

FCC RF EXPOSURE REPORT

FCC ID: 2APRGWR3600H

Project No. : 2502C178
Equipment : (1) BE3600 2.5G Dual-Band Wi-Fi 7 Router
 (2) BE3600 Gigabit Dual-Band Wi-Fi 7 Router
Brand Name : Cudy
Test Model : (1) WR3600H
Series Model : (2) WR3600
Applicant : Shenzhen Cudy Technology Co., Ltd.
Address : 7/F, Lepu Tower (West), 66 Xingke Rd, Nanshan, Shenzhen, China
Manufacturer : Shenzhen Cudy Technology Co., Ltd.
Address : 7/F, Lepu Tower (West), 66 Xingke Rd, Nanshan, Shenzhen, China
Factory : Shenzhen Cudy Technology Co., Ltd.
Address : 7/F, Lepu Tower (West), 66 Xingke Rd, Nanshan, Shenzhen, China
Date of Receipt : Feb. 27, 2025
Date of Test : Feb. 27, 2025 ~ Jun. 23, 2025
Issued Date : Jul. 14, 2025
Report Version : R00
Test Sample : Engineering Sample No.: DG2025022771
Standard(s) : FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part 2.1091
 FCC Title 47 Part 2.1091 & KDB 447498 D01 v06

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc. (Dongguan).

Prepared by

: chella zheng
Chella Zheng

Approved by

: Chay . Cai
Chay Cai

No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong People's Republic of China

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-4-2502C178	R00	Original Report.	Jul. 14, 2025	Valid

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

2. ANTENNA SPECIFICATION

For 2.4GHz:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	South star	3.N102.1337	Dipole	IPEX	5.41
2	South star	3.N102.1338	Dipole	IPEX	5.38

Note:

- 1) This EUT supports CDD, and all antenna gains are not equal, Directional gain = $G_{ANT} + \text{Array Gain}$. For power measurements, Array Gain=0dB ($N_{ANT} \leq 4$), so the Directional gain=5.41.
- 2) Beamforming Gain: 3 dB.
- 3) The antenna gain and beamforming gain are provided by the manufacturer.

For 5GHz:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	South star	3.N102.1339	Dipole	IPEX	5.47
2	South star	3.N102.1340	Dipole	IPEX	5.36

Note:

- 1) This EUT supports CDD, and all antenna gains are not equal, Directional gain = $G_{ANT} + \text{Array Gain}$. For power measurements, Array Gain=0dB ($N_{ANT} \leq 4$), so the Directional gain=5.47.
- 2) Beamforming Gain: 3 dB.
- 3) The antenna gain and beamforming gain are provided by the manufacturer.

3. CALCULATED RESULT

For 2.4GHz:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
5.41	3.4754	24.31	269.7739	0.18662	1	Complies

For 5GHz:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
5.47	3.5237	26.84	483.0588	0.33881	1	Complies

For the max simultaneous transmission MPE:

Ratio		Total	Limit of Ratio	Test Result
2.4GHz	5GHz			
0.18662	0.33881	0.52542	1	Pass

Note:

- (1) The calculated distance is 20 cm.
- (2) Ratio=Power Density (S) (mW/cm²)/Limit of Power Density (S) (mW/cm²)

End of Test Report