

FCC RF EXPOSURE REPORT

FCC ID: 2APRGWR6500H

Project No. : 2502C177

Equipment : 1) BE6500 2.5G Dual-Band Wi-Fi 7 Router

2) BE6500 Dual-Band Wi-Fi 7 Router

Brand Name : Cudy

Test Model : 1) WR6500H Series Model : 2) WR6500

Applicant: Shenzhen Cudy Technology Co., Ltd.

Address : 7/F, Lepu Tower (West), 66 Xingke Rd, Nanshan, Shenzhen, China

Manufacturer: Shenzhen Cudy Technology Co., Ltd.

Address : 7/F, Lepu Tower (West), 66 Xingke Rd, Nanshan, Shenzhen, China

Factory: Shenzhen Cudy Technology Co., Ltd.

Address : 7/F, Lepu Tower (West), 66 Xingke Rd, Nanshan, Shenzhen, China

Date of Receipt : Feb. 24, 2025

Date of Test : Feb. 25, 2025 ~ Jun. 05, 2025

Issued Date : Jun. 17, 2025

Report Version : R00

Test Sample: Engineering Sample No.: DG20250224147.

Standard(s) : FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part 2.1091

FCC Title 47 Part 2.1091 & KDB 447498 D01 v06

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc. (Dongguan)

Prepared by

Chella Zhena

Approved by

Welly Zhou

No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong People's Republic of China.

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note	
BTL-FCCP-4-2502C177 R00		Original Report.	Jun. 17, 2025	Valid	

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

2. ANTENNA SPECIFICATION

For 2.4GHz:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	South 3.N102.1302		Dipole	IPEX	5.19
2	South	3.N102.1303	Dipole	IPEX	5.03

Note:

- 1) This EUT supports CDD, and all antenna gains are not equal, Directional gain = G_{ANT} +Array Gain. For power measurements, Array Gain=0dB (N_{ANT} <4), so the Directional gain=5.19. For power spectral density measurements, N_{ANT} =2, N_{SS} = 1. So the Directional gain= G_{ANT} +Array Gain= G_{ANT} +10log(N_{ANT} / N_{SS})dBi=5.19+10log(2/1)dBi=8.2. Then, the power spectral density limit is 8-(8.2-6)=5.8.
- 2) Beamforming Gain: 3 dB.
- 3) The antenna gain and beamforming gain are provided by the manufacturer.

For 5GHz:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	South star	3.N102.1398	Dipole	IPEX	5.53
2	South star	3.N102.1398	Dipole	IPEX	5.53
3	South star	3.N102.1398	Dipole	IPEX	5.53
4	South	3.N102.1305	Dipole	IPEX	5.14

Note

- 1) This EUT supports CDD, and all antenna gains are not equal, Directional gain = G_{ANT}+Array Gain. For power measurements, Array Gain=0dB (N_{ANT}≤4), so the Directional gain=5.53. For power spectral density measurements, N_{ANT}=4, N_{SS} = 1. So the Directional gain=G_{ANT}+Array Gain=G_{ANT}+10log(N_{ANT}/N_{SS})dBi=5.53+10log(4/1)dBi=11.55. Then, the UNII-1 power spectral density limit is 17-(11.55-6)=11.45, the UNII-2A, UNII-2C power spectral density limit is 11-(11.55-6)=5.45, the UNII-3 power spectral density limit is 30-(11.55-6)=24.45.
- 2) Beamforming Gain: 6 dB.
- 3) The antenna gain and beamforming gain are provided by the manufacturer.

3. CALCULATED RESULT

For 2.4GHz:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
5.19	3.3037	24.92	310.4560	0.13066	1	Complies

For 5GHz:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
5.53	3.5727	29.79	952.7962	0.43364	1	Complies

For the max simultaneous transmission MPE:

	Ratio		Total	Limit of Ratio	Test Result
	2.4GHz	5GHz	Total	LIIIII OI Kalio	rest Result
0.13066		0.43364	0.5643	1	Pass

Note:

- (1) The calculated distance is 25 cm.
- (2) Ratio=Power Density (S) (mW/cm²)/Limit of Power Density (S) (mW/cm²)

End of Test Report