

SAR Test Report

Report No.: AGC14499241101FH01A

FCC ID : 2APPZ-W610H

APPLICATION PURPOSE: Class II Permissive Change

PRODUCT DESIGNATION: Wireless Phone

BRAND NAME : LINXVIL

MODEL NAME : W610H

APPLICANT: Fanvil Technology Co., Ltd

DATE OF ISSUE : Jun. 25, 2025

IEEE Std. 1528:2013

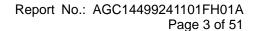
STANDARD(S) : FCC 47 CFR Part 2§2.1093

IEEE Std C95.1 ™-2019

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

Page 2 of 51


Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jun. 25, 2025	Valid	Initial Release

Note: The original test report AGC14499241101FH01 (dated Dec. 16, 2024 and tested on Nov. 18, 2024) was modified on Jun. 25, 2025, including the following changes and additions:

- -Update applicant and manufacture information;
- -Add a battery.
- -Upgrade standard from IEEE Std C95.1 [™]-2005 to IEEE Std C95.1 [™]-2019;

For the above described change, Based on the above changes, test data was added under the worst case of the head and body.

	Test Report
Applicant Name	Fanvil Technology Co., Ltd
Applicant Address	13th Floor, Building 2, Runzhi R&D Center, Xin'an Street, Bao'an District, Shenzhen, Guangdong, 518000 China
Manufacturer Name	Fanvil Technology Co., Ltd
Manufacturer Address	13th Floor, Building 2, Runzhi R&D Center, Xin'an Street, Bao'an District, Shenzhen, Guangdong, 518000 China
Factory Name	N/A
Factory Address	N/A
Product Designation	Wireless Phone
Brand Name	LINXVIL
Model Name	W610H
EUT Voltage	DC 3.8V by battery
Applicable Standard	IEEE Std. 1528:2013 FCC 47 CFR Part 2§2.1093 IEEE Std C95.1 ™-2019
Date of receipt of test item	May 16, 2025
Test Date	Jun. 20, 2025
Report Template	AGCRT-US-900MHz/SAR (2021-04-20)

Note: The results of testing in this report apply to the product/system which was tested only.

Prepared By	Bibo zhang	
	Bibo Zhang (Project Engineer)	Jun. 25, 2025
Reviewed By	Jack Gai	
Approved By	Jack Gui (Reviewer)	Jun. 25, 2025
	Angela Li (Authorized Officer)	Jun. 25, 2025

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	5
2. GENERAL INFORMATION	6
2.1. EUT DESCRIPTION	ε
3. SAR MEASUREMENT SYSTEM	7
3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS 3.2. COMOSAR E-FIELD PROBE	7 8 9 10
4. SAR MEASUREMENT PROCEDURE	12
4.1. SPECIFIC ABSORPTION RATE (SAR)	13 15
5. TISSUE SIMULATING LIQUID	16
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	16
6. SAR SYSTEM CHECK PROCEDURE	18
6.1. SAR SYSTEM CHECK PROCEDURES	
7. EUT TEST POSITION	20
7.1. DEFINE TWO IMAGINARY LINES ON THE HANDSET	21 21
8. SAR EXPOSURE LIMITS	23
9. TEST FACILITY	24
10. TEST EQUIPMENT LIST	25
11. MEASUREMENT UNCERTAINTY	26
12. CONDUCTED POWER MEASUREMENT	32
13. TEST RESULTS	33
13.1. SAR TEST RESULTS SUMMARY	33
APPENDIX A. SAR SYSTEM CHECK DATA	38
APPENDIX B. SAR MEASUREMENT DATA	42
APPENDIX C. TEST SETUP PHOTOGRAPHS	50
APPENDIX D. CALIBRATION DATA	50

Page 5 of 51

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Highest Reported 1g-SAR(W/kg)		SAR Test Limit	
Frequency Band	Head	Body-worn(with 0mm separation)	(W/kg)
900MHz	0.069	0.067	
Simultaneous Reported SAR	0.275		1.6
SAR Test Result		PASS	

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE Std C95.1 [™]-2019 and the following specific FCC Test Procedures:

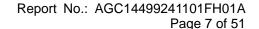
- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 941225 D01 3G SAR Procedures v03r01

Note: This standard FCC 47 CFR Part 2§2.1093 is not within the A2LA control range.

Page 6 of 51

2. GENERAL INFORMATION

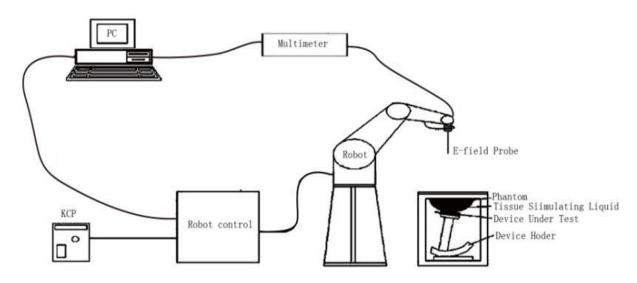
2.1 FIIT Description

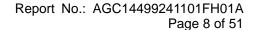

General Information	
Product Designation	Wireless Phone
Test Model	W610H
Hardware Version	V1.0
Software Version	1.0.3
Duty cycle measurements	8% (manufacturer declared)
Device Category	Portable
RF Exposure Environment	Uncontrolled
Antenna Type	FPC Antenna
900MHz	
Operating Frequency Range	906-922MHz for 802.11ah (4MHz Channel Bandwidth)
Type of modulation	OFDM with BPSK/QPSK/16QAM/64QAM
Antenna Gain	1.5dBi
Maximum Output Power	28.190dBm
Bluetooth	•
Bluetooth Version	V5.0
Operation Frequency	2402~2480MHz
Type of modulation	⊠GFSK ⊠∏/4-DQPSK ⊠8-DPSK
Maximum Output Power	6.978dBm
Antenna Gain	3.7dBi
Accessories	•
Battery	Brand name: N/A Model No.: YJ563170 Voltage and Capacitance: 3.8 V & 1900mAh
New Battery	Brand name: N/A Model No.: 543171PN3 Voltage and Capacitance: 3.8 V & 1900mAh

Note:1.CMU200 can measure the average power and Peak power at the same time

2. The sample used for testing is end product.

3. The test sample has no any deviation to the test method of standard mentioned in page 1.

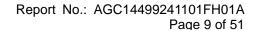

Product	Туре			
Product	□ Production unit	☐ Identical Prototype		


3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- · The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.


3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

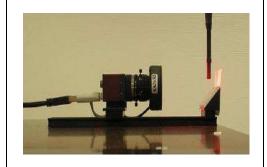
Model	SSE2	
Manufacture	MVG	
Identification No.	2023-EPGO-414	
Frequency	0.15GHz-7.5GHz Linearity:±0.08dB(0.15GHz-7.5GHz)	
Dynamic Range	0.01W/kg-100W/kg Linearity:±0.08dB	
Dimensions	Overall length:330mm Length of individual dipoles:2mm Maximum external diameter:8mm Probe Tip external diameter:2.5mm Distance between dipoles/ probe extremity:1mm	
Application	High precision dosimetric measurements in (e.g., very strong gradient fields). Only prob compliance testing for frequencies up to 6 G 30%.	e which enables

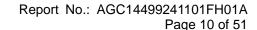
Model	SSE2	
Manufacture	MVG	
Identification No.	2023-EPGO-414	
Frequency	0.15GHz-7.5GHz Linearity:±0.10dB(0.15GHz-7.5GHz)	
Dynamic Range	0.01W/kg-100W/kg Linearity:±0.10dB	
Dimensions	Overall length:330mm Length of individual dipoles:2mm Maximum external diameter:8mm Probe Tip external diameter:2.5mm Distance between dipoles/ probe extremity:1mm	
Application	High precision dosimetric measureme (e.g., very strong gradient fields). Only compliance testing for frequencies up 30%.	probe which enables

3.3. Robot

The COMOSAR system uses the KUKA robot from SATIMO SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used.

The XL robot series have many features that are important for our application:


- ☐ High precision (repeatability 0.02 mm)
- ☐ High reliability (industrial design)
- ☐ Jerk-free straight movements
- ☐ Low ELF interference (the closed metallic
- construction shields against motor control fields)
- ☐ 6-axis controller



3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.


3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.


3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

□ Left head

☐ Right head

☐ Flat phantom

Page 11 of 51

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Page 12 of 51

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;
E is the r.m.s. value of the electric field strength in the tissue in volts per meter;
σ is the conductivity of the tissue in siemens per metre;

ρ is the density of the tissue in kilograms per cubic metre;
 c_h is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t = 0 is the initial time derivative of temperature in the tissue in kelvins per second

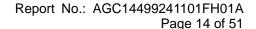
Page 13 of 51

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan


The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
	graded	\(\Delta z_{Zoom}(1):\ \text{ between} \) 1st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume	an x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

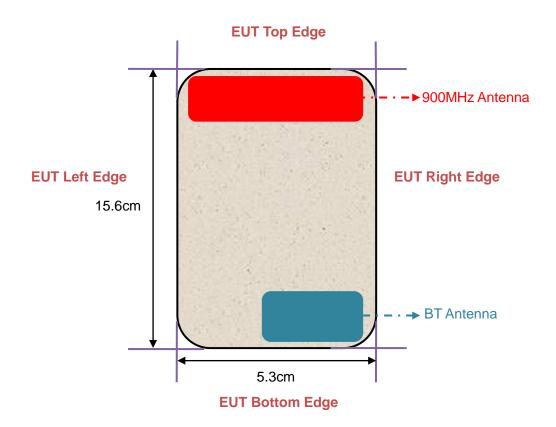
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4.3. RF Exposure Conditions


Test Configuration and setting:

The EUT is a Wireless Phone which supports 900MHz & Bluetooth.

For SAR test, the EUT is controlled with DECT communication system TX2012 which can provide continuous transmitting RF signal.

Due the BT power is less than exemption limit, SAR is not required.

Antenna Location: (the back view)

Page 16 of 51

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 10% are listed in 6.2

5.1. The composition of the tissue simulating liquid

Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
900 Head	34.4	0.79	0.0	0.0	64.81	0.0

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEC/IEEE 62209-1528 have been incorporated in the following table. The body tissue dielectric parameters recommended by the IEC/IEEE 62209-1528 have been incorporated in the following table.

Target Frequency	he	ad		body
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	45.3	0.87
450	43.5	0.87	43.5	0.87
835	41.5	0.90	41.5	0.90
900	41.5	0.97	41.5	0.97
915	41.5	1.01	41.5	1.01
1450	40.5	1.20	40.5	1.20
1610	40.3	1.29	40.3	1.29
1800 – 2000	40.0	1.40	40.0	1.40
2450	39.2	1.80	39.2	1.80
3000	38.5	2.40	38.5	2.40

($\epsilon r = relative permittivity$, $\sigma = conductivity and <math>\rho = 1000 \text{ kg/m3}$)

Page 17 of 51

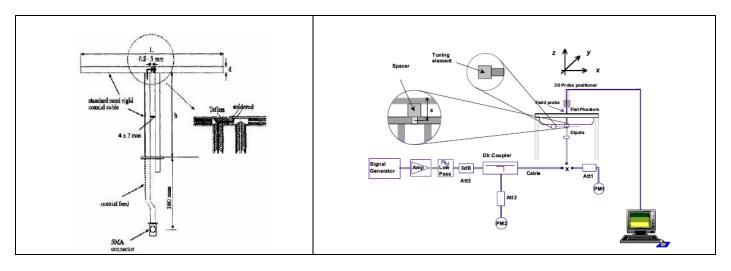
5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

	Tissue Stimulant Measurement for 900MHz								
	Fr.	Dielectric Para	meters (±5%)	Ambient	Relative	Tissue			
		εr 41.5	δ[s/m]	Temp	Humidity	Temp	Test time		
Head	Head (MHz)	(37.35-45.65)	0.97(0.92-1.02)	[℃]	(%)	[°C]			
	900	40.71	0.99	21.9	56.4	21 4	Nov. 18,		
	914	39.42	1.00	∠1.9	36.4	∠1.4	2024		

	Tissue Stimulant Measurement for 900MHz								
	Fr.	Dielectric Para	Ambient	Relative	Tissue				
	(MHz)	εr 41.5	δ[s/m]	Temp	Humidity	Temp	Test time		
Head	(1011 12)	(37.35-45.65)	0.97(0.92-1.02)	[℃]	(%)	[°C]			
	900	40.85	0.96	21.3	51.6	21.1	Jun. 20,		
	914	39.60	0.99	21.3	51.0	21.1	2025		

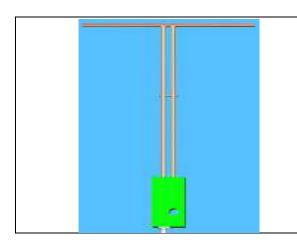
Page 18 of 51


6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.


The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

Report No.: AGC14499241101FH01A Page 19 of 51

6.2. SAR System Check 6.2.1. Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical Specifications for the dipoles.

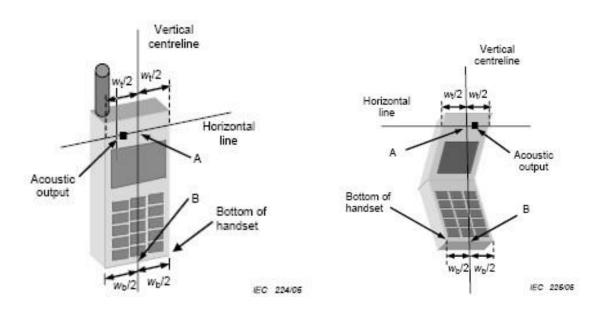
Frequency	L (mm)	h (mm)	d (mm)
900 MHz	149.0	83.3	3.6

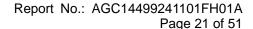
6.2.2. System Check Result

System Per	System Performance Check at 900MHz for Head									
Validation Kit: SN 23/19 DIP 0G900-482										
Frequency			Reference (± 1		sted (W/kg)	Test time				
Frequency [MHz]	1g	10g	1g	10g	1g	10g				
900	11.21	6.89	10.089-12.331	6.201-7.579	11.65	6.88	Nov. 18, 2024			
900	10.52	6.77	9.47-11.57	6.09-7.45	10.78	6.62	Jun. 20, 2025			

Note:

(1) We use a CW signal of 18dBm for system check, and then all SAR values are normalized to 1W forward power. The result must be within ±10% of target value.




7. EUT TEST POSITION

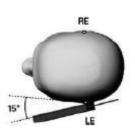
This EUT was tested in Right Cheek, Right Tilted, Left Cheek, Left Tilted, Body back, Body front

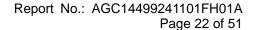
7.1. Define Two Imaginary Lines on the Handset

- (1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

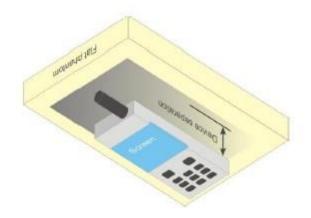
7.2. Cheek Position

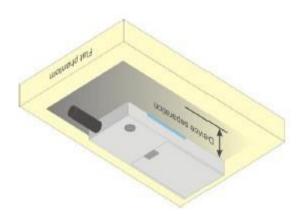
- (1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center picec in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (2) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost




7.3. Tilt Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.





7.4. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 0mm.

Page 23 of 51

8. SAR EXPOSURE LIMITS

SAR assessments have been made in line with the requirements of IEEE-1528, and comply with ANSI/IEEE C95.1-2005 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

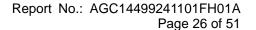
Limits for General Population/Uncontrolled Exposure (W/kg)

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

Page 24 of 51

9. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

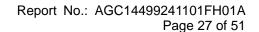

Report No.: AGC14499241101FH01A Page 25 of 51

10. TEST EQUIPMENT LIST

	QUII WILIT		T		_	
No.	Equipment description	Manufacturer/ Model	Identification No.	Software version	Current calibration date	Next calibration date
AGC-HE-A103	SAR Probe	MVG	2023-EPGO-414	N/A	2024-04-30	2025-04-29
AGC-HE-A103	SAR Probe	MVG	2023-EPGO-414	N/A	2025-05-06	2026-05-05
AGC-HE-E016	Phantom	SATIMO	SN_4511_SAM9 0	N/A	Validated. No cal required.	Validated. No cal required.
AGC-ER-E020	WIRELESS COMMUNICA TION TEST SET	Agilent-8960	GB46200384	N/A	2024-05-28	2025-05-27
AGC-ER-E020	WIRELESS COMMUNICA TION TEST SET	Agilent-8960	GB46200384		2025-05-21	2026-05-20
AGC-HE-E005	Multimeter	Keithley 2000	1350784	N/A	2024-05-24	2025-05-23
AGC-HE-E005	Multimeter	Keithley 2000	1350784	N/A	2025-05-16	2026-05-15
AGC-HE-S001	SAR Software	SATIMO-OpenS AR	N/A	OpenSAR V4_02_32	N/A	N/A
AGC-HE-A093	Dipole	SATIMO SID900	SN 2319 DIP 0G900-482	N/A	2022-04-28	2025-04-27
AGC-HE-A093	Dipole	SATIMO SID900	SN 2319 DIP 0G900-482	N/A	2025-05-15	2028-05-14
AGC-HE-E021	Signal Generator	Agilent-E4438C	US41461365	V5.03	2024-05-24	2025-05-23
AGC-HE-E021	Signal Generator	Agilent-E4438C	US41461365	V5.03	2025-05-21	2026-05-20
AGC-EM-E061	EXA Signal Analyzer	Agilent / N9010A	MY53470504	N/A	2024-05-28	2025-05-27
AGC-EM-E061	EXA Signal Analyzer	Agilent / N9010A	MY53470504	N/A	2025-05-08	2026-05-07
AGC-HE-E004	Network Analyzer	Rhode & Schwarz ZVL6	101443	3.2	2023-9-21	2024-09-20
AGC-HE-E004	Network Analyzer	Rhode & Schwarz ZVL6	101443	3.2	2024-07-24	2025-07-23
AGC-ER-A001	Attenuator	SMA-JK	N/A	N/A	2023-09-21	2025-09-20
AGC-EM-E019	Amplifier	AS0104-55_55	1004793	N/A	N/A	N/A
AGC-EM-E040	Directional Couple	Werlatone/ C5571-10	SN99463	N/A	2024-02-01	2026-01-31
AGC-EM-E041	Directional Couple	Werlatone/ C6026-10	SN99482	N/A	2024-02-01	2026-01-31
AGC-BQ-E016	Power Sensor	NRP-Z21	104604	N/A	2024-05-24	2025-05-23
AGC-BQ-E016	Power Sensor	NRP-Z21	104604	N/A	2025-05-16	2026-05-15
AGC-HE-E023	Power Sensor	NRP-Z23	100323	N/A	2024-06-05	2025-06-04
AGC-HE-E023	Power Sensor	NRP-Z23	100323	N/A	2025-01-14	2026-01-13
AGC-HE-S004	Power Viewer	R&S	V2.3.1.0	N/A	N/A	N/A
AGC-HE-A001	Calibration standard parts for network sub - port	R&S/ ZV-Z132	100707	V2.3.1.0	2024-11-08	2025-11-07
AGC-HE-A002	Thermometer	DigiMate/TP677	3811930452	N/A	2024-06-06	2025-06-05
AGC-HE-A002	Thermometer	DigiMate/TP677	3811930452	N/A	2025-05-24	2027-05-23
		D Validation ACC				annual basis suamu

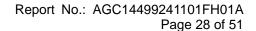
Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

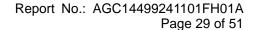


11. MEASUREMENT UNCERTAINTY

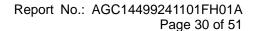
11. MEASUREMENT		SATIMO Uno		2023-EDG	0-414				
M	s easurement ر					10 gram.			
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System	<u> </u>	1 \/					()	(/	1
Probe calibration	E.2.1	7.000	N	1	1	1	7.000	7.000	∞
Axial Isotropy	E.2.2	0.090	R	√3	√0.5	√0.5	0.037	0.037	∞
Hemispherical Isotropy	E.2.2	0.090	R	√3	√0.5	√0.5	0.037	0.037	∞
Boundary effect	E.2.3	1.000	R	√3	1	1	0.577	0.577	∞
Linearity	E.2.4	0.890	R	$\sqrt{3}$	1	1	0.514	0.514	∞
System detection limits	E.2.4	1.000	R	√3	1	1	0.577	0.577	∞
Modulation response	E2.5	3.000	R	√3	1	1	1.732	1.732	∞
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	∞
Response Time	E.2.7	0.000	R	√3	1	1	0.000	0.000	∞
Integration Time	E.2.8	1.400	R	, √3	1	1	0.808	0.808	∞
RF ambient conditions-Noise	E.6.1	3.000	R	√3	1	1	1.732	1.732	∞
RF ambient conditions-reflections	E.6.1	3.000	R	√3	1	1	1.732	1.732	∞
Probe positioner mechanical tolerance	E.6.2	1.400	R	√3	1	1	0.808	0.808	∞
Probe positioning with respect to phantom shell	E.6.3	1.400	R	√3	1	1	0.808	0.808	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.300	R	√3	1	1	1.328	1.328	∞
Test sample Related									
Test sample positioning	E.4.2	2.6	N	1	1	1	2.600	2.600	∞
Device holder uncertainty	E.4.1	3	N	1	1	1	3.000	3.000	8
Output power variation—SAR drift measurement	E.2.9	5	R	√3	1	1	2.887	2.887	∞
SAR scaling	E.6.5	5	R	$\sqrt{3}$	1	1	2.887	2.887	∞
Phantom and tissue parameter	rs	_							
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1	1	2.309	2.309	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.900	1.596	8
Liquid conductivity measurement	E.3.3	4	R	√3	0.78	0.71	3.120	2.840	8
Liquid permittivity measurement	E.3.3	5	N	1	0.78	0.71	1.150	1.300	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	1.126	1.025	∞
Liquid permittivity—temperature uncertainty	E.3.4	2.5	N	1	0.23	0.26	0.332	0.375	М
Combined Standard Uncertainty			RSS				10.526	10.341	
Expanded Uncertainty (95% Confidence interval)			K=2				21.052	20.682	


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

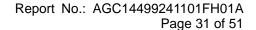
Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/



System		ATIMO Uno				. / 10 gram			
•	Sec.	Tol	Prob.	Div.	Over 1 gran	Ci (10g)	1g Ui	10g Ui	vi
Uncertainty Component Measurement System	060.	(+- %)	Dist.	DIV.	Or (19)	Or (Tog)	(+-%)	(+-%)	
Probe calibration	E.2.1	7.000	N	1	1	1	7.000	7.000	∞
Axial Isotropy	E.2.2	0.090	R	$\sqrt{3}$	1	1	0.052	0.052	∞
Hemispherical Isotropy	E.2.2	0.090	R	√3	0	0	0.000	0.000	∞
Boundary effect	E.2.3	1.000	R	√ 3	1	1	0.577	0.577	∞
Linearity	E.2.4	0.890	R	√ 3	1	1	0.514	0.514	∞
System detection limits	E.2.4	1.0	R	√ 3	1	1	0.58	0.58	∞
Modulation response	E2.5	3.0	R	√ 3	0	0	0.00	0.00	∞
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	∞
Response Time	E.2.7	0.0	R	√3	0	0	0.00	0.00	∞
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF ambient conditions-Noise	E.6.1	3.0	R	√ 3	1	1	1.73	1.73	∞
RF ambient conditions-reflections	E.6.1	3.0	R	√3	1	1	1.73	1.73	∞
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	∞
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	1	0.81	0.81	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	∞
System validation source						_			
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	N	1	1	1	5.00	5.00	∞
Input power and SAR drift measurement	8,6.6.4	5.0	R	√3	1	1	2.89	2.89	∞
Dipole axis to liquid distance	8,E.6.6	2.0	R	√3	1	1	1.15	1.15	∞
Phantom and set-up									
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4.0	R	√3	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	8
Liquid conductivity (temperature uncertainty)	E.3.3	2.5	R	√3	0.78	0.71	1.13	1.02	∞
Liquid conductivity (measured)	E.3.3	4	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity (temperature uncertainty)	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	∞
Liquid permittivity (measured)	E.3.4	5	N	1	0.23	0.26	1.15	1.30	М
Combined Standard Uncertainty			RSS				10.459	10.272	
Expanded Uncertainty (95% Confidence interval)			K=2				20.917	20.545	



Sy	System Check u	SATIMO Und				′ 10 gram.			
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System	l	(. ,0)	2.00				(. ,0)	(. ,0)	
Probe calibration drift	E.2.1.3	0.500	N	1	1	1	0.50	0.50	∞
Axial Isotropy	E.2.2	0.090	R	√3	0	0	0.00	0.00	∞
Hemispherical Isotropy	E.2.2	0.090	R	√3	0	0	0.00	0.00	∞
Boundary effect	E.2.3	1.000	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Linearity	E.2.4	0.890	R	$\sqrt{3}$	0	0	0.00	0.00	∞
System detection limits	E.2.4	1.0	R	√3	0	0	0.00	0.00	∞
Modulation response	E2.5	3.0	R	√3	0	0	0.00	0.00	∞
Readout Electronics	E.2.6	0.021	N	1	0	0	0.00	0.00	∞
Response Time	E.2.7	0	R	√3	0	0	0.00	0.00	∞
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	∞
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF ambient conditions-reflections	E.6.1	3.0	R	√3	0	0	0.00	0.00	∞
Probe positioner mechanical	E.6.2	1.4	R	√3	1	1	0.81	0.81	8
tolerance Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	1	0.81	0.81	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0.00	0.00	∞
System check source (dipole)									
Deviation of experimental dipoles	E.6.4	2.0	N	1	1	1	2.00	2.00	∞
Input power and SAR drift measurement	8,6.6.4	5.0	R	√3	1	1	2.89	2.89	∞
Dipole axis to liquid distance	8,E.6.6	2.0	R	√3	1	1	1.15	1.15	∞
Phantom and tissue parameter	rs	1		_			1	T	
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	∞
Liquid conductivity measurement	E.3.3	4	R	√3	0.78	0.71	3.12	2.84	∞
Liquid permittivity measurement	E.3.3	5	N	1	0.78	0.71	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	N	1	0.23	0.26	0.33	0.38	М
Combined Standard Uncertainty			RSS				5.562	5.203	
Expanded Uncertainty (95% Confidence interval)			K=2				11.124	10.406	



		SATIMO Und							
M	easurement ι			veraged ov	er 1 gram /	10 gram.	4 = 1 !!	40 11:	1
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System	•	1 (/		•	•				
Probe calibration	E.2.1	7.000	N	1	1	1	7.000	7.000	∞
Axial Isotropy	E.2.2	0.105	R	1.732	0.707	0.707	0.043	0.043	∞
Hemispherical Isotropy	E.2.2	0.105	R	1.732	0.707	0.707	0.043	0.043	∞
Boundary effect	E.2.3	1.000	R	1.732	1	1	0.577	0.577	∞
Linearity	E.2.4	1.105	R	1.732	1	1	0.638	0.638	∞
System detection limits	E.2.4	1.000	R	1.732	1	1	0.577	0.577	∞
Modulation response	E2.5	3.000	R	1.732	1	1	1.732	1.732	∞
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	_∞
Response Time	E.2.7	0.000	R	1.732	1	1	0.000	0.000	_∞
Integration Time	E.2.8	1.400	R	1.732	1	1	0.808	0.808	∞
RF ambient conditions-Noise	E.6.1	3.000	R	1.732	1	1	1.732	1.732	∞
RF ambient conditions-reflections	E.6.1	3.000	R	1.732	1	1	1.732	1.732	_∞
Probe positioner mechanical tolerance	E.6.2	1.400	R	1.732	1	1	0.808	0.808	∞
Probe positioning with respect to phantom shell	E.6.3	1.400	R	1.732	1	1	0.808	0.808	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.300	R	1.732	1	1	1.328	1.328	∞
Test sample Related									
Test sample positioning	E.4.2	2.6	N	1	1	1	2.60	2.60	8
Device holder uncertainty	E.4.1	3	N	1	1	1	3.00	3.00	∞
Output power variation—SAR drift measurement	E.2.9	5	R	1.732	1	1	2.89	2.89	∞
SAR scaling	E.6.5	5	R	1.732	1	1	2.89	2.89	∞
Phantom and tissue parameter	rs								
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	1.732	1	1	2.309	2.309	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.900	1.596	∞
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.120	2.840	М
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.150	1.300	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	1.732	0.78	0.71	1.126	1.025	∞
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	1.732	0.23	0.26	0.332	0.375	_∞
Combined Standard Uncertainty			RSS				10.533	10.348	
Expanded Uncertainty (95% Confidence interval)			K=2				21.065	20.695	

System		ATIMO Und				n / 10 gram.						
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi			
Measurement System												
Probe calibration	E.2.1	7.000	N	1	1	1	7.000	7.000	∞			
Axial Isotropy	E.2.2	0.105	R	1.732	1.000	1.000	0.061	0.061	∞			
Hemispherical Isotropy	E.2.2	0.105	R	1.732	0.000	0.000	0.000	0.000	∞			
Boundary effect	E.2.3	1.000	R	1.732	1.000	1.000	0.577	0.577	8			
Linearity	E.2.4	1.105	R	1.732	1.000	1.000	0.638	0.638	8			
System detection limits	E.2.4	1.000	R	1.732	1.000	1.000	0.577	0.577	8			
Modulation response	E2.5	3.000	R	1.732	0.000	0.000	0.000	0.000	∞			
Readout Electronics	E.2.6	0.021	N	1.000	1.000	1.000	0.021	0.021	∞			
Response Time	E.2.7	0.000	R	1.732	0.000	0.000	0.000	0.000	∞			
Integration Time	E.2.8	1.400	R	1.732	0.000	0.000	0.000	0.000	∞			
RF ambient conditions-Noise	E.6.1	3.000	R	1.732	1.000	1.000	1.732	1.732	∞			
RF ambient conditions-reflections	E.6.1	3.000	R	1.732	1.000	1.000	1.732	1.732	∞			
Probe positioner mechanical tolerance	E.6.2	1.400	R	1.732	1.000	1.000	0.808	0.808	∞			
Probe positioning with respect to phantom shell	E.6.3	1.400	R	1.732	1.000	1.000	0.808	0.808	8			
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.300	R	1.732	1.000	1.000	1.328	1.328	∞			
System validation source												
Deviation of experimental dipole from numerical dipole	E.6.4	5	N	1	1	1	5	5	∞			
Input power and SAR drift measurement	8,6.6.4	5	R	1.732	1	1	2.887	2.887	∞			
Dipole axis to liquid distance	8,E.6.6	2	R	1.732	1	1	1.155	1.155	∞			
Phantom and set-up												
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	1.732	1	1	2.309	2.309	∞			
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.9	1.596	∞			
Liquid conductivity (temperature uncertainty)	E.3.3	4	N	1	0.78	0.71	3.12	2.84	8			
Liquid conductivity (measured)	E.3.3	5	N	1	0.23	0.26	1.15	1.3	М			
Liquid permittivity (temperature uncertainty)	E.3.4	2.5	R	1.732	0.78	0.71	1.126	1.025	∞			
Liquid permittivity (measured)	E.3.4	2.5	R	1.732	0.23	0.26	0.332	0.375	М			
Combined Standard Uncertainty			RSS				10.466	10.279				
Expanded Uncertainty (95% Confidence interval)			K=2				20.931	20.559				

SATIMO Uncertainty- 2023-EPGO-414 System Check uncertainty for DUT averaged over 1 gram / 10 gram.									
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System		(+- %)	DIST.	1			(+-76)	(+-76)	
Probe calibration drift	E.2.1.3	0.500	N	1	1	1	0.5	0.5	oo
Axial Isotropy	E.2.2	0.105	R	1.732	0	0	0	0	∞
Hemispherical Isotropy	E.2.2	0.105	R	1.732	0	0	0	0	∞
Boundary effect	E.2.3	1.000	R	1.732	0	0	0	0	00
Linearity	E.2.4	1.105	R	1.732	0	0	0	0	00
System detection limits	E.2.4	1	R	1.732	0	0	0	0	∞
Modulation response	E2.5	3	R	1.732	0	0	0	0	00
Readout Electronics	E.2.6	0.021	N	1	0	0	0	0	00
Response Time	E.2.7	0	R	1.732	0	0	0	0	00
Integration Time	E.2.8	1.4	R	1.732	0	0	0	0	∞
RF ambient conditions-Noise	E.6.1	3	R	1.732	0	0	0	0	∞
RF ambient conditions-reflections	E.6.1	3	R	1.732	0	0	0	0	∞
Probe positioner mechanical	E.6.2	1.4	R	√3	1	1	0.81	0.81	oo.
tolerance Probe positioning with respect				√3					
to phantom shell	E.6.3	1.4	R	γ3	1	1	0.81	0.81	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0	0.00	∞
System check source (dipole)			ı			l .			I
Deviation of experimental dipoles	E.6.4	2	N	1	1	1	2	2	_∞
Input power and SAR drift measurement	8,6.6.4	5	R	√3	1	1	2.89	2.89	8
Dipole axis to liquid distance	8,E.6.6	2	R	√3	1	1	1.15	1.15	∞
Phantom and tissue parameter	rs								
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1.000	1	0.84	1.90	1.60	∞
Liquid conductivity measurement	E.3.3	4	N	1.000	0.78	0.71	3.12	2.84	∞
Liquid permittivity measurement	E.3.3	5	N	1.000	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	М
Combined Standard Uncertainty			RSS				5.562	5.203	
Expanded Uncertainty (95% Confidence interval)			K=2				11.124	10.406	

Page 32 of 51

12. CONDUCTED POWER MEASUREMENT

Mode	Channel	Peak Power (dBm)	
	01	906.0	28.180
900MHz-802.11ah	03	914.0	28.173
	05	922.0	28.190

Bluetooth_V5.0(BR/EDR)

Modulation Channel		Frequency(MHz)	Peak Power (dBm)
	0	2402	3.563
GFSK	39	2441	3.776
	78	2480	3.851
	0	2402	6.499
π /4-DQPSK	39	2441	6.255
	78	2480	6.252
8-DPSK	0	2402	6.978
	39	2441	6.776
	78	2480	6.777

Bluetooth_V5.0(BLE)

Modulation	Channel	Frequency(MHz)	Conducted Output Power (dBm)		
	0	2402	3.719		
LE1M_GFSK	19	2440	3.425		
	39	2480	3.399		
	0	2402	4.234		
LE2M_GFSK	19	2440	3.967		
	39	2480	4.014		

For Bluetooth

Calculation Value =[(max. power of channel, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}]$. Fox example: $4.987/5*\sqrt{2.402}=1.546\leq 3.0$

According to KDB447498 D01 V06, threshold at which no SAR required is ≤3.0 for 1-g SAR, separation distance is 5mm, and no simultaneous SAR measurement is required.

Page 33 of 51

13. TEST RESULTS

13.1. SAR Test Results Summary

13.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE 1528-2013, Body-worn SAR was performed with the device 0mm from the phantom.

13.1.2. Operation Mode

- 1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is \geq 0.8W/kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- 3. Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:

 Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]
- 7. Proximity sensor, just for avoiding the wrong operation in the phone screen when call, and has no influence on output power or SAR result.

Page 34 of 51

13.1.3. Test Result

SAR MEASUREMENT	SAR	MEAS	SUREI	MENT
-----------------	-----	------	-------	------

Depth of Liquid (cm):>15

Product: Wireless Phone

Test Mode: 900MHz-802.11ah

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Tune-up Scaling factor	Scaled SAR (W/kg)	Limit (W/kg)
Left Cheek	OFDM	03	914.0	-0.12	0.064	28.50	28.173	1.078	0.069	1.6
Left Tilt	OFDM	03	914.0	-0.03	0.045	28.50	28.173	1.078	0.049	1.6
Right Cheek	OFDM	03	914.0	-0.04	0.056	28.50	28.173	1.078	0.060	1.6
Right Tilt	OFDM	03	914.0	0.10	0.033	28.50	28.173	1.078	0.036	1.6
Body back with belt clip and earphone	OFDM	03	914.0	-0.06	0.031	28.50	28.173	1.078	0.033	1.6
Body back	OFDM	03	914.0	-0.32	0.030	28.50	28.173	1.078	0.032	1.6
Body front	OFDM	03	914.0	0.05	0.062	28.50	28.173	1.078	0.067	1.6
Body front with earphone	OFDM	03	914.0	-0.21	0.055	28.50	28.173	1.078	0.059	1.6

Note:

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

- The test separation of all above table is 0mm.

Report No.: AGC14499241101FH01A Page 35 of 51

1. The EUT no changes in PCB layout and antenna, and add a battery relative to the original project.

2. Laboratory added test data under the worst case of the head and body based on original project as follows. If the SAR value is greater than the value of the original battery, the new battery must be tested all the position. If not, the laboratory just tests under the worst position, including the head and body.

SAR MEASUREMENT

Depth of Liquid (cm):>15

Product: Wireless Phone

Test Mode: 900MHz-802.11ah

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Tune-up Scaling factor	Scaled SAR (W/kg)	Limit (W/kg)
Left Cheek	OFDM	03	914.0	-0.09	0.056	28.50	28.173	1.078	0.060	1.6
Body front	OFDM	03	914.0	0.13	0.051	28.50	28.173	1.078	0.055	1.6

Report No.: AGC14499241101FH01A Page 36 of 51

NO	Simultaneous state	Portable Handset				
NO	Simulaneous State	Head	Body-worn	Hotspot		
1	900MHz-802.11ah +Bluetooth(data)	Yes	Yes	-		

NOTE:

- 1. Simultaneous with every transmitter must be the same test position.
- 2. KDB 447498 D01, BT SAR is excluded as below table.
- 3. KDB 447498 D01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for head SAR and 0mm for body-worn SAR.
- 4. According to KDB 447498 D01 4.3.1, Standalone SAR test exclusion is as follow:
 - For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR³⁰, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation³¹
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- 5. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 6. According to KDB 447498 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4)When the standalone SAR test exclusion of section 4.3.2 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to det
 - (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]· $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances ≤ 50 mm;
 - where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
- 7. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Estimat	ed SAR	Max Power inc Toler	luding Tune-up ance	Separation Distance (mm)	Estimated SAR (W/kg)	
		dBm	mW	Distance (min)	(VV/Kg)	
ВТ	Head	7	5.012	5	0.207	
ы	Body	7	5.012	5	0.207	

Page 37 of 51

Sum of the SAR for 900MHz & BT:

RF Exposure	Test	Simultaneous Transmission Scenario		Σ1-g SAR	SPLSR
Conditions	Position	900MHz	Bluetooth	(W/kg)	(Yes/No)
	Left Touch	0.068	0.207	0.275	No
Head	Left Tilt	0.048	0.207	0.255	No
rieau	Right Touch	0.059	0.207	0.266	No
	Right Tilt	0.035	0.207	0.242	No
Body-worn	Rear with belt clip and earphone	0.033	0.207	0.240	No
	Rear	0.032	0.207	0.239	No
	Front	0.065	0.207	0.272	No
	Front with earphone	0.058	0.207	0.265	No

Note:

- ·According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/kg, SPLSR assessment is not required.
- ·SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 38 of 51

APPENDIX A. SAR SYSTEM CHECK DATA

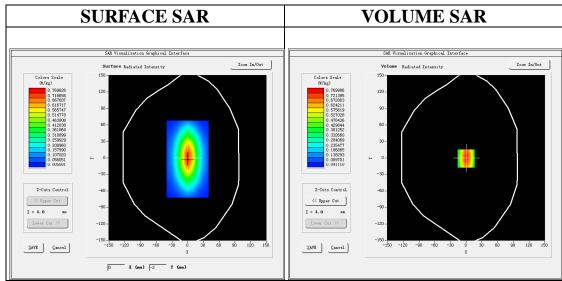
Test Laboratory: AGC Lab Date: Nov. 18, 2024

System Check Head 900 MHz

DUT: Dipole 900 MHz Type: SID 900

Communication System CW; Communication System Band: D900 (900.0 MHz); Duty Cycle: 1:1; Conv.F=1.91 Frequency: 900MHz; Medium parameters used: f = 900 MHz; $\sigma = 0.99$ mho/m; $\epsilon r = 40.71$; $\rho = 1000$ kg/m³; Phantom section: Flat Section; Input Power=18dBm

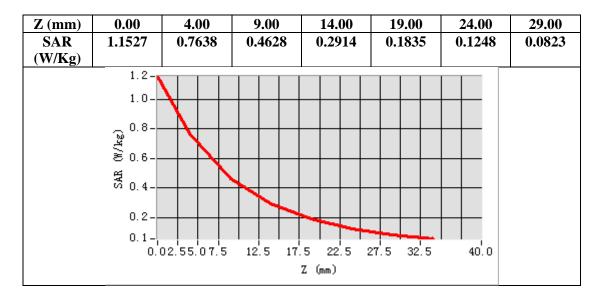
SATIMO Configuration

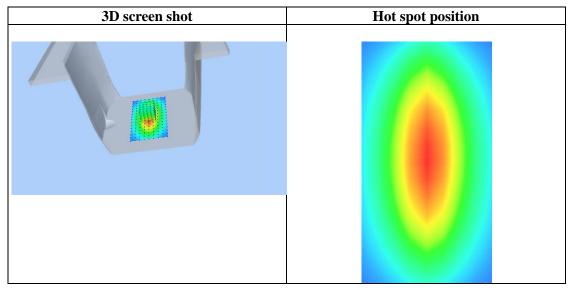

• Probe: SSE2; Calibrated: 2024-04-30; Serial No.: 2023-EPGO-414

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32


Configuration/System Check 900MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 900MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm



Maximum location: X=0.00, Y=-1.00 SAR Peak: 1.15 W/kg

SAR 10g (W/Kg)	0.433875
SAR 1g (W/Kg)	0.734967

Date: Jun. 20, 2025

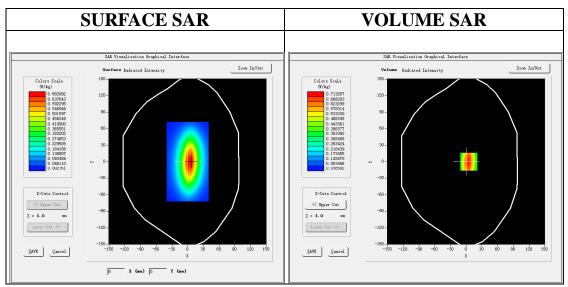
Page 40 of 51

Test Laboratory: AGC Lab System Check Head 900 MHz

DUT: Dipole 900 MHz Type: SID 900

Communication System CW; Communication System Band: D900 (900.0 MHz); Duty Cycle: 1:1; Conv.F=2.18 Frequency: 900MHz; Medium parameters used: f = 900 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 40.85$; $\rho = 1000$ kg/m³; Phantom section: Flat Section: Input Power=18dBm

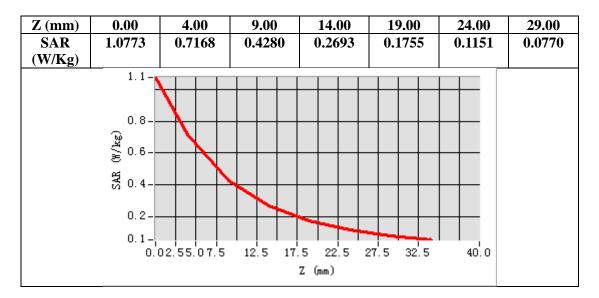
SATIMO Configuration

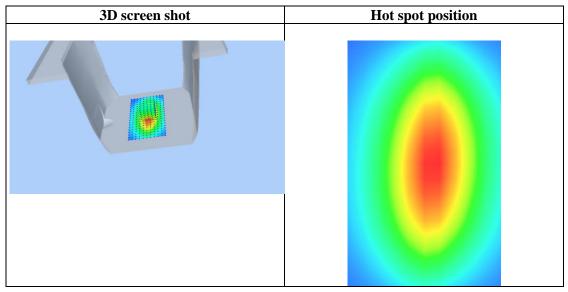

Probe: SSE2; Calibrated: 2025-05-06; Serial No.: 2023-EPGO-414

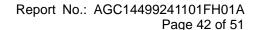
• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32


Configuration/System Check 900MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 900MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm




Maximum location: X=5.00, Y=0.00 SAR Peak: 1.08 W/kg

SAR 10g (W/Kg)	0.417403
SAR 1g (W/Kg)	0.679915

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab Date: Nov. 18, 2024

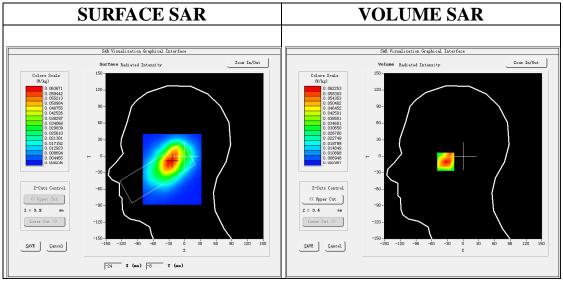
900MHz-802.11ah Mid-Touch-Left <SIM 1> DUT: Wireless Phone; Type: W610H

Communication System: 900MHz; Communication System Band: 900MHz; Duty Cycle: 8%; Conv.F=1.91; Frequency: 914MHz; Medium parameters used: f = 900 MHz; $\sigma = 1.00 \text{ mho/m}$; $\epsilon r = 39.42$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

SATIMO Configuration:

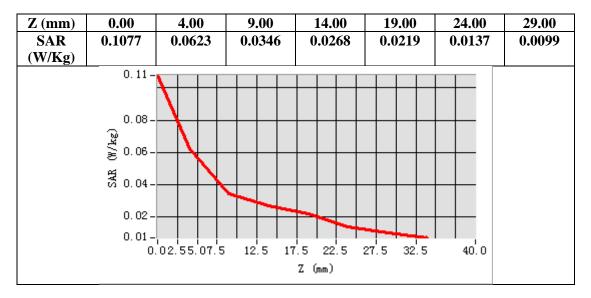
Probe: SSE2; Calibrated: 2024-04-30; Serial No.: 2023-EPGO-414

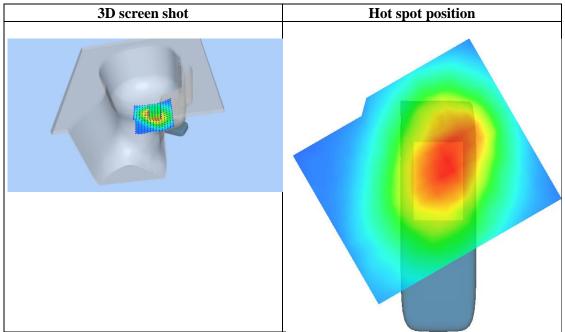

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/900MHz-802.11ah Mid-Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/900MHz-802.11ah Mid-Touch-Left/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Left head
Device Position	Cheek
Band	900MHz
Channels	Middle
Signal	TDMA (Crest factor: 8.0)



Maximum location: X=-29.00, Y=-10.00 SAR Peak: 0.11 W/kg

SAR 10g (W/Kg)	0.037975
SAR 1g (W/Kg)	0.064134

Page 44 of 51

Test Laboratory: AGC Lab Date: Nov. 18, 2024

900MHz-802.11ah Mid- Body- Front (MS) <SIM 1>

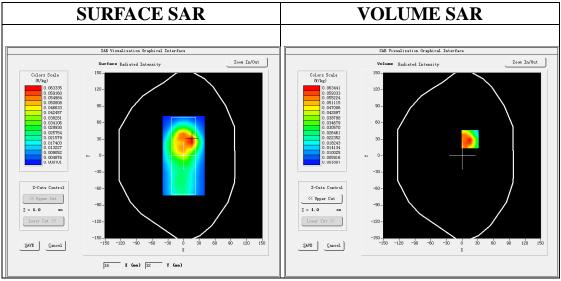
DUT: Wireless Phone; Type: W610H

Communication System: 900MHz; Communication System Band: 900MHz; Duty Cycle: 8%; Conv.F=1.91; Frequency: 914 MHz; Medium parameters used: f = 835 MHz; $\sigma = 1.00$ mho/m; $\epsilon r = 39.42$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

SATIMO Configuration:

Probe: SSE2; Calibrated: 2024-04-30; Serial No.: 2023-EPGO-414

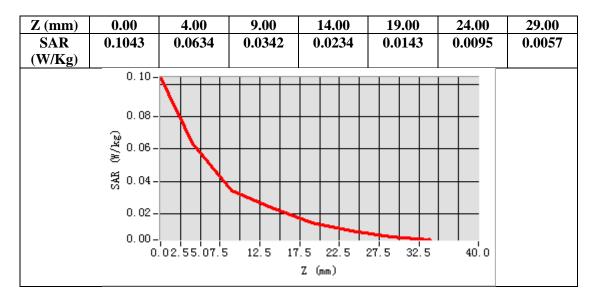

• Sensor-Surface: 4mm (Mechanical Surface Detection)

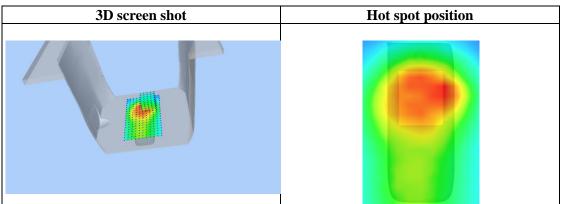
Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/900MHz-802.11ah Mid-Body- Front /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/900MHz-802.11ah Mid-Body- Front Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Front
Band	900MHz
Channels	Middle
Signal	TDMA (Crest factor: 8.0)




Maximum location: X=15.00, Y=30.00

SAR Peak: 0.10 W/kg

SAR 10g (W/Kg)	0.035501
SAR 1g (W/Kg)	0.061974

Page 46 of 51

Test Laboratory: AGC Lab Date: Jun. 20, 2025

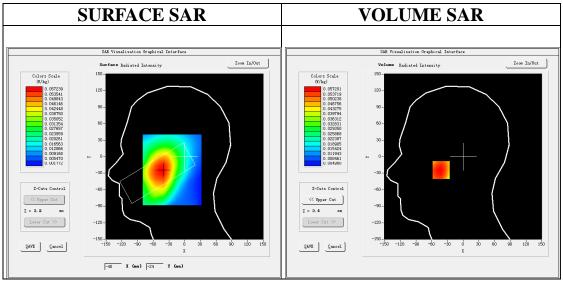
900MHz-802.11ah Mid-Touch-Left <SIM 1> DUT: Wireless Phone; Type: W610H

Communication System: 900MHz; Communication System Band: 900MHz; Duty Cycle: 8%; Conv.F=2.18; Frequency: 914MHz; Medium parameters used: f = 900 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 39.60$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

SATIMO Configuration:

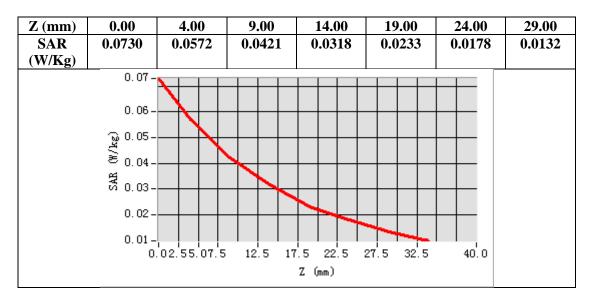
Probe: SSE2; Calibrated: 2025-05-06; Serial No.: 2023-EPGO-414

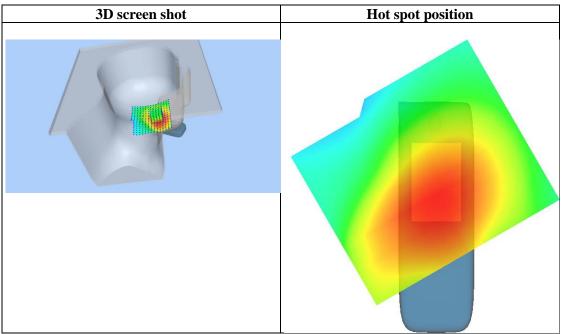

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/900MHz-802.11ah Mid-Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/900MHz-802.11ah Mid-Touch-Left/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Left head
Device Position	Cheek
Band	900MHz
Channels	Middle
Signal	TDMA (Crest factor: 8.0)



Maximum location: X=-42.00, Y=-24.00 SAR Peak: 0.07 W/kg

SAR 10g (W/Kg)	0.040333
SAR 1g (W/Kg)	0.056011

Page 48 of 51

Test Laboratory: AGC Lab Date: Jun. 20, 2025

900MHz-802.11ah Mid- Body- Front (MS) <SIM 1>

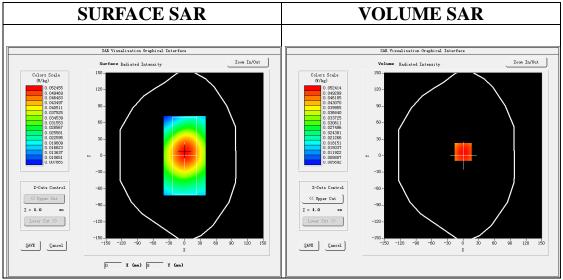
DUT: Wireless Phone; Type: W610H

Communication System: 900MHz; Communication System Band: 900MHz; Duty Cycle: 8%; Conv.F=2.18; Frequency: 914 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\epsilon r = 39.60$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

SATIMO Configuration:

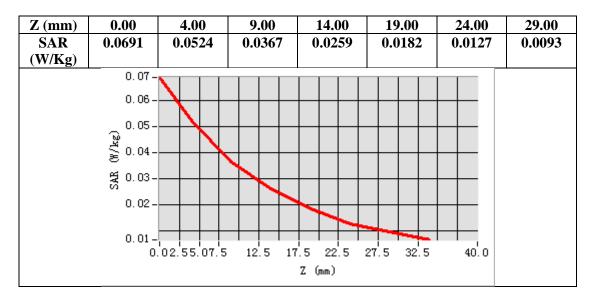
Probe: SSE2; Calibrated: 2025-05-06; Serial No.: 2023-EPGO-414

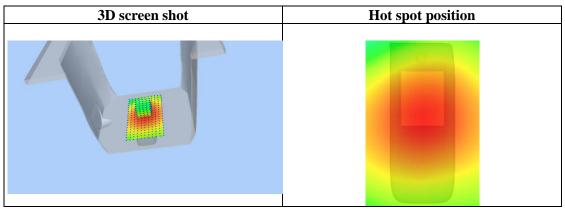

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/900MHz-802.11ah Mid-Body- Front /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/900MHz-802.11ah Mid-Body- Front Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


Area Scan	surf_sam_plan.txt, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Front
Band	900MHz
Channels	Middle
Signal	TDMA (Crest factor: 8.0)



Maximum location: X=0.00, Y=7.00 SAR Peak: 0.07 W/kg

SAR 10g (W/Kg)	0.035264
SAR 1g (W/Kg)	0.051016

Page 50 of 51

APPENDIX C. TEST SETUP PHOTOGRAPHS

Refer to Attached files.

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

Report No.: AGC14499241101FH01A Page 51 of 51

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

 7. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to

submitting the sample for testing.

- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.

----END OF REPORT----