

TEST REPORT

Product Name: EUCLID BLUETOOTH CABLE

Trade Mark: AUDEZE

Model No. / HVIN: CBL1091-BT

Add. Model No. / HVIN: N/A

Report Number: 200730008RFC-1

Test Standards: FCC 47 CFR Part 15 Subpart C

RSS-247 Issue 2

RSS-Gen Issue 5

FCC ID: 2APRZ-IEM

IC: 23865-IEM

Test Result: PASS

Date of Issue: August 25, 2020

Prepared for:

Audeze LLC
3410 S Susan st, Santa Ana, California, United States

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd.
16/F, Block A, Building 6, Baoneng Science and Technology Park,
Qingxiang Road No.1, Longhua New District, Shenzhen, China

TEL: +86-755-2823 0888

FAX: +86-755-2823 0886

Tested by:

Eric Yu

Eric Yu

Team Leader

Reviewed by:

Kevin Liang

Kevin Liang

Assistant Manager

Approved by:

Date: August 25, 2020

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com <http://www.uttlab.com>
UTTR-RF-RSS247-V1.0

Version

Version No.	Date	Description
V1.0	August 25, 2020	Original

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com <http://www.uttlab.com>
UTTR-RF-RSS247-V1.0

CONTENTS

1. GENERAL INFORMATION	4
1.1 CLIENT INFORMATION	4
1.2 EUT INFORMATION	4
1.2.1 GENERAL DESCRIPTION OF EUT	4
1.2.2 DESCRIPTION OF ACCESSORIES.....	4
1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD.....	4
1.4 OTHER INFORMATION.....	5
1.5 DESCRIPTION OF SUPPORT UNITS	5
1.6 TEST LOCATION.....	5
1.7 TEST FACILITY.....	6
1.8 DEVIATION FROM STANDARDS	6
1.9 ABNORMALITIES FROM STANDARD CONDITIONS.....	6
1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	6
1.11 MEASUREMENT UNCERTAINTY	6
2. TEST SUMMARY	7
3. EQUIPMENT LIST	8
4. TEST CONFIGURATION	9
4.1 NORMAL OR EXTREME TEST CONDITIONS.....	9
4.2 TEST CHANNELS	9
4.3 EUT TEST STATUS	9
4.4 PRE-SCAN.....	9
4.4.1 PRE-SCAN UNDER ALL PACKETS AT MIDDLE CHANNEL.....	9
4.4.2 WORST-CASE DATA PACKETS	9
4.4.3 TESTED CHANNEL DETAIL.....	10
4.5 TEST SETUP	11
4.5.1 FOR RADIATED EMISSIONS TEST SETUP	11
4.6 SYSTEM TEST CONFIGURATION	12
4.7 DUTY CYCLE	13
5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION	14
5.1 REFERENCE DOCUMENTS FOR TESTING	14
5.2 ANTENNA REQUIREMENT	14
5.3 RADIATED SPURIOUS EMISSIONS.....	15
5.4 BAND EDGE MEASUREMENTS (RADIATED).....	19
APPENDIX 1 PHOTOS OF TEST SETUP	22
APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	22

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	Audeze LLC
Address of Applicant:	3410 S Susan st, Santa Ana, California, United States
Manufacturer:	Audeze LLC
Address of Manufacturer:	3410 S Susan st, Santa Ana, California, United States

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	EUCLID BLUETOOTH CABLE	
Model No. / HVIN:	CBL1091-BT	
Add. Model No. / HVIN:	N/A	
Trade Mark:	AUDEZE	
DUT Stage:	Production Unit	
EUT Supports Function:	2.4 GHz ISM Band:	Bluetooth 5.0 (LE/2LE/LE Code mode is not supported)
Sample Received Date:	July 31, 2020	
Sample Tested Date:	August 7, 2020 to August 12, 2020	

1.2.2 Description of Accessories

Battery	
Model No.:	SP08400
Battery Type:	Lithium-ion Rechargeable Battery
Rated Voltage:	3.7 Vdc
Limited Charge Voltage:	4.2 Vdc
Rated Capacity:	185 mAh

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2402 MHz to 2480 MHz
Bluetooth Version:	Bluetooth BR + EDR
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK, $\pi/4$ DQPSK, 8DPSK
Number of Channels:	79
Channel Separation:	1 MHz
Hopping Channel Type:	Adaptive Frequency Hopping Systems
Antenna Type:	Ceramic Antenna
Antenna Gain:	2 dBi
Maximum Peak Power:	7.86 dBm
Normal Test Voltage:	3.7 V Battery

1.4 OTHER INFORMATION

Operation Frequency Each of Channel	
$f = 2402 + k \text{ MHz}, k = 0, \dots, 78$	
Note:	
f	is the operating frequency (MHz);
k	is the operating channel.

Modulation Configure				
Modulation	Packet	Packet Type	Packet Size	
GFSK	1-DH1	4	27	
	1-DH3	11	183	
	1-DH5	15	339	
$\pi/4$ DQPSK	2-DH1	20	54	
	2-DH3	26	367	
	2-DH5	30	679	
8DPSK	3-DH1	24	83	
	3-DH3	27	552	
	3-DH5	31	1021	

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Notebook	Lenovo	E450	SL10G10780	UnionTrust
Earphone	AUDEZE	N/A	N/A	Client

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.2 Meter	Client
2	USB Cable	USB Micro-B Plug Cable	0.8 Meter	Client

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109

Telephone: +86 (0) 755 2823 0888

Fax: +86 (0) 755 2823 0886

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

Tel: +86-755-28230888

Fax: +86-755-28230886

E-mail: info@uttlab.com

<http://www.uttlab.com>

UTTR-RF-RSS247-V1.0

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB
8	Radio frequency	±6.3 x 10 ⁻⁸
9	Occupied Channel Bandwidth	±2.3 %
10	RF output power, conducted	±0.52 dB
11	Spurious emissions ,conducted	±1.48 dB

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

Tel: +86-755-28230888

Fax: +86-755-28230886

E-mail: info@uttlab.com

<http://www.uttlab.com>

UTTR-RF-RSS247-V1.0

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart C Test Cases			
Test Item	Test Requirement	Test Method	Result
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c) RSS-Gen Issue 5, Section 6.8	N/A	PASS
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207 RSS-Gen Issue 5, Section 8.8	ANSI C63.10-2013 Section 6.2	N/A <small>NOTE 1, 2</small>
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1) RSS-247 Issue 2, Section 5.4(b)	ANSI C63.10-2013 Section 7.8.5	N/A <small>NOTE 1, 2</small>
20 dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) RSS-247 Issue 2, Section 5.1(a)	ANSI C63.10-2013 Section 6.9.2	N/A <small>NOTE 1, 2</small>
Occupied Bandwidth	RSS-Gen section 6.7	RSS-Gen section 6.7	N/A <small>NOTE 1, 2</small>
Carrier Frequencies Separation	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) RSS-247 Issue 2, Section 5.1(b)	ANSI C63.10-2013 Section 7.8.2	N/A <small>NOTE 1, 2</small>
Number of Hopping Channel	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1) RSS-247 Issue 2, Section 5.1(d)	ANSI C63.10-2013 Section 7.8.3	N/A <small>NOTE 1, 2</small>
Dwell Time	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) RSS-247 Issue 2, Section 5.1(d)	ANSI C63.10-2013 Section 7.8.4	N/A <small>NOTE 1, 2</small>
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d) RSS-247 Issue 2, Section 5.5	ANSI C63.10-2013 Section 6.10.4 & Section 7.8.8	N/A <small>NOTE 1, 2</small>
Radiated Emissions	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209 RSS-Gen Issue 5, Section 6.13/8.9/8.10	ANSI C63.10-2013 Section 6.3 & 6.5 & 6.6	PASS
Band Edge Measurement	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209 RSS-247 Issue 2, Section 5.5	ANSI C63.10-2013 Section 6.10.5	PASS

Note:

- 1) N/A: In this whole report not application.
- 2) The EUT this time EUCLID BLUETOOTH CABLE and original model Bluetooth audio receiver are identical in Bluetooth Module, about the difference between please refer to the difference statement. After assessment, all test technical data is referred to previous report no. 180918001RFC-1 dated 2018-10-15 except Radiated Spurious Emissions, Band Edge Measurements (Radiated).

3. EQUIPMENT LIST

Radiated Emission Test Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
<input checked="" type="checkbox"/>	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 03, 2018	Dec. 03, 2021
<input checked="" type="checkbox"/>	Receiver	R&S	ESIB26	100114	Nov. 24, 2019	Nov. 23, 2020
<input checked="" type="checkbox"/>	Loop Antenna	ETS-LINDGREN	6502	00202525	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	6dB Attenuator	Talent	RA6A5-N-18	18103001	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	Preamplifier	HP	8447F	2805A02960	Nov. 24, 2019	Nov. 23, 2020
<input type="checkbox"/>	Broadband Antenna (Pre-amplifier)	ETS-LINDGREN	3142E-PA	00201891	Nov. 24, 2019	Nov. 23, 2020
<input type="checkbox"/>	6dB Attenuator	Talent	RA6A5-N-18	18103002	Nov. 24, 2019	Nov. 23, 2020
<input type="checkbox"/>	Horn Antenna	ETS-LINDGREN	3117	00164202	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May 30, 2020	May 29, 2021
<input type="checkbox"/>	Horn Antenna	ETS-LINDGREN	3116C	00200180	June 19, 2020	June 18, 2021
<input checked="" type="checkbox"/>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
<input type="checkbox"/>	Wideband Radio Communication Tester	R&S	CMW500	120932	July 20, 2020	July 19, 2021
<input checked="" type="checkbox"/>	Test Software	Audix	e3	Software Version: 9.160323		

4. TEST CONFIGURATION

4.1 NORMAL OR EXTREME TEST CONDITIONS

Environment Parameter		Selected Values During Tests		
Test Condition	Ambient			Relative Humidity (%)
	Temperature (°C)	Voltage	Relative Humidity (%)	
NT/NV	+15 to +35	3.7V Battery		20 to 75
Remark:				
1) NV: Normal Voltage; NT: Normal Temperature				

4.2 TEST CHANNELS

Mode	Tx/Rx Frequency	Test RF Channel Lists		
		Lowest(L)	Middle(M)	Highest(H)
GFSK (DH1, DH3, DH5)	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78
		2402 MHz	2441 MHz	2480 MHz
$\pi/4$ DQPSK (DH1, DH3, DH5)	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78
		2402 MHz	2441 MHz	2480 MHz
8DPSK (DH1, DH3, DH5)	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78
		2402 MHz	2441 MHz	2480 MHz

4.3 EUT TEST STATUS

Type of Modulation	Tx Function	Description
GFSK/ $\pi/4$ DQPSK/ 8DPSK	1Tx	<ol style="list-style-type: none"> Keep the EUT in continuously transmitting with Modulation test single Keep the EUT in continuously transmitting with Modulation test Hopping Frequency.

Power Setting
Power Setting: not applicable, test used software default power level.

Test Software
Test software name: InstallBlueSuite_2_6_4_1046;

4.4 PRE-SCAN

4.4.1 Pre-scan under all packets at middle channel

Conducted Average Power (dBm) for packets								
Type of Modulation	GFSK			$\pi/4$ DQPSK			8DPSK	
Packets	1-DH1	1-DH3	1-DH5	2-DH1	2-DH3	2-DH5	3-DH1	3-DH3
Power (dBm)	0.17	3.38	4.09	-2.66	0.11	0.75	-2.65	0.12

4.4.2 Worst-case data packets

Type of Modulation	Worst-case data rates			
GFSK	1-DH5			
$\pi/4$ DQPSK	2-DH5			
8DPSK	3-DH5			

4.4.3 Tested channel detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data packets and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Type of Modulation	GFSK			π/4DQPSK			8DPSK		
Data Packets	1- DH1	1- DH3	1- DH5	2- DH1	2- DH3	2- DH5	3- DH1	3- DH3	3- DH5
Available Channel	0 to 78								
Test Item	Test channel and choose of data packets								
AC Power Line Conducted Emission	Frequency Hopping Channel 0 to 78								N/A
Conducted Peak Output Power	Channel 0 & 39 & 78								
20 dB Bandwidth	Channel 0 & 39 & 78								
Carrier Frequencies Separation	Frequency Hopping Channel 0 to 78								
Number of Hopping Channel	Frequency Hopping Channel 0 to 78								
Dwell Time	Channel 39								
Conducted Out of Band Emission	Channel 0 & 39 & 78								
Radiated Emissions	Channel 0 & 39 & 78								
Band Edge Measurements (Radiated)	Channel 0 & 78								
Remark:									
1. The mark “ <input checked="" type="checkbox"/> ” means is chosen for testing;									
2. The mark “ <input type="checkbox"/> ” means is not chosen for testing.									

4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup

Figure 1. Below 30MHz

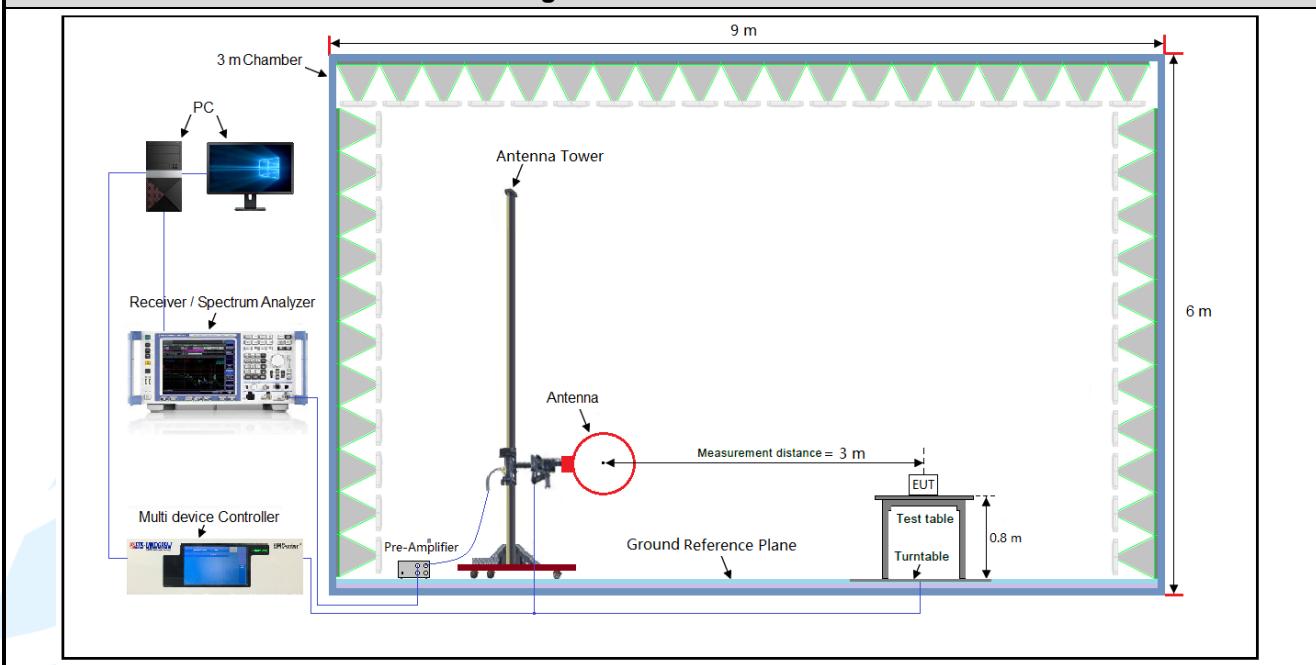
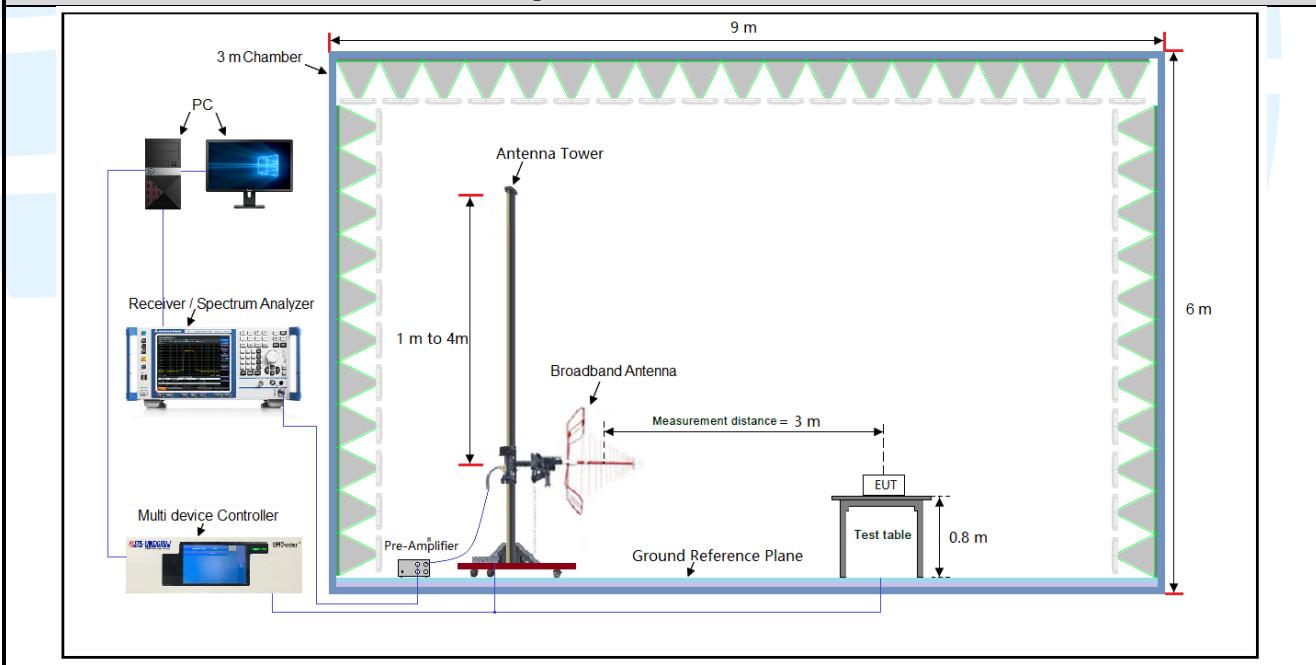




Figure 2. 30MHz to 1GHz

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.7V battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

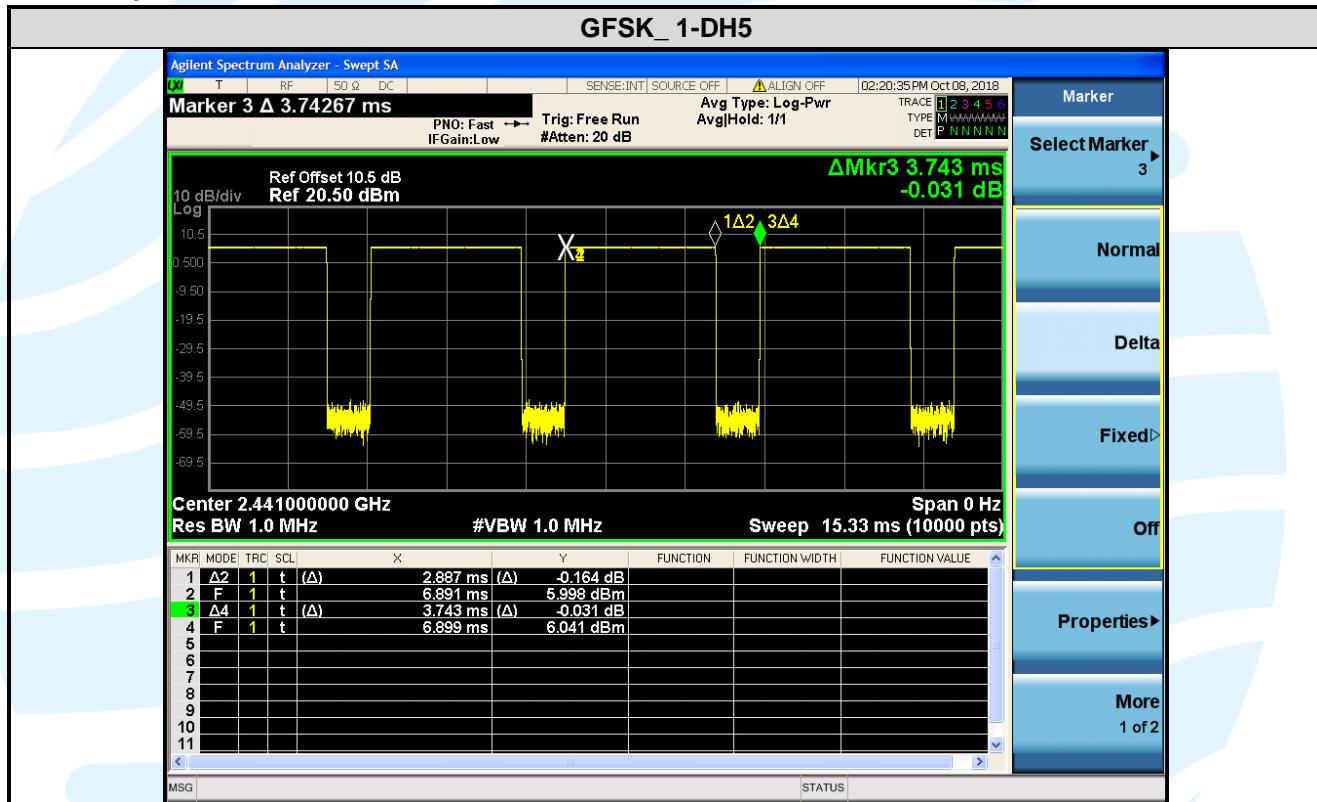
Frequency	Mode	Antenna Port	Worst-case axis positioning
Above 1GHz	1TX	Chain 0	Y axis

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

Test Procedure: ANSI C63.10-2013 Clause 11.6.


Test Results

Type of Modulation	Packets	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/T Minimum VBW (kHz)	Average Factor (dB)
GFSK	1-DH5	2.89	3.74	0.77	77.13	1.13	0.35	-2.26

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = $10 * \log(1/\text{Duty cycle})$;
- 3) Average factor = $20 \log_{10} \text{Duty Cycle}$.

The test plot as follows

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION

5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	RSS-247 Issue 2	Digital Transmission Systems (DTSS), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
4	RSS-Gen Issue 5	General Requirements for Compliance of Radio Apparatus
5	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

5.2 ANTENNA REQUIREMENT

Standard Requirement
15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
RSS-Gen Issue 5, Section 6.8 requirement: According to RSS-Gen Issue 5, section 6.8, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns.
EUT Antenna: Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 2 dBi.

5.3 RADIATED SPURIOUS EMISSIONS

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209

RSS-Gen Issue 5, Section 6.13/8.9/8.10

Test Method: ANSI C63.10-2013 Section 6.3 & 6.5 & 6.6

Receiver Setup:

Frequency	RBW
0.009 MHz-0.150 MHz	200/300 kHz
0.150 MHz -30 MHz	9/10 kHz
30 MHz-1 GHz	100/120 kHz
Above 1 GHz	1 MHz

Limits:

Spurious Emissions

Frequency	Field strength (microvolt/meter)	Limit (dB μ V/m)	Remark	Measurement distance (m)
0.009 MHz-0.490 MHz	2400/F(kHz)	--	--	300
0.490 MHz-1.705 MHz	24000/F(kHz)	--	--	30
1.705 MHz-30 MHz	30	--	--	30
30 MHz-88 MHz	100	40.0	Quasi-peak	3
88 MHz-216 MHz	150	43.5	Quasi-peak	3
216 MHz-960 MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1 GHz	500	54.0	Average	3

Remark:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB μ V/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Test Setup: Refer to section 4.5.1 for details.

Test Procedures:

1. From 30 MHz to 1GHz test procedure as below:

- 1) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

2. Above 1GHz test procedure as below:

- 1) Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- 2) Test the EUT in the lowest channel ,middle channel, the Highest channel

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

Tel: +86-755-28230888

Fax: +86-755-28230886

E-mail: info@uttlab.com

<http://www.uttlab.com>

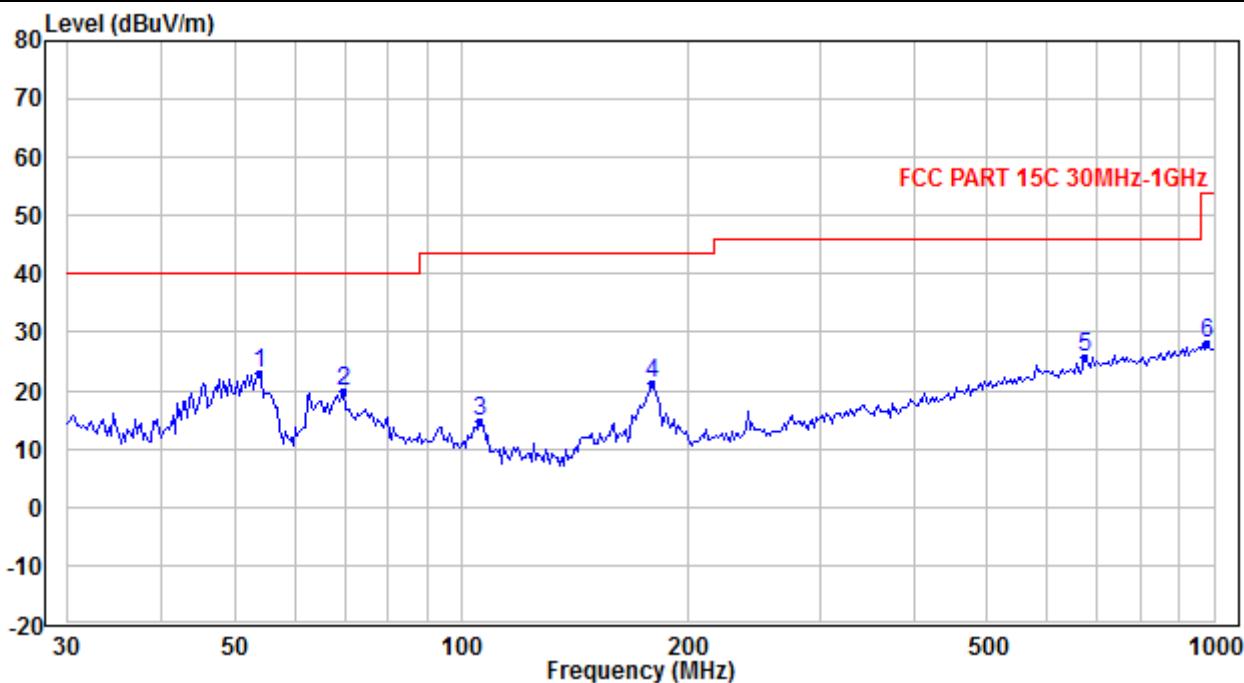
UTTR-RF-RSS247-V1.0

- 3) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the Y axis positioning which it is worse case.
- 4) Repeat above procedures until all frequencies measured was complete.

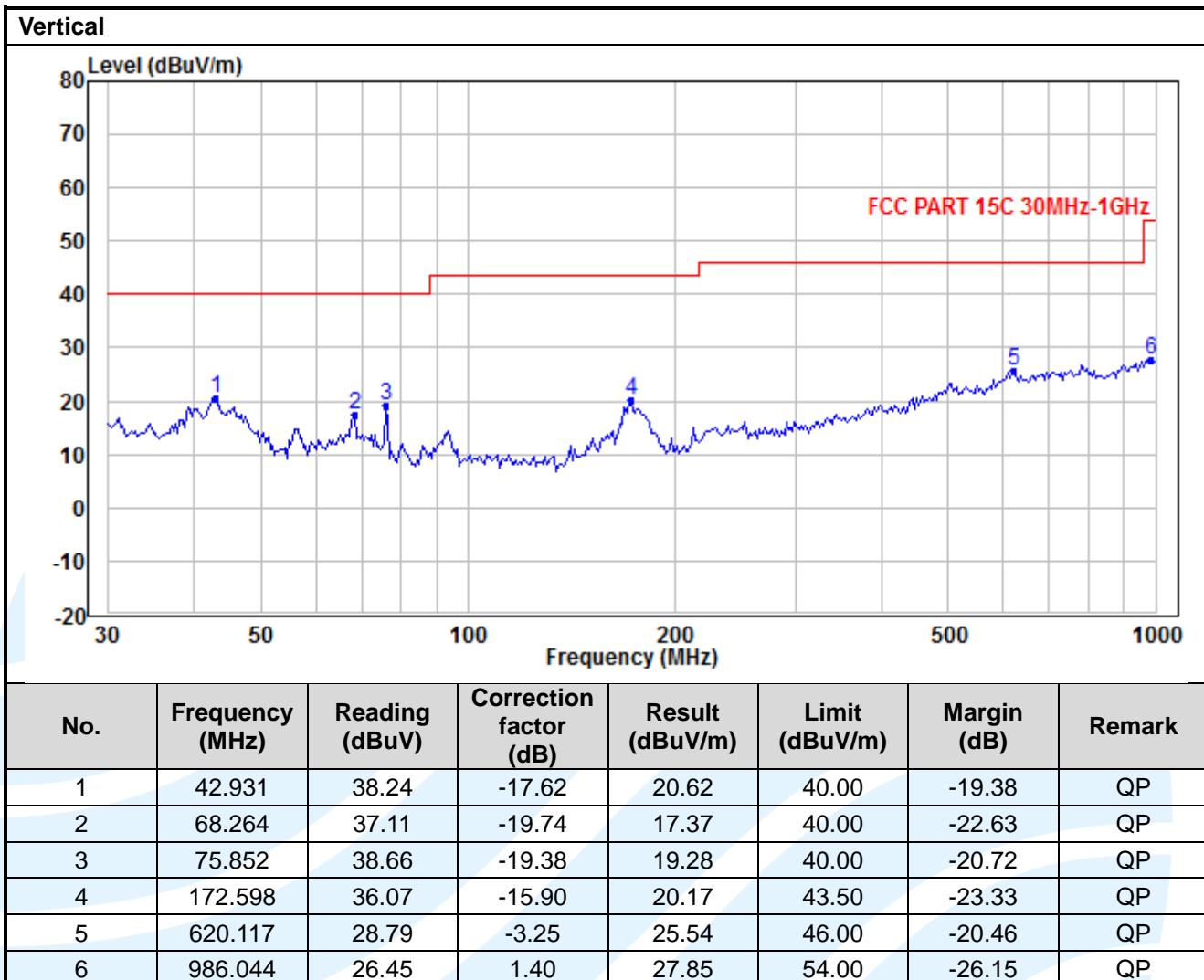
Equipment Used: Refer to section 3 for details.

Test Result: Pass

The measurement data as follows:


Radiated Emission Test Data (9 KHz ~ 30 MHz):

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.


Radiated Emission Test Data (30 MHz ~ 1 GHz):

Worst-Case Configuration

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	53.756	43.17	-20.24	22.93	40.00	-17.07	QP
2	69.718	39.55	-19.62	19.93	40.00	-20.07	QP
3	105.537	32.06	-17.42	14.64	43.50	-28.86	QP
4	178.770	36.58	-15.47	21.11	43.50	-22.39	QP
5	674.677	27.93	-2.15	25.78	46.00	-20.22	QP
6	979.139	26.78	1.30	28.08	54.00	-25.92	QP

Radiated Emission Test Data (Above 1GHz):
Lowest Channel:

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4804.00	47.54	2.82	50.36	74.00	-23.64	Peak	Horizontal
2	4804.00	30.00	2.82	32.82	54.00	-21.18	Average	Horizontal
3	7206.00	42.47	6.61	49.08	74.00	-24.92	Peak	Horizontal
4	7206.00	29.96	6.61	36.57	54.00	-17.43	Average	Horizontal
5	4804.00	29.71	2.82	32.53	74.00	-41.47	Peak	Vertical
6	4804.00	44.97	2.82	47.79	54.00	-6.21	Average	Vertical
7	7206.00	31.21	6.61	37.82	74.00	-36.18	Peak	Vertical
8	7206.00	44.54	6.61	51.15	54.00	-2.85	Average	Vertical

Middle Channel:

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4882.00	29.99	2.73	32.72	74.00	-41.28	Peak	Horizontal
2	4882.00	46.12	2.73	48.85	54.00	-5.15	Average	Horizontal
3	7323.00	31.34	6.56	37.90	74.00	-36.10	Peak	Horizontal
4	7323.00	44.78	6.56	51.34	54.00	-2.66	Average	Horizontal
5	4882.00	29.70	2.73	32.43	74.00	-41.57	Peak	Vertical
6	4882.00	43.00	2.73	45.73	54.00	-8.27	Average	Vertical
7	7323.00	32.06	6.56	38.62	74.00	-35.38	Peak	Vertical
8	7323.00	46.01	6.56	52.57	54.00	-1.43	Average	Vertical

Highest Channel:

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4960.00	31.71	2.64	34.35	74.00	-39.65	Peak	Horizontal
2	4960.00	46.87	2.64	49.51	54.00	-4.49	Average	Horizontal
3	7440.00	31.34	6.53	37.87	74.00	-36.13	Peak	Horizontal
4	7440.00	44.49	6.53	51.02	54.00	-2.98	Average	Horizontal
5	4960.00	31.10	2.64	33.74	74.00	-40.26	Peak	Vertical
6	4960.00	43.96	2.64	46.60	54.00	-7.40	Average	Vertical
7	7440.00	31.46	6.53	37.99	74.00	-36.01	Peak	Vertical
8	7440.00	46.57	6.53	53.10	54.00	-0.90	Average	Vertical

Remark:

1. Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.
2. Result = Reading + Correct Factor.
3. Margin = Result – Limit

5.4 BAND EDGE MEASUREMENTS (RADIATED)

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209
RSS-247 Issue 2, Section 5.5

Test Method: ANSI C63.10-2013 Section 6.10.5

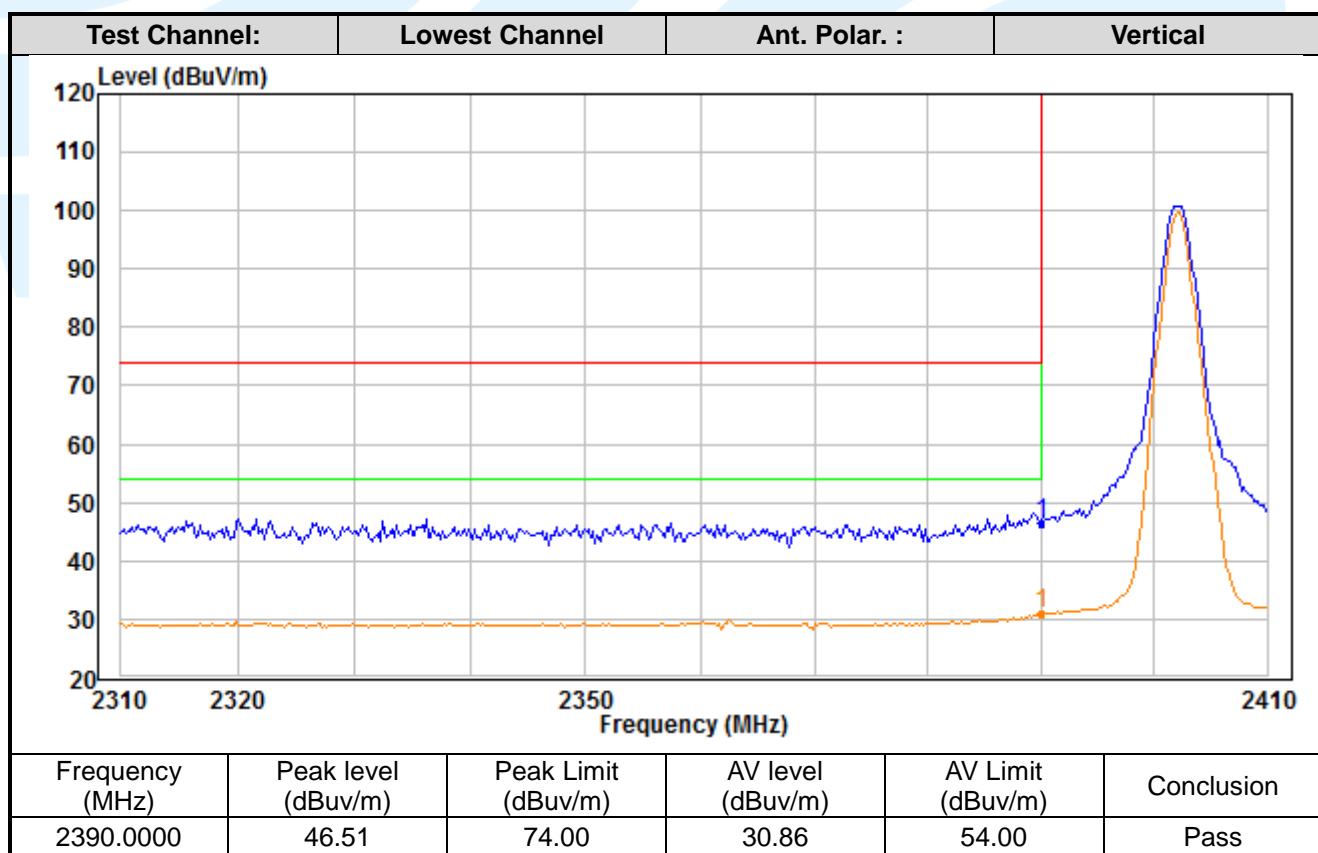
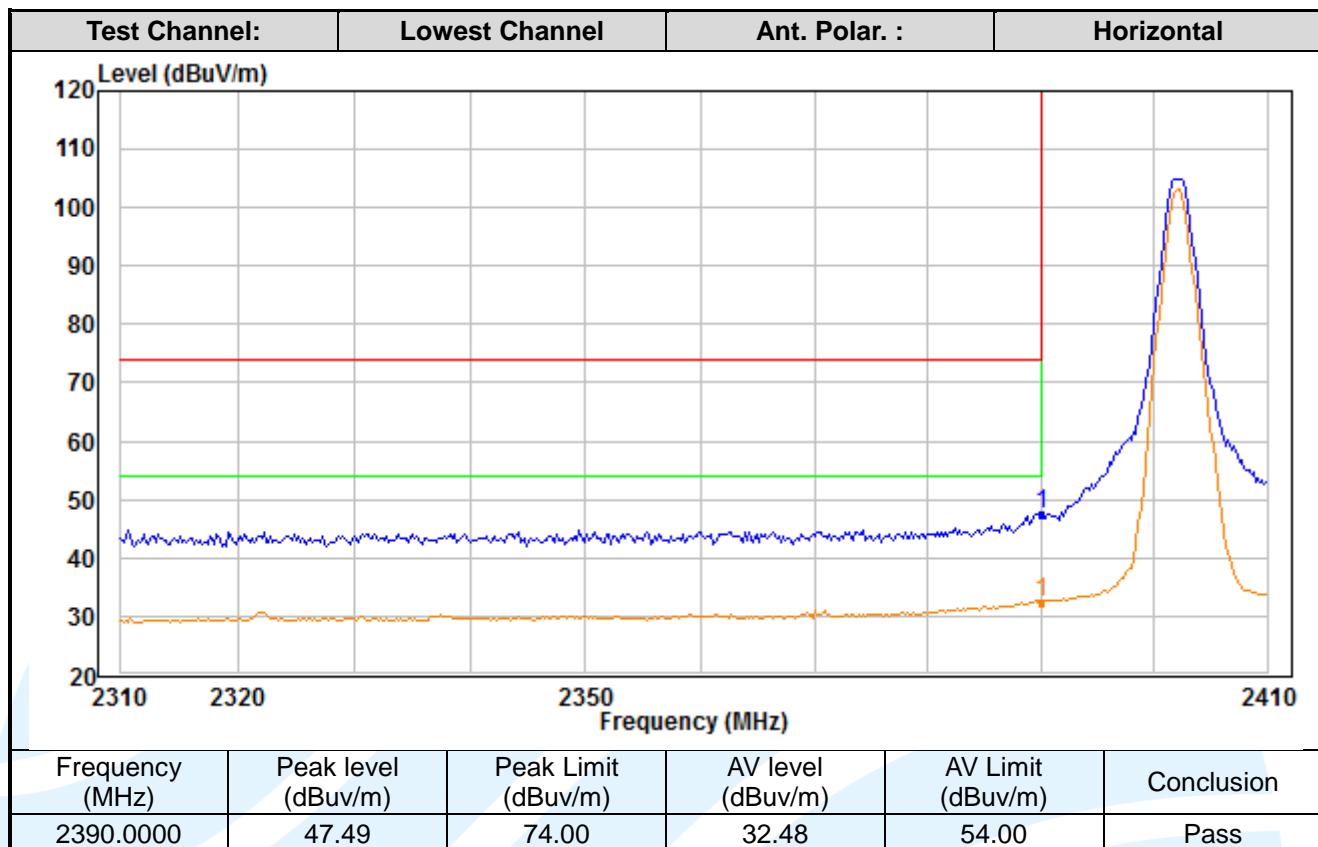
Limits:

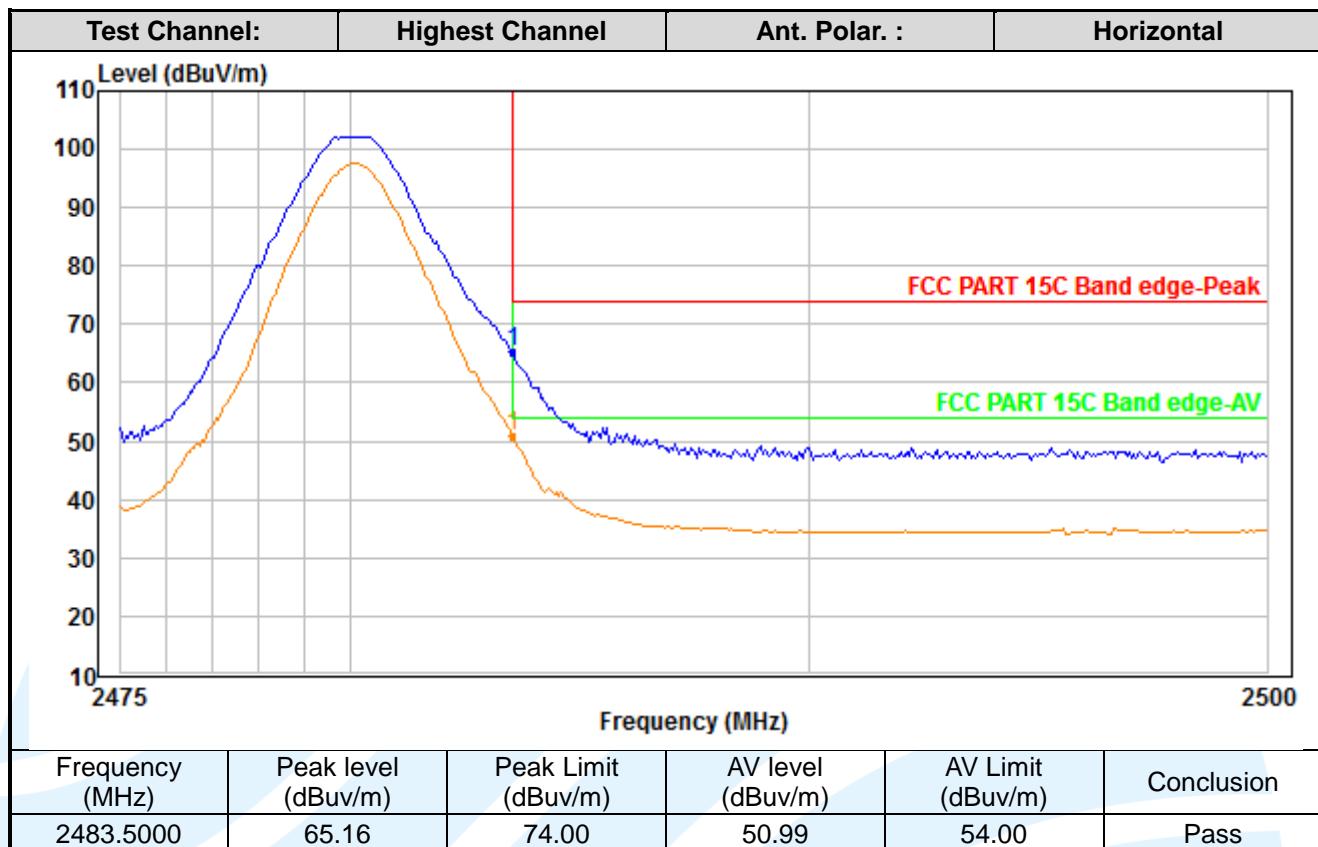
Radiated emissions which fall in the restricted bands, as defined in section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a).

Frequency	Limit (dB μ V/m @3m)	Remark
30 MHz-88 MHz	40.0	Quasi-peak Value
88 MHz-216 MHz	43.5	Quasi-peak Value
216 MHz-960 MHz	46.0	Quasi-peak Value
960 MHz-1 GHz	54.0	Quasi-peak Value
Above 1 GHz	54.0	Average Value
	74.0	Peak Value

Test Setup: Refer to section 4.5.1 for details.

Test Procedures:



Radiated band edge measurements at 2390 MHz and 2483.5 MHz were made with the unit transmitting in the low end of the channel range and the high end closest to the restricted bands respectively. The emissions were made on the 966 Semi-Chamber. Use (resolution bandwidth (RBW) = 1 MHz, video bandwidth (VBW) = 3 MHz for peak levels and RBW = 1 MHz and VBW = 10 Hz or 1/T for average levels).



1. Use radiated spurious emission test procedure described in clause 5.10. The transmitter output (antenna port) was connected to the test receiver.
2. Set the PK and AV limit line.
3. Record the fundamental emission and emissions out of the band-edge.
4. Determine band-edge compliance as required.

Equipment Used: Refer to section 3 for details.

Test Result: Pass

The measurement data as follows:

APPENDIX 1 PHOTOS OF TEST SETUP

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.
