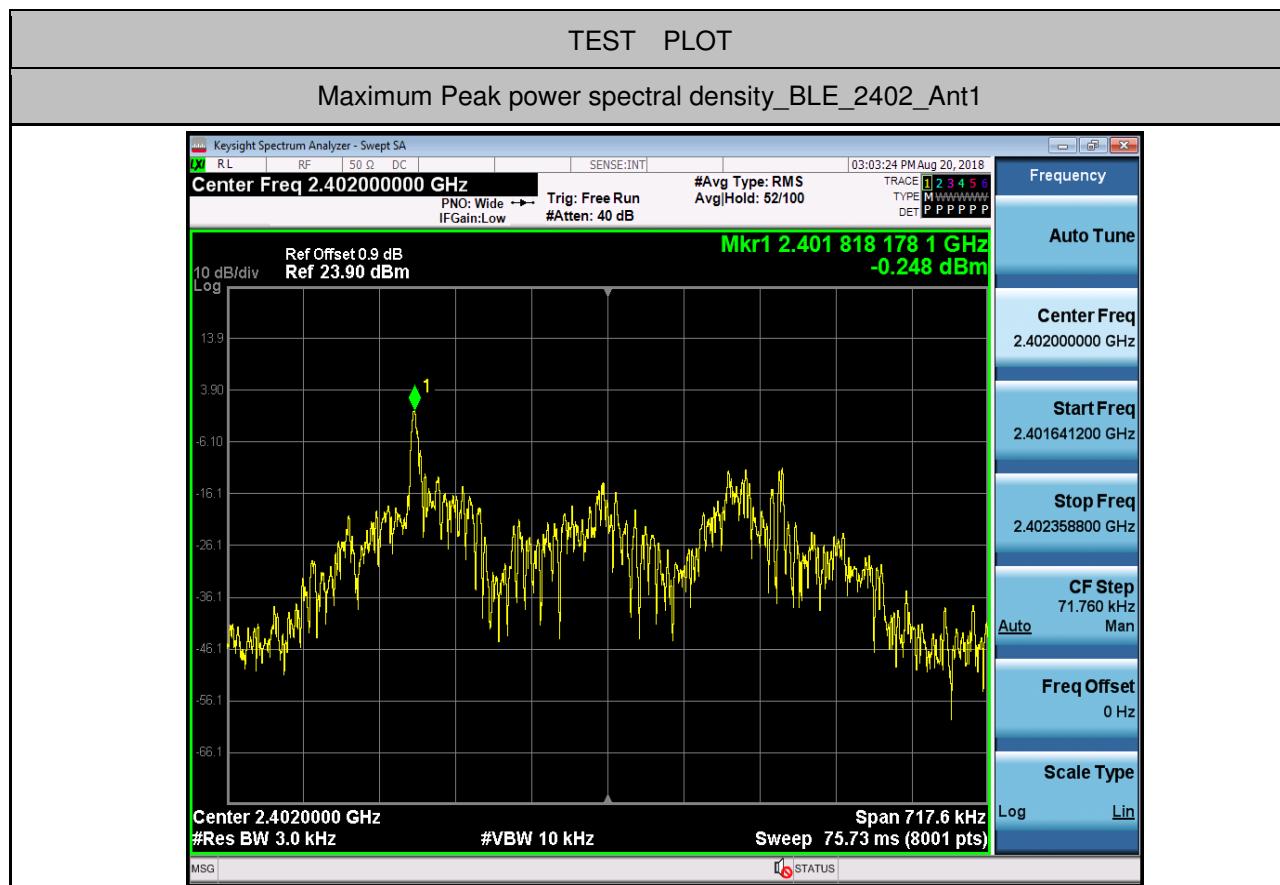
8.1 Appendix 15.247

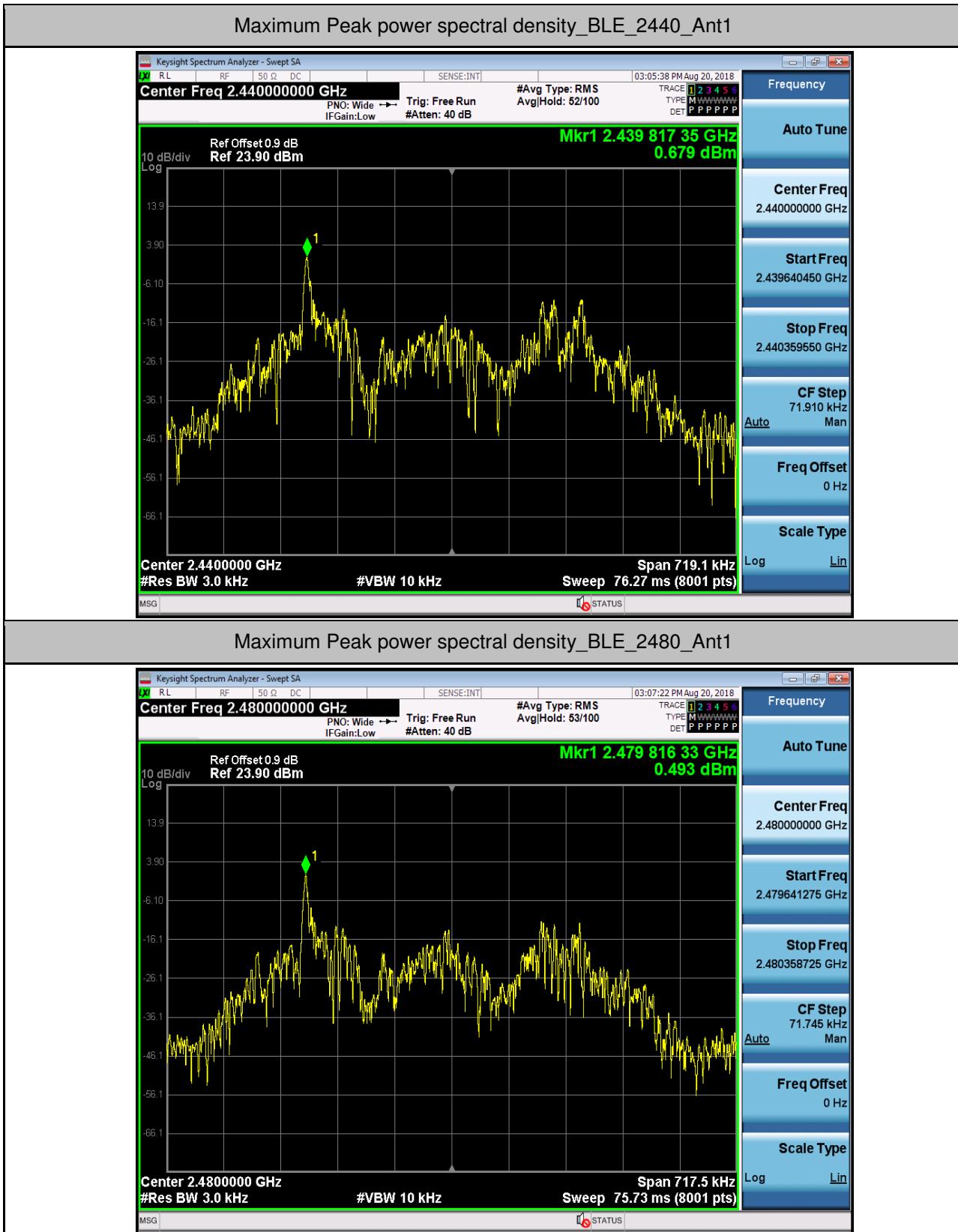
1.6dB Bandwidth


Test Mode	Test Channel	Ant	OBW[MHz]	EBW[MHz]	Limit	Verdict
BLE	2402	Ant1	0.56569	0.5084	0.5	PASS
BLE	2440	Ant1	0.56940	0.5094	0.5	PASS
BLE	2480	Ant1	0.57125	0.5083	0.5	PASS

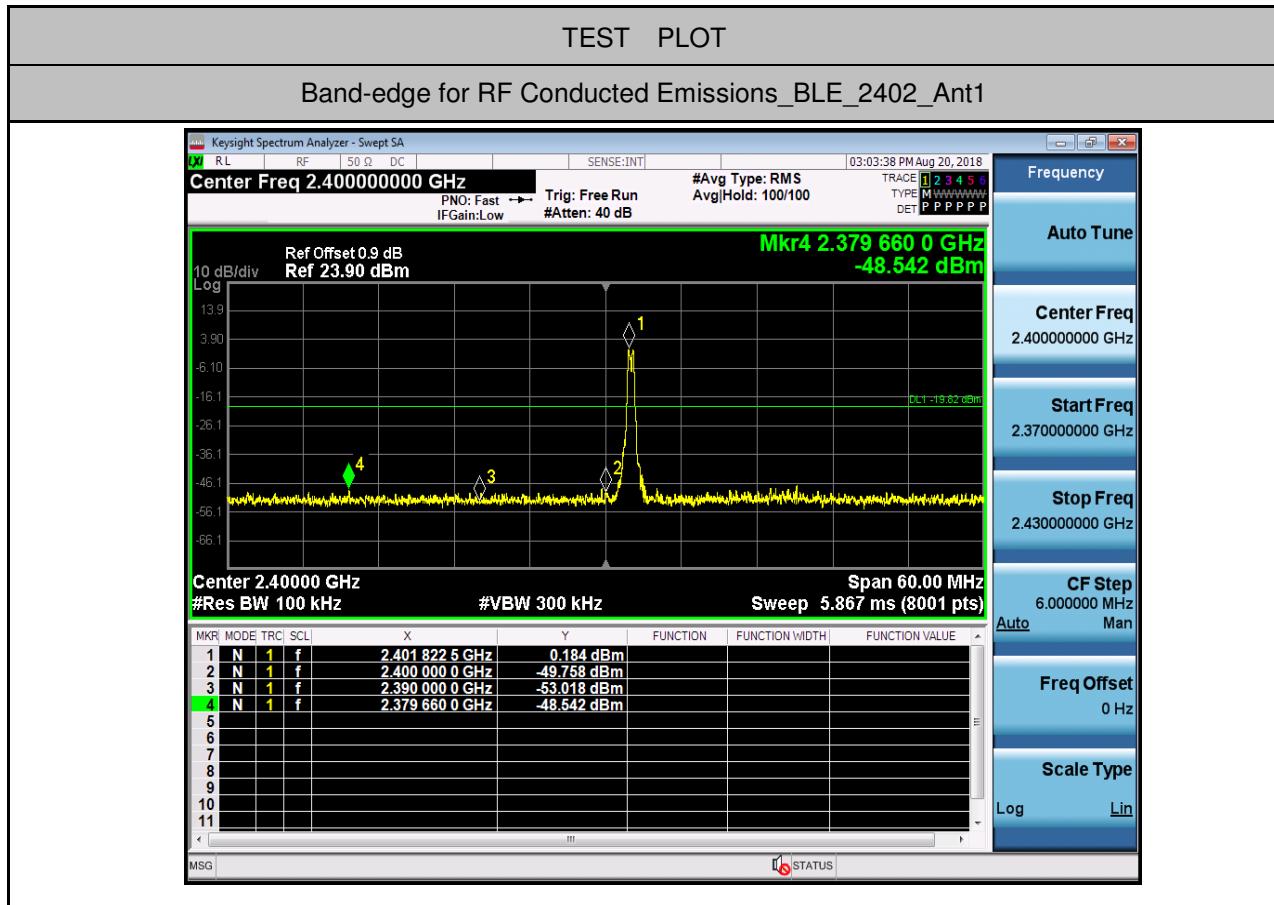


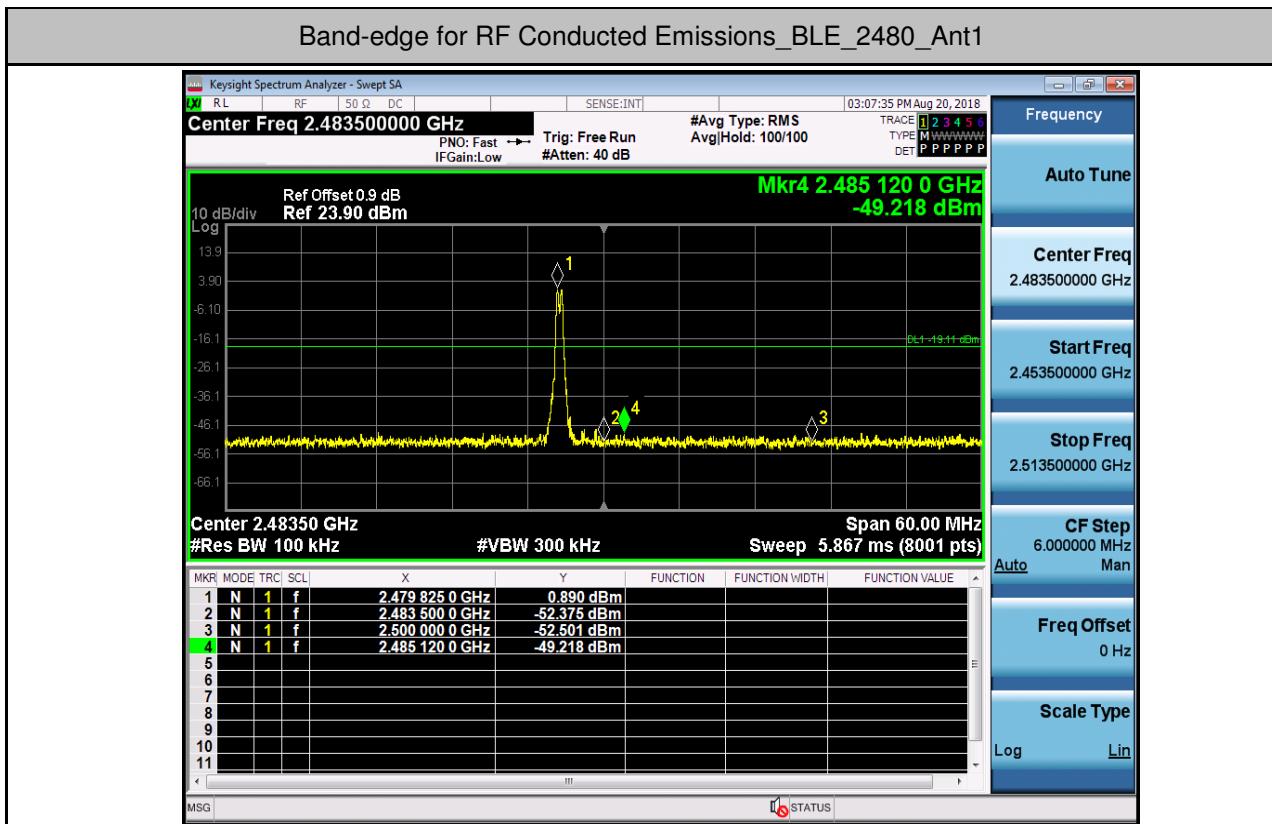
2. Maximum peak conducted output power


Test Mode	Test Channel	Ant	Power[dBm]	Limit[dBm]	Verdict
BLE	2402	Ant1	0.831	30	PASS
BLE	2440	Ant1	1.201	30	PASS
BLE	2480	Ant1	1.059	30	PASS

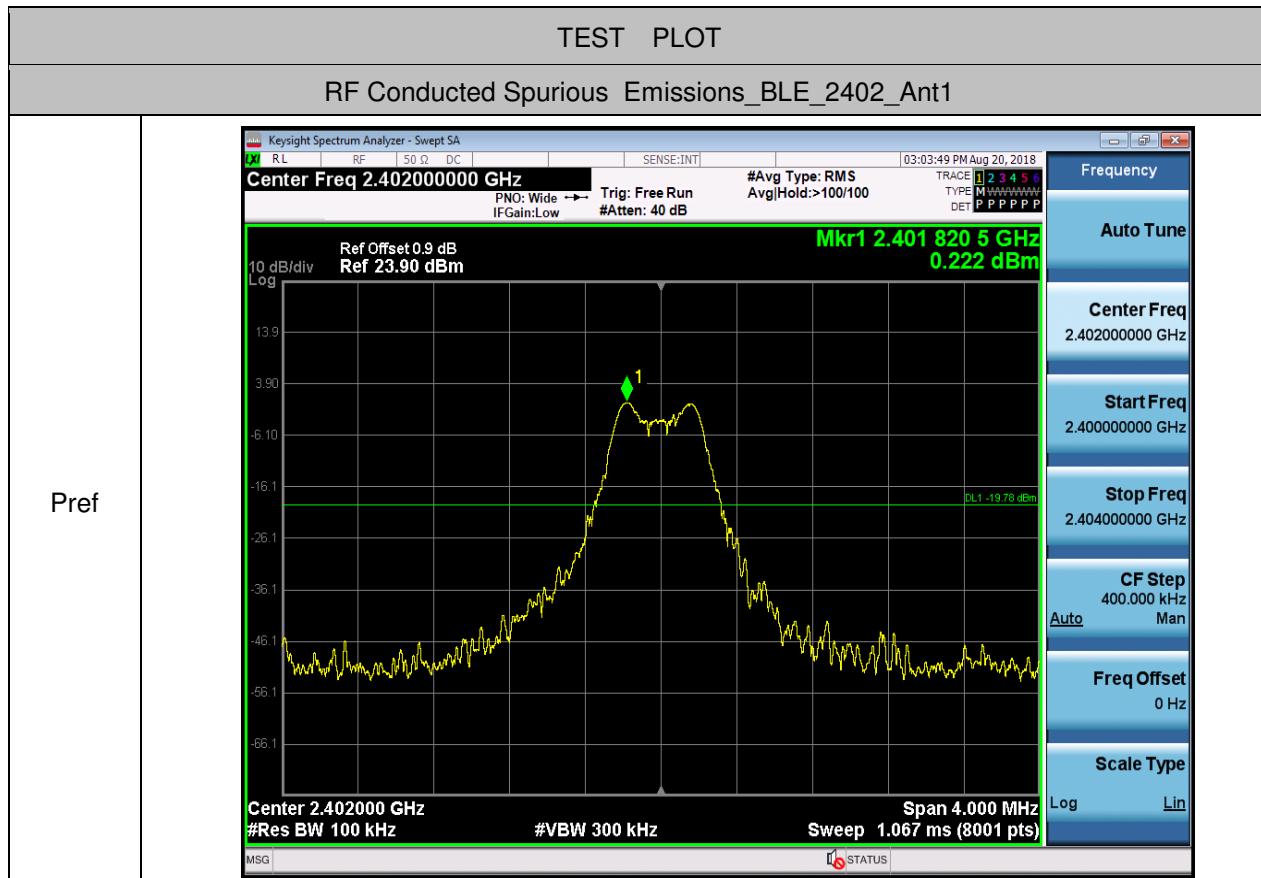


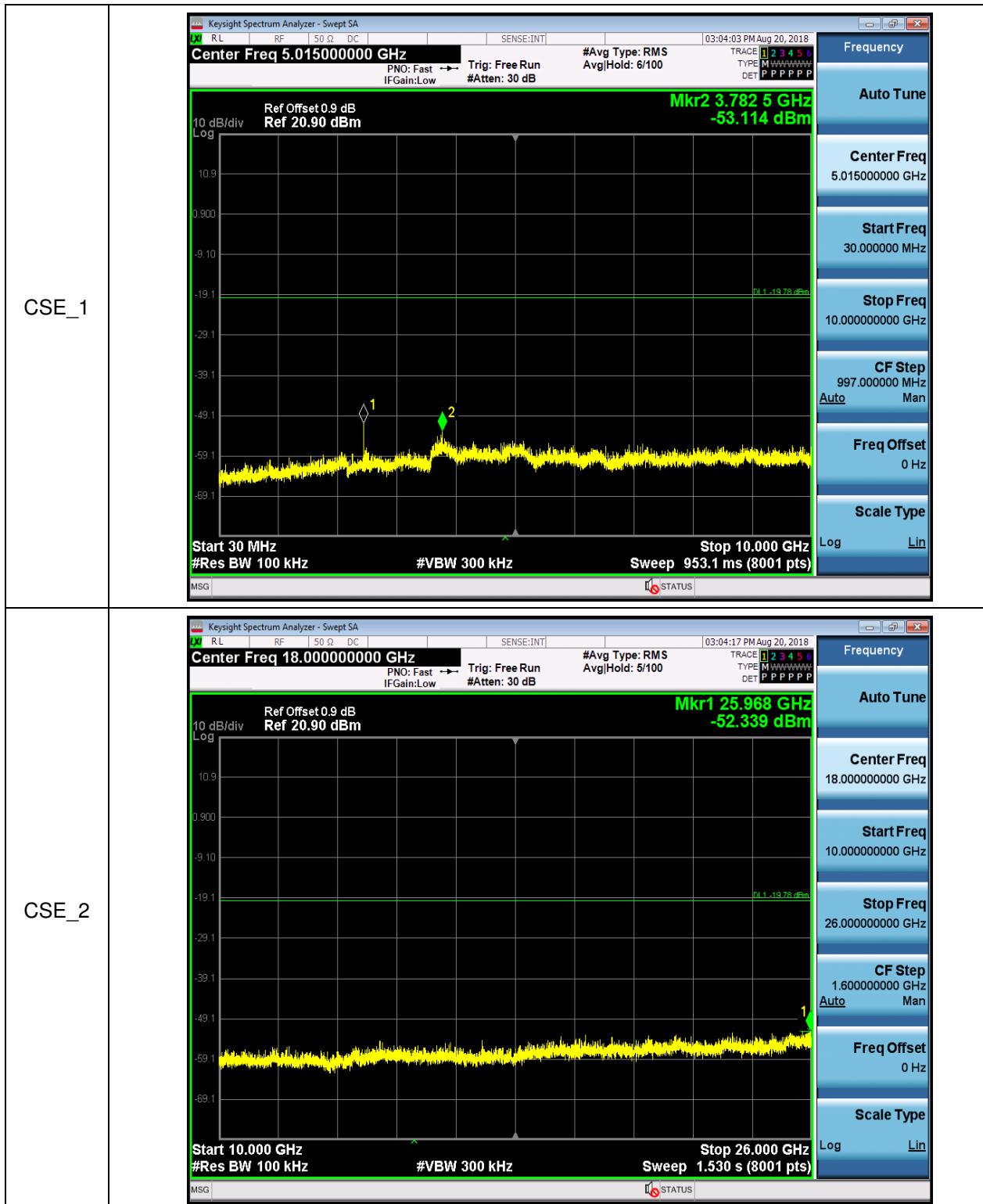
3. Maximum Peak power spectral density

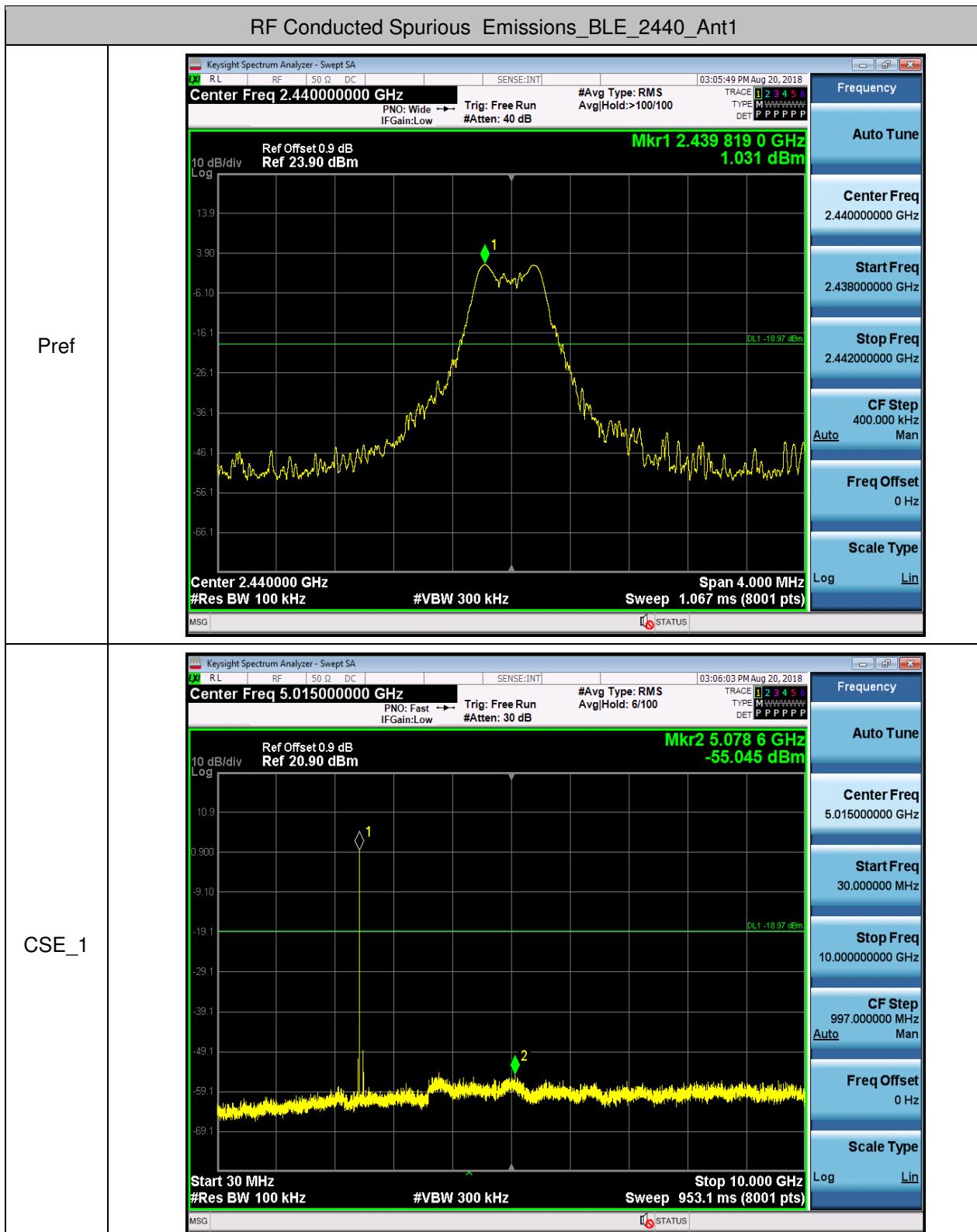

Test Mode	Test Channel	Ant	Result	Limit[dBm/3kHz]	Verdict
BLE	2402	Ant1	-0.248	8.00	PASS
BLE	2440	Ant1	0.679	8.00	PASS
BLE	2480	Ant1	0.493	8.00	PASS

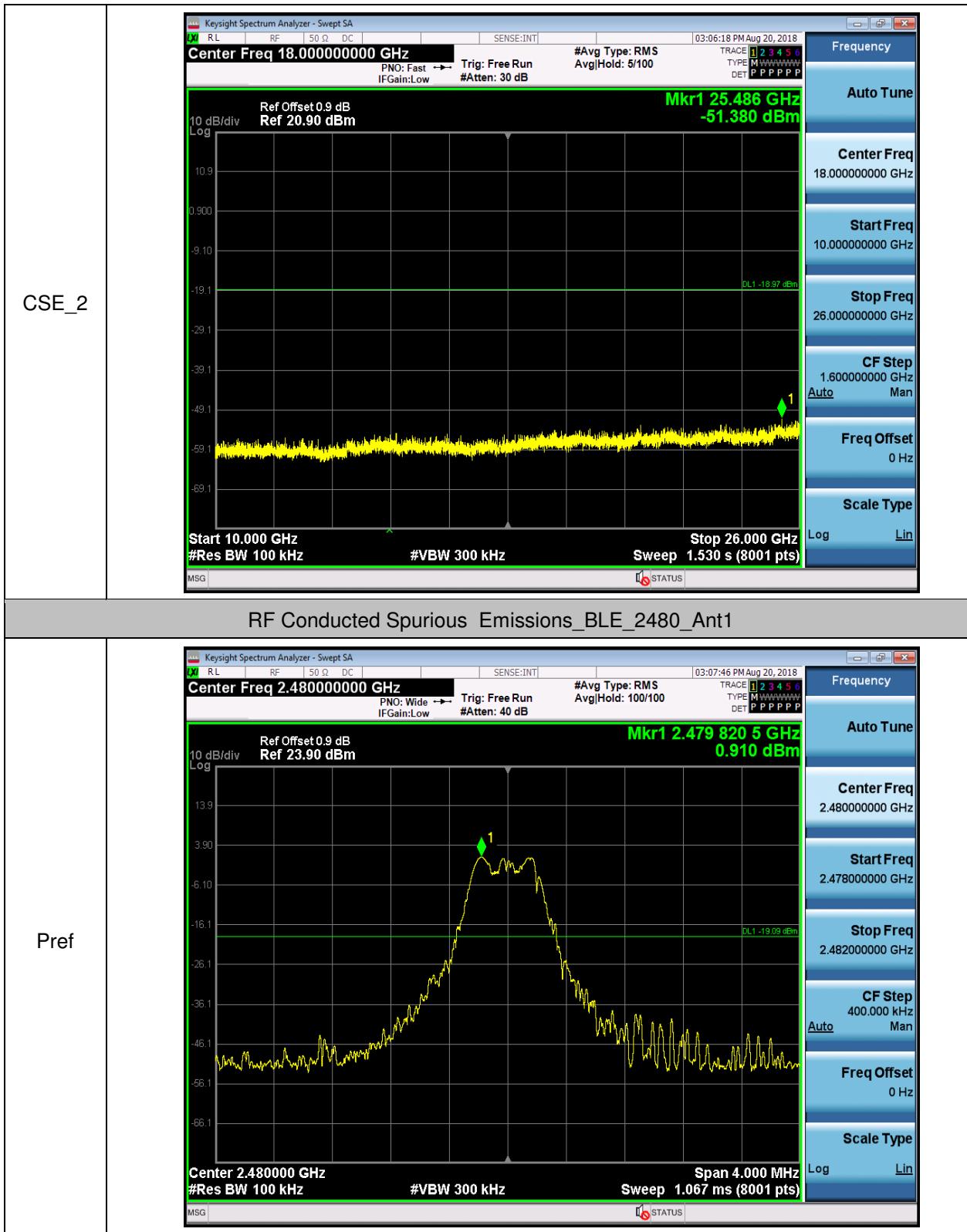


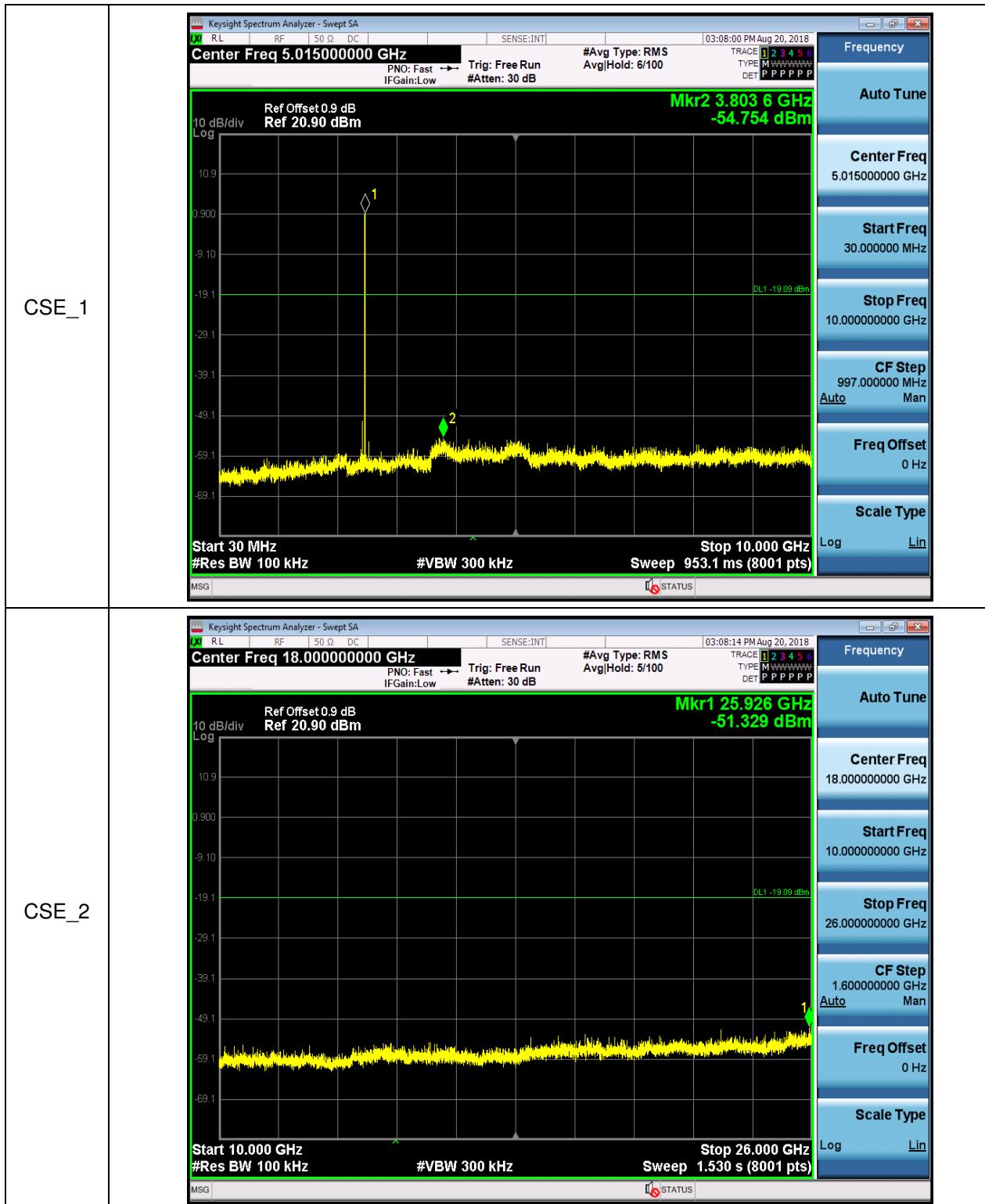
4. Band-edge for RF Conducted Emissions


Test Mode	Test Channel	Ant	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	2402	Ant1	0.184	-48.542	-19.82	PASS
BLE	2480	Ant1	0.890	-49.218	-19.11	PASS






5.RF Conducted Spurious Emissions


Test Mode	Test Channel	Ant	StartFre [MHz]	StopFre [MHz]	RBW [kHz]	VBW [kHz]	Pref[dBm]	Max. Level [dBm]	Limit [dBm]	Verdict
BLE	2402	Ant1	30	10000	100	300	0.222	-53.114	<-19.778	PASS
BLE	2402	Ant1	10000	26000	100	300	0.222	-52.339	<-19.778	PASS
BLE	2440	Ant1	30	10000	100	300	1.031	-55.045	<-18.969	PASS
BLE	2440	Ant1	10000	26000	100	300	1.031	-51.380	<-18.969	PASS
BLE	2480	Ant1	30	10000	100	300	0.91	-54.754	<-19.09	PASS
BLE	2480	Ant1	10000	26000	100	300	0.91	-51.329	<-19.09	PASS

--End of Report--