

Global United Technology Services Co., Ltd.

Report No.: GTS202010000181-01

TEST REPORT

OCEAN NK DIGITAL TECHNOLOGY LIMITED Applicant:

Address of Applicant: BLK. F, 7/F., WAH HING INDUSTRIAL MANSIONS, 36 TAI

YAU STREET, SAN PO KONG, KOWLOON, Hong Kong

Manufacturer/Factory: NK (ShenZhen) Co.,Ltd

Address of No.8, Lanjin Seven Road, Pingshan District, Shenzhen City,

Guangdong Province, China Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: Bluetooth Earphone

Model No.: RZE-BT750E

Trade Mark: **TOSHIBA**

FCC ID: 2APKZ-BT750E

IC: 23811-BT750E

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

> RSS-247 Issue 2 RSS-Gen Issue 5

October 27, 2020

Date of sample receipt:

Date of Test: October 28, 2020-November 06, 2020

November 06, 2020 Date of report issued:

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo **Laboratory Manager**

2 Version

Version No.	Date	Description
00	November 06, 2020	Original

Prepared By:	Jer Che Da	te:	November 06, 2020
	Project Engineer		
Check By:	Da Paviowar	ite:	November 06, 2020

3 Contents

		Page
1	COVER PAGE	1
2	2 VERSION	2
3		
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.4 DEVIATION FROM STANDARDS	
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 TEST FACILITY	
_		
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	
	7.3 CONDUCTED PEAK OUTPUT POWER	
	7.4 20DB EMISSION BANDWIDTH & 99% OCCUPY BANDWIDTH	
	7.5 CARRIER FREQUENCIES SEPARATION	
	7.6 HOPPING CHANNEL NUMBER	
	7.7 DWELL TIME	
	7.8 BAND EDGE	
	7.8.1 Conducted Emission Method	
	7.0.2 Radiated Emission Wethod	
	7.9.1 Conducted Emission Method	
	7.9.2 Radiated Emission Method	
	7.10 FREQUENCY STABILITY	
8	3 TEST SETUP PHOTO	49
^	C. FUT CONSTRUCTIONAL DETAILS	40

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c) RSS-Gen Section 6.8	Pass
AC Power Line Conducted Emission	15.207 RSS-Gen Section 8.8	Pass
Conducted Peak Output Power	15.247 (b)(1) RSS-247 Section 5.4(b)	Pass
20dB Occupied Bandwidth & 99% Occupy Bandwidth	15.247 (a)(1) RSS-247 Section 5.1(a) RSS-Gen Section 6.7	Pass
Carrier Frequencies Separation	15.247 (a)(1) RSS-247 Section 5.1(b)	Pass
Hopping Channel Number	15.247 (a)(1) RSS-247 Section 5.1(d)	Pass
Dwell Time	15.247 (a)(1) RSS-247 Section 5.1(d)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4) RSS-247 Section 5.1	Pass
Radiated Emission	15.205/15.209 Section 3.3 & RSS-Gen Section 8.9	Pass
Band Edge	15.247(d) RSS-247 Section 5.5	Pass
Frequency stability	RSS-Gen Section 6.11& Section 8.11	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013 and RSS-Gen.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	3.44dB	(1)	
Note (1): The measurement unce	ertainty is for coverage factor of ka	=2 and a level of confidence of 9	95%.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 General Description of EUT

Product Name:	Bluetooth Earphone
Model No.:	RZE-BT750E
Test sample(s) ID:	GTS202010000181-1
Sample(s) Status:	Engineer sample
S/N:	818723021826
Hardware Version:	1.0
Software Version:	1.0
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Integral Antenna
Antenna gain:	4.08dBi(declare by applicant)
Power supply:	Charge box: Battery DC 3.7V, 600mAh, 2.22Wh
	Earphone: Battery DC 3.7V, 50mAh, 0.185Wh

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021			
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021			
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021			
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021			
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
8	Coaxial Cable GTS		N/A	GTS213	June. 25 2020	June. 24 2021			
9	Coaxial Cable	Coaxial Cable GTS		GTS211	June. 25 2020	June. 24 2021			
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021			
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021			
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021			
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021			
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021			
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021			
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021			
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021			
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021			
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021			
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021			
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021			
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021			
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021			
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021			

Conc	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021		
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021		

RF C	RF Conducted Test:									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021				
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021				
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021				
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021				
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021				
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021				
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021				
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021				

General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021		
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Standard requirement: RSS-Gen Section 6.8

A transmitter can only be sold or operated with antennas with which it was approved. When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of RF output power of 10 milliwatts or less, only the portion of the antenna gain that is in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power to demonstrate compliance with the radiated power limits specified in the applicable standard. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be

F U T Antenna

The antenna is Integral antenna, the best case gain of the antenna is 4.08dBi, reference to the appendix II for details

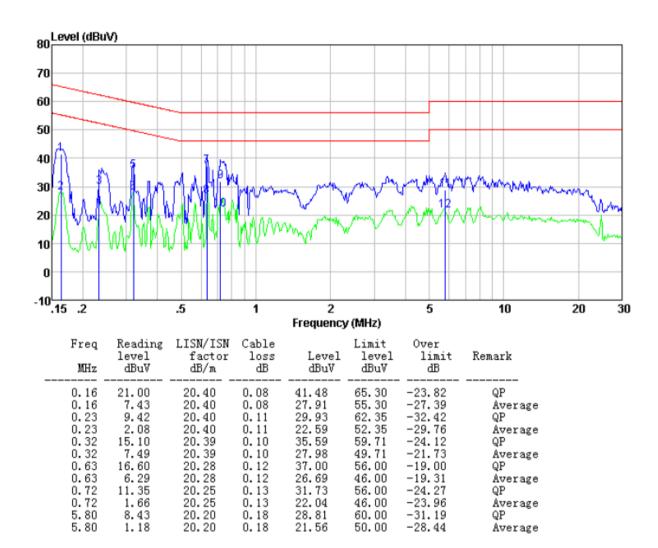
added to the measured RF output power to demonstrate compliance to the specified radiated power

7.2 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207					
·	RSS-Gen Section 8.8					
Test Method:	ANSI C63.10:2013 and RSS-Gen					
Test Frequency Range:	150KHz to	30MHz				
Class / Severity:	Class B					
Receiver setup:	RBW=9KH	z, VBW=30Kł	Hz, Sweep ti	me=auto		
Limit:	Fraguer	ov rongo (ML	1-/	Limit	(dBuV)	
		icy range (M⊦	, Q	uasi-peak		rage
		0.15-0.5		66 to 56*		46*
		0.5-5		56		6
		5-30		60	5	0
-	^ Decrease	s with the log		frequency.		
Test setup:		Reference ∧		1		
	AUX Filter AC power Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test L/SN Line Impedence Stabilization Network Test table height=0.8m					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted 					
	interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test results:	Pass					

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data:


Line:

Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
0.16	21.09	20.40	0.08	41.57	65.43	-23.86	QP
0.16	5.97	20.40	0.08	26.45	55.43	-28.98	Average
0.32	13.48	20.39	0.10	33.97	59.80	-25.83	QP
0.32	5.63	20.39	0.10	26.12	49.80	-23.68	Average
0.63	15.44	20.28	0.12	35.84	56.00	-20.16	QP
0.63	4.97	20.28	0.12	25.37	46.00	-20.63	Average
2.07	6.38	20.20	0.18	26.76	56.00	-29.24	QP
2.07	-0.43	20.20	0.18	19.95	46.00	-26.05	Average
4.31	7.98	20.20	0.18	28.36	56.00	-27.64	QP
4.31	0.72	20.20	0.18	21.10	46.00	-24.90	Average
7.33	7.66	20.20	0.19	28.05	60.00	-31.95	QP
7.33	0.57	20.20	0.19	20.96	50.00	-29.04	Average

Neutral:

Notes:

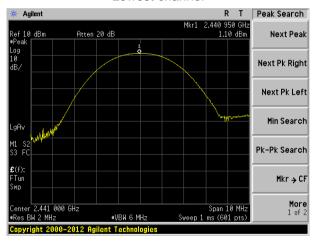
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
	RSS-247 Section 5.4(b)		
Test Method:	ANSI C63.10:2013 and RSS-Gen		
Limit:	20.97dBm		
	36dBm(4W for e.i.r.p.)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Mode	Test channel	Peak Output Power (dBm)	e.i.r.p. (dBm)	Limit (dBm)	e.i.r.p. (dBm)	Result
	Lowest	0.38	4.46			
GFSK	Middle	1.10	5.18	20.97	36	Pass
	Highest	0.89	4.97			
	Lowest	0.48	4.56			
π/4-DQPSK	Middle	0.42	4.50	20.97	36	Pass
	Highest	0.52	4.60			
	Lowest	-0.14	3.94			
8-DPSK	Middle	0.24	4.32	20.97	36	Pass
	Highest	0.14	4.22			

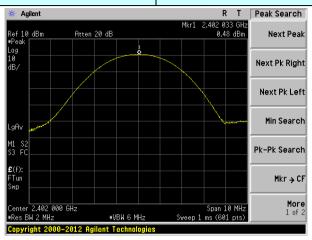


Test plot as follows:

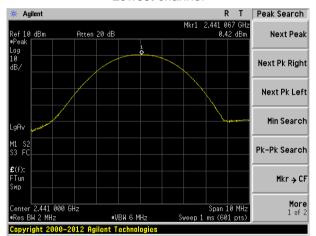
Test mode: GFSK mode

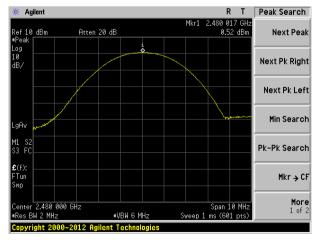
Lowest channel

Middle channel



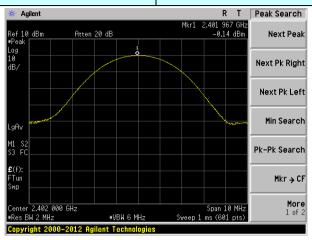
Highest channel

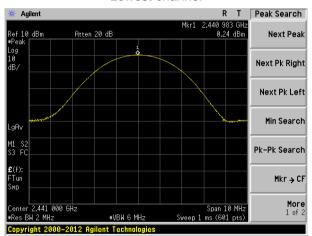

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

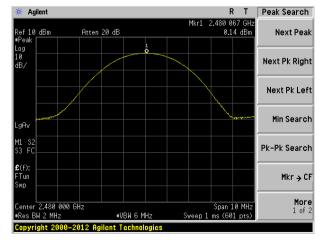


Test mode: π/4-DQPSK mode

Lowest channel




Highest channel



Test mode: 8-DPSK mode

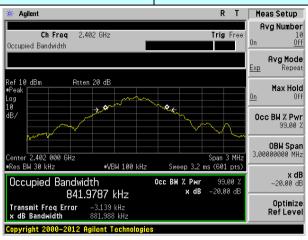
Lowest channel

Highest channel

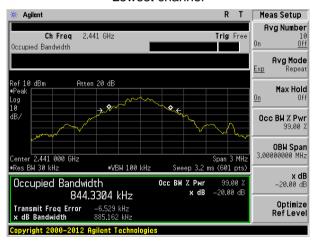
7.4 20dB Emission Bandwidth & 99% Occupy Bandwidth

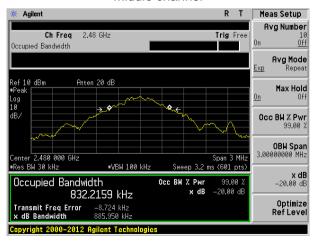
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
	RSS-Gen Section 6.7 & RSS-247 Section 5.1(a)		
Test Method:	ANSI C63.10:2013 and RSS-Gen		
Limit:	N/A		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data


Took CII	20dB E	Decult		
Test CH	GFSK	π/4-DQPSK	8-DPSK	Result
Lowest	0.882	1.429	1.448	
Middle	0.885	1.432	1.448	Pass
Highest	0.886	1.427	1.448	

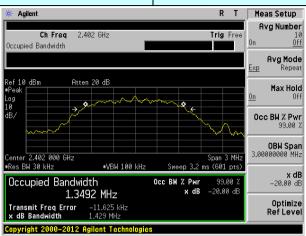
Took CI I	99% C	Dooult		
Test CH	GFSK	π/4-DQPSK	8-DPSK	Result
Lowest	0.842	1.3492	1.3554	
Middle	0.844	1.3472	1.3494	Pass
Highest	0.832	1.3468	1.3571	

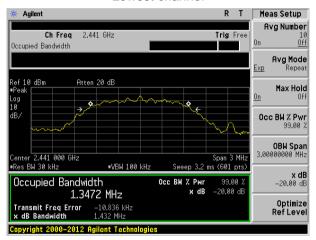


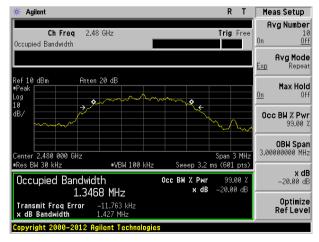

Test plot as follows:

Test mode: GFSK mode

Lowest channel

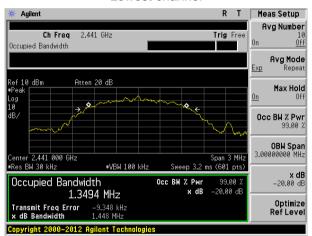


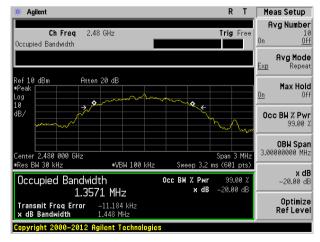

Highest channel



Test mode: π/4-DQPSK mode

Lowest channel


Highest channel



Test mode: 8-DPSK mode

Lowest channel

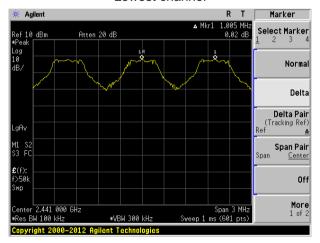
Highest channel

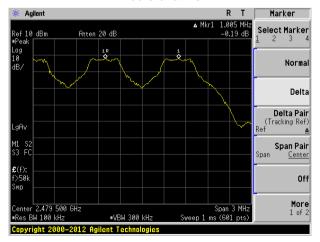
7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1) RSS-247 Section 5.1(b)	
Test Method:	ANSI C63.10:2013 and RSS-Gen	
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

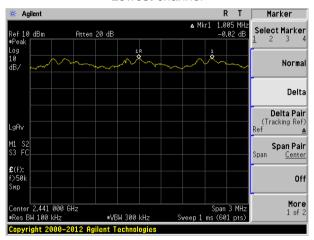
Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
	Lowest	1005	591	Pass
GFSK	Middle	1005	591	Pass
	Highest	1010	591	Pass
	Lowest	1005	955	Pass
π/4-DQPSK	Middle	1005	955	Pass
	Highest	1005	955	Pass
	Lowest	1005	965	Pass
8-DPSK	Middle	1005	965	Pass
	Highest	1005	965	Pass




Test plot as follows:

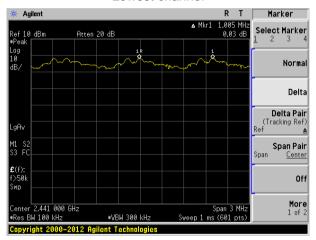
Test mode: GFSK mode

Lowest channel


Highest channel

Test mode: $\pi/4$ -DQPSK mode

Lowest channel

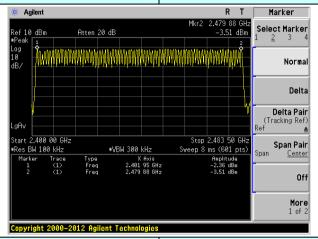

Highest channel

Test mode: 8-DPSK mode

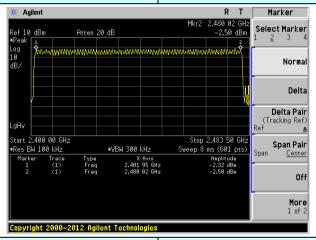
Lowest channel

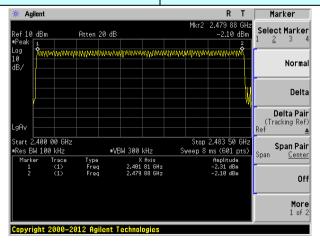
Highest channel

7.6 Hopping Channel Number


Test Requirement: Test Method:	FCC Part15 C Section 15.247 (a)(1) RSS-247 Section 5.1(d) ANSI C63.10:2013 and RSS-Gen		
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data:


Mode	Hopping channel numbers	Limit	Result
GFSK	79	15	Pass
π/4-DQPSK	79	15	Pass
8-DPSK	79	15	Pass


Test mode: GFSK mode

Test mode: $\pi/4$ -DQPSK mode

Test mode: 8-DPSK mode

7.7 Dwell Time

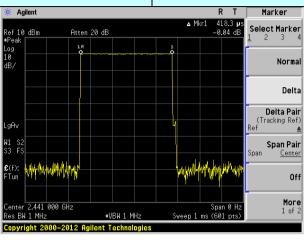
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
	RSS-247 Section 5.1(d)		
Test Method:	ANSI C63.10:2013 and RSS-Gen		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

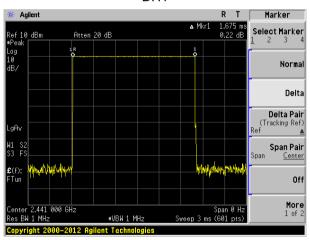
Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	133.86	400	Pass
2441MHz	DH3	268.00	400	Pass
2441MHz	DH5	312.00	400	Pass

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

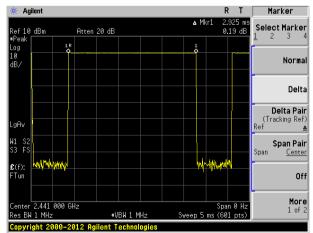
Test channel: 2441MHz as blow


DH1 time slot=0.4183(ms)*(1600/(2*79))*31.6=133.86msDH3 time slot=1.675(ms)*(1600/(4*79))*31.6=268.00msDH5 time slot=2.925(ms)*(1600/(6*79))*31.6=312.00ms

The test data shows only the worst case GFSK mode



Test plot as follows:

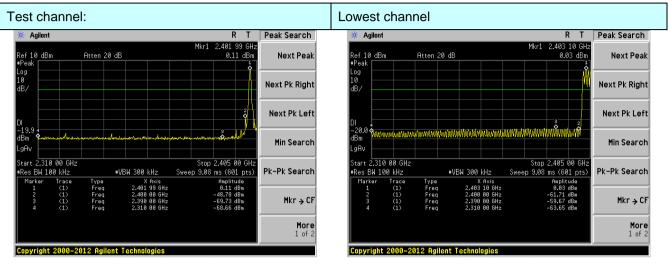

Test channel: 2441MHz

DH1

DH3

DH5

7.8 Band Edge


7.8.1 Conducted Emission Method

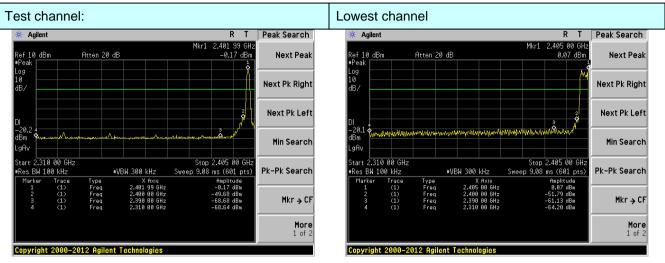
Test Requirement:	FCC Part15 C Section 15.247 (d)						
	RSS-247 Section 5.5						
Test Method:	ANSI C63.10:2013 & RSS-Gen						
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Test plot as follows:

GFSK Mode:

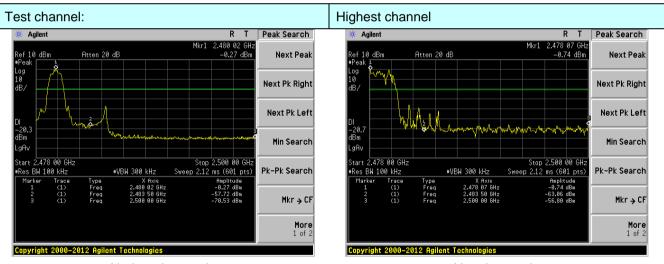
No-hopping mode

Hopping mode


Test channel: Highest channel Marker → Peak Search Next Peak Atten 20 dB Mkr → CF Atten 20 dB Next Pk Right Mkr → CF Step Mkr → Start Next Pk Left Mkr → Stop Min Search Stop 2.500 00 GHz Sweep 2.12 ms (601 pts) Pk-Pk Search Mkr _△ → Spar eep 2.12 ms (601 pts) Mkr $\triangle \rightarrow CF$ Mkr → CF Mkr → Ref Lv Copyright 2000-2012 Agilent Technologies Copyright 2000-2012 Agilent Technologies

No-hopping mode

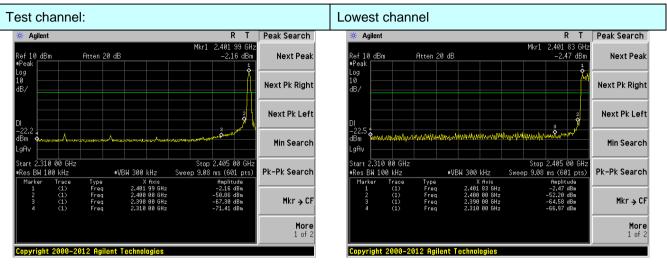
Hopping mode



π/4-DQPSK Mode:

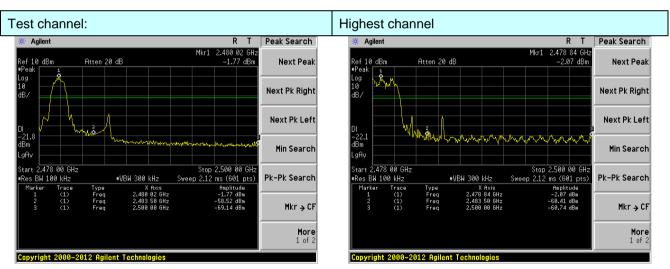
No-hopping mode

Hopping mode



No-hopping mode

Hopping mode



8-DPSK Mode:

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

7.8.2 Radiated Emission Method

Tool Dogwirement		Costion 15 20	0 and 1E 20E					
Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
To at Maril and	Section 3.3 & RSS-Gen Section 8.9							
Test Method:	ANSI C63.10:2013 & RSS-Gen							
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency Detector RBW VBW Remark							
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value			
Limit:	Freque	ency	Limit (dBuV	/m @3m)	Remark			
	Above 1	IGHz	54.0 74.0		Average Value Peak Value			
Test setup:	Turn Table V Clm 4m >v Clm							
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 							
Test Instruments:	Refer to section	6.0 for detail	S					
Test mode:	Refer to section	5.2 for detail	S					
Test results:	Pass							
· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 34 of 49

Measurement Data

Test channel:	Lowest channel
---------------	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	43.44	27.91	5.30	24.64	52.01	74.00	-21.99	Horizontal
2390.00	47.31	27.59	5.38	24.71	55.57	74.00	-18.43	Horizontal
2400.00	48.22	27.41	5.39	24.72	56.30	74.00	-17.70	Horizontal
2310.00	44.05	27.91	5.30	24.64	52.62	74.00	-21.38	Vertical
2390.00	47.41	27.59	5.38	24.71	55.67	74.00	-18.33	Vertical
2400.00	48.52	27.41	5.39	24.72	56.60	74.00	-17.40	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	33.87	27.91	5.30	24.64	42.44	54.00	-11.56	Horizontal
2390.00	35.14	27.59	5.38	24.71	43.40	54.00	-10.60	Horizontal
2400.00	35.47	27.41	5.39	24.72	43.55	54.00	-10.45	Horizontal
2310.00	33.85	27.91	5.30	24.64	42.42	54.00	-11.58	Vertical
2390.00	35.84	27.59	5.38	24.71	44.10	54.00	-9.90	Vertical
2400.00	36.66	27.41	5.39	24.72	44.74	54.00	-9.26	Vertical

Test channel: Highest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	45.62	27.53	5.47	24.80	53.82	74.00	-20.18	Horizontal
2500.00	44.68	27.55	5.49	24.86	52.86	74.00	-21.14	Horizontal
2483.50	46.55	27.53	5.47	24.80	54.75	74.00	-19.25	Vertical
2500.00	45.73	27.55	5.49	24.86	53.91	74.00	-20.09	Vertical

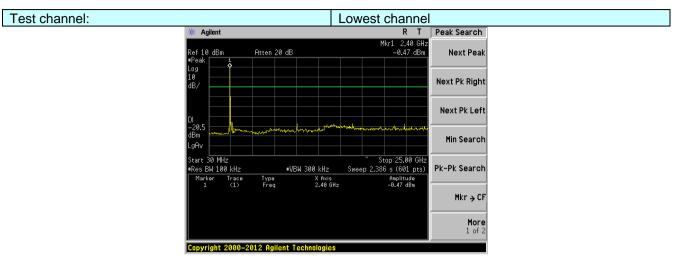
Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	34.70	27.53	5.47	24.80	42.90	54.00	-11.10	Horizontal
2500.00	34.62	27.55	5.49	24.86	42.80	54.00	-11.20	Horizontal
2483.50	35.34	27.53	5.47	24.80	43.54	54.00	-10.46	Vertical
2500.00	34.59	27.55	5.49	24.86	42.77	54.00	-11.23	Vertical

Remarks:

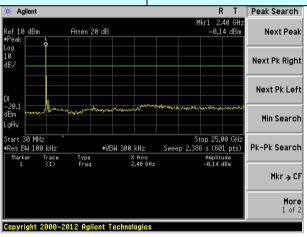
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

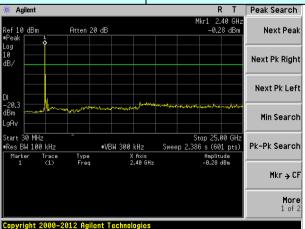
7.9 Spurious Emission


7.9.1 Conducted Emission Method

spectrum intentional radiator is operating, the radio frequency power to produced by the intentional radiator shall be at least 20 dB below that	that is t in the					
Test Method: ANSI C63.10:2013 & RSS-Gen Limit: In any 100 kHz bandwidth outside the frequency band in which the sp spectrum intentional radiator is operating, the radio frequency power to produced by the intentional radiator shall be at least 20 dB below that 100 kHz bandwidth within the band that contains the highest level of to desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer	that is t in the					
Limit: In any 100 kHz bandwidth outside the frequency band in which the sp spectrum intentional radiator is operating, the radio frequency power to produced by the intentional radiator shall be at least 20 dB below that 100 kHz bandwidth within the band that contains the highest level of to desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer	that is t in the					
spectrum intentional radiator is operating, the radio frequency power to produced by the intentional radiator shall be at least 20 dB below that 100 kHz bandwidth within the band that contains the highest level of to desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer	that is t in the					
Spectrum That year						
Non-Conducted Table Ground Reference Plane						
Test Instruments: Refer to section 6.0 for details						
Test mode: Refer to section 5.2 for details						
Test results: Pass						

Remark:


During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.


30MHz~25GHz

30MHz~25GHz

Test channel: Highest channel

30MHz~25GHz

7.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	FCC Part15 C Section 15.209						
	Section 3.3 & RSS-Gen Section 8.9							
Test Method:	ANSI C63.10:2013 & RSS-Gen							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement D	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	9KHz-150KH	Iz Quasi-peak	200Hz	600Hz	Quasi-peak			
	150KHz-30MI	Hz Quasi-peak	9KHz	30KHz	Quasi-peak			
	30MHz-1GH	z Quasi-peak	120KHz	300KHz	Quasi-peak			
	Ab 2112 4 O L L	Peak	1MHz	3MHz	Peak			
	Above 1GH:	Peak	1MHz	10Hz	Average			
FCC Limit:	Fraguer (ANI)	Field stuoneth (i	motou)		anna (mat			
	Frequency (MHz) 0.009-0.490	Field strength (microvolts/ 2400/F(kHz)	meter) Me	asurement dist	ance (meters)			
	0.490-1.705	24000/F(kHz)						
	1.705-30.0	30 100**						
	30-88 88-216	150**						
	00 210	150						
	216-960	200**						
	The emission measurements the frequency	limits shown in the s employing a CIS bands 9-90 kHz,	SPR quasi-p 110-490 kH	eak detect z and abo	tor except fove 1000 MHz			
IC Limit	The emission measurements the frequency Radiated emis measurements	limits shown in the s employing a CIS bands 9-90 kHz, ssion limits in thes s employing an av	SPR quasi-p 110-490 kH e three ban verage detec	eak detect z and abords ds are basector.	tor except fo ve 1000 MHz sed on			
IC Limit:	The emission measurements the frequency Radiated emis measurements	limits shown in the semploying a CIS bands 9-90 kHz, sion limits in these employing an av	SPR quasi-p 110-490 kH e three banderage detections simits at frequen	eak detect z and abords are basector.	tor except fo ve 1000 MHz sed on			
IC Limit:	The emission measurements the frequency Radiated emis measurements	limits shown in these employing a CIS bands 9-90 kHz, sion limits in these employing an average field strength frequency	SPR quasi-p 110-490 kH e three band rerage detect imits at frequer Field strei	eak detect z and abords are basector. Incies above 30	tor except fo ve 1000 MHz sed on			
IC Limit:	The emission measurements the frequency Radiated emis measurements	limits shown in the semploying a CIS bands 9-90 kHz, sion limits in these employing an av	SPR quasi-p 110-490 kH e three banderage detections simits at frequen	eak detect z and abords are basector. Incies above 30	tor except fo ve 1000 MHz sed on			
IC Limit:	The emission measurements the frequency Radiated emis measurements	limits shown in the semploying a CIS bands 9-90 kHz, sion limits in these employing an average of the strength	SPR quasi-p 110-490 kH e three banderage detection finits at frequent Field stren (μV/m at 3	eak detect z and abords are basector. Incies above 30	tor except fo ve 1000 MHz sed on			
IC Limit:	The emission measurements the frequency Radiated emis measurements	limits shown in the semploying a CIS bands 9-90 kHz, sion limits in these employing an average of the strength of the semploying and semployi	SPR quasi-p 110-490 kH e three banderage detection finits at frequent Field stree (μV/m at 3	eak detect z and abords are basector. Incies above 30	tor except fo ve 1000 MHz sed on			
IC Limit:	The emission measurements the frequency Radiated emis measurements	limits shown in the semploying a CIS bands 9-90 kHz, sion limits in these employing an avageneral field strength limits (MHz) 30-88 88-216	SPR quasi-p 110-490 kH e three banderage detection rerage detection Field stree (µV/m at 3 100 150	eak detect z and abords are basector. Incies above 30	tor except fo ve 1000 MHz sed on			
IC Limit:	The emission measurements the frequency Radiated emis measurements	limits shown in the semploying a CIS bands 9-90 kHz, sion limits in these employing an average (MHz) 30-88 88-216 216-960	SPR quasi-p 110-490 kH e three banderage detection Field stree (µV/m at 3 100 150 200 500	eak detect z and abords are basector. Included above 30 (agth 3 m)	tor except fo ve 1000 MHz sed on			
IC Limit:	The emission measurements the frequency Radiated emis measurements	limits shown in the semploying a CIS bands 9-90 kHz, sion limits in these employing an average (MHz) Trequency (MHz) 30-88 88-216 216-960 Above 960 General field strength I	SPR quasi-p 110-490 kH e three banderage detection of the stree (µV/m at 3 100 150 200 500 imits at frequential strength (EField)	eak detective and above a control of the control of	tor except fove 1000 MHz sed on MHz MHz ment			
IC Limit:	Table 6 – 6	limits shown in the semploying a CIS bands 9-90 kHz, sion limits in these employing an average of the semploying an average of the semploying and semploying a CIS bands 9-90 kHz, said and semploying an	SPR quasi-p 110-490 kH e three banderage detection rerage detection rerage detection rerage detection relative field strength field strength (Effield) field/maximum field strength (Effield)	eak detective and above 30 ctor. Incies above 30 ctor. Incies below 30 ctor. Incies below 30 ctor.	tor except for ve 1000 MHz sed on MHz O MHz ement ace			
IC Limit:	Table 6 – 6	limits shown in the semploying a CIS bands 9-90 kHz, sion limits in these employing an average of the semploying an average of the semploying and seminary (MHz) 30 - 88 88 - 216 216 - 960 Above 960 General field strength I Magnetic frency kHz 1 6.37/	SPR quasi-p 110-490 kH e three banderage detection of the stree (µV/m at 3 100 150 200 500 imits at frequential strength (EField)	eak detect z and above ds are base etor. necies above 30 necies below 30 Measure distan (m)	tor except for ve 1000 MHz sed on MHz MHz MHz MHz			

based on measurements employing a linear average detector.

Report No.: GTS202010000181-01 Test setup: For radiated emissions from 9kHz to 30MHz < 3m > Test Antenna EUT. Turn Table 1m< 80cm Tum Table↔ Receiver+ For radiated emissions from 30MHz to1GHz < 3m > Test Antenna EUT. Turn Table < 80cm > Turn Table Preamplifier« For radiated emissions above 1GHz Test Antenna+ < 1m ... 4m > EUT. Turn Tables <150cm Receiver+ Preamplifier+ Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the

ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the

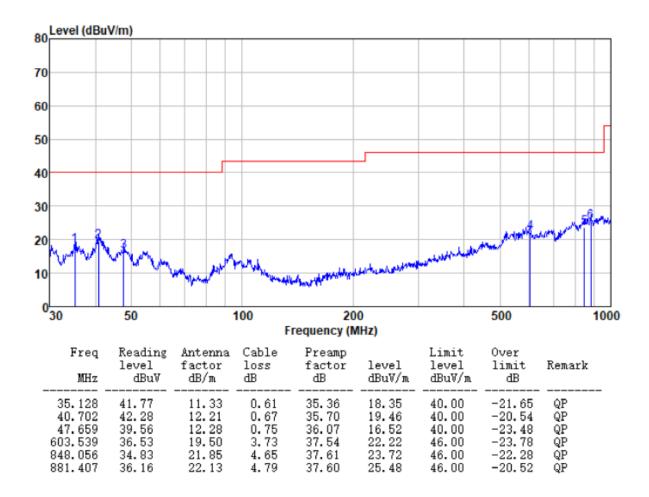
	measure	measurement.						
	4. For each and ther the rota	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.						
		The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	limit spe EUT wo margin v	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.						
Test Instruments:	Refer to se	ction 6.0 for o	details					
Test mode:	Refer to se	Refer to section 5.2 for details						
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						
Test results:	Pass							

Measurement data:

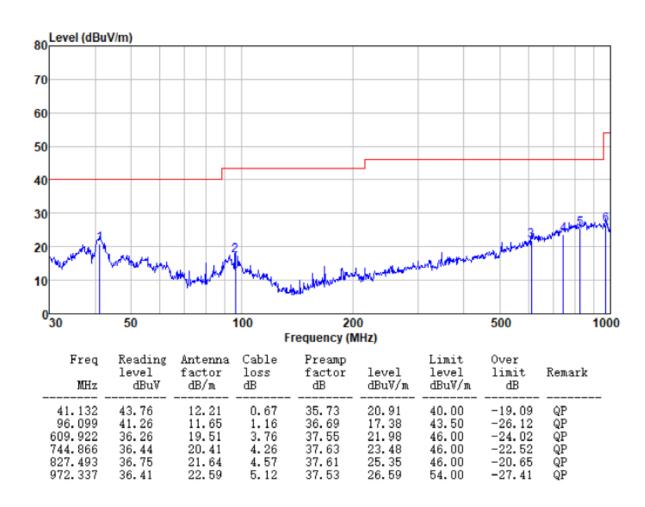
Remarks:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz


Pre-scan all test modes, found worst case at GFSK 2480MHz, and so only show the test result of GFSK 2480MHz

Horizontal:

Vertical:

■ Above 1GHz

Test channel: Lowest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	34.57	31.78	8.60	32.09	42.86	74.00	-31.14	Vertical
7206.00	30.02	36.15	11.65	32.00	45.82	74.00	-28.18	Vertical
9608.00	29.86	37.95	14.14	31.62	50.33	74.00	-23.67	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	38.30	31.78	8.60	32.09	46.59	74.00	-27.41	Horizontal
7206.00	31.53	36.15	11.65	32.00	47.33	74.00	-26.67	Horizontal
9608.00	29.02	37.95	14.14	31.62	49.49	74.00	-24.51	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	23.91	31.78	8.60	32.09	32.20	54.00	-21.80	Vertical
7206.00	19.01	36.15	11.65	32.00	34.81	54.00	-19.19	Vertical
9608.00	18.26	37.95	14.14	31.62	38.73	54.00	-15.27	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	27.83	31.78	8.60	32.09	36.12	54.00	-17.88	Horizontal
7206.00	21.01	36.15	11.65	32.00	36.81	54.00	-17.19	Horizontal
9608.00	17.77	37.95	14.14	31.62	38.24	54.00	-15.76	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Test channel: Mic	ddle channel
-------------------	--------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	34.81	31.85	8.67	32.12	43.21	74.00	-30.79	Vertical
7323.00	30.17	36.37	11.72	31.89	46.37	74.00	-27.63	Vertical
9764.00	29.99	38.35	14.25	31.62	50.97	74.00	-23.03	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	38.58	31.85	8.67	32.12	46.98	74.00	-27.02	Horizontal
7323.00	31.71	36.37	11.72	31.89	47.91	74.00	-26.09	Horizontal
9764.00	29.18	38.35	14.25	31.62	50.16	74.00	-23.84	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

Average value:

Average val	uc.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	24.10	31.85	8.67	32.12	32.50	54.00	-21.50	Vertical
7323.00	19.14	36.37	11.72	31.89	35.34	54.00	-18.66	Vertical
9764.00	18.38	38.35	14.25	31.62	39.36	54.00	-14.64	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	28.05	31.85	8.67	32.12	36.45	54.00	-17.55	Horizontal
7323.00	21.15	36.37	11.72	31.89	37.35	54.00	-16.65	Horizontal
9764.00	17.90	38.35	14.25	31.62	38.88	54.00	-15.12	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Test channel: Highest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	34.84	31.93	8.73	32.16	43.34	74.00	-30.66	Vertical
7440.00	30.19	36.59	11.79	31.78	46.79	74.00	-27.21	Vertical
9920.00	30.01	38.81	14.38	31.88	51.32	74.00	-22.68	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	38.62	31.93	8.73	32.16	47.12	74.00	-26.88	Horizontal
7440.00	31.73	36.59	11.79	31.78	48.33	74.00	-25.67	Horizontal
9920.00	29.20	38.81	14.38	31.88	50.51	74.00	-23.49	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal

Average value:

7170rago ran								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	24.13	31.93	8.73	32.16	32.63	54.00	-21.37	Vertical
7440.00	19.17	36.59	11.79	31.78	35.77	54.00	-18.23	Vertical
9920.00	18.40	38.81	14.38	31.88	39.71	54.00	-14.29	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	28.09	31.93	8.73	32.16	36.59	54.00	-17.41	Horizontal
7440.00	21.18	36.59	11.79	31.78	37.78	54.00	-16.22	Horizontal
9920.00	17.92	38.81	14.38	31.88	39.23	54.00	-14.77	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The test data shows only the worst case GFSK mode

7.10 Frequency Stability

Test Requirement:	RSS-Gen Section 6.11& Section 8.1	11					
Test Method:	ANSI C63.10: 2013 & RSS-Gen						
Limit:	Manufactures of devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified						
Test Procedure:	The EUT was setup to ANSI C63.10, 2013; tested to 2.1055 for compliance to RSS-Gen requirements.						
Test setup:		Temperature Chamber					
	Spectrum analyzer EUT						
	Att.						
		Variable Power Supply					
	Note: Measurement setup for testing on Antenna connector						
Test Instruments:	Refer to section 6.0 for details	7 7					
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.

Measurement data:

		Frequenc	y stability vers	us Temp.		
			er Supply: DC			
	On a ratio a	0 minute	2 minute	5 minute	10 minute	
Temp. (°C)	Operating	Measured	Measured	Measured	Measured	Pass
	Frequency (MHz)	Frequency	Frequency	Frequency	Frequency	/Fail
		(MHz)	(MHz)	(MHz)	(MHz)	
-30	2402	2402.403	2402.325	2402.359	2402.403	Pass
	2441	2441.304	2440.298	2440.550	2441.304	Pass
	2480	2480.690	2480.503	2480.096	2480.690	Pass
-20	2402	2402.058	2402.128	2402.821	2402.058	Pass
	2441	2441.354	2440.592	2440.414	2441.354	Pass
	2480	2480.737	2480.734	2480.501	2480.737	Pass
-10	2402	2402.495	2402.976	2402.713	2402.495	Pass
	2441	2441.801	2440.740	2440.529	2441.801	Pass
	2480	2480.956	2480.248	2480.512	2480.956	Pass
0	2402	2402.979	2402.281	2402.447	2402.979	Pass
	2441	2441.767	2440.810	2440.965	2441.767	Pass
	2480	2480.556	2480.883	2480.309	2480.556	Pass
10	2402	2402.840	2402.474	2402.221	2402.840	Pass
	2441	2441.354	2440.777	2440.679	2441.354	Pass
	2480	2480.125	2480.708	2480.947	2480.125	Pass
20	2402	2402.245	2402.330	2402.628	2402.245	Pass
	2441	2441.083	2440.757	2440.433	2441.083	Pass
	2480	2480.650	2480.730	2480.707	2480.650	Pass
30	2402	2402.379	2402.896	2402.584	2402.379	Pass
	2441	2441.940	2440.299	2440.023	2441.940	Pass
	2480	2480.696	2480.076	2480.012	2480.696	Pass
40	2402	2402.489	2402.816	2402.030	2402.489	Pass
	2441	2441.219	2440.617	2440.002	2441.219	Pass
	2480	2480.253	2480.245	2480.902	2480.253	Pass
50	2402	2402.097	2402.449	2402.137	2402.097	Pass
	2441	2441.960	2440.216	2440.575	2441.960	Pass
	2480	2480.037	2480.902	2480.222	2480.037	Pass
	2400		y stability versu	L	2400.007	1 400
			emperature: 25			
_		0 minute	2 minute	5 minute	10 minute	
Power Supply (VDC)	Operating Frequency (MHz)	Measured	Measured	Measured	Measured	Pass /Fail
		Frequency	Frequency	Frequency	Frequency	
		(MHz)	(MHz)	(MHz)	(MHz)	
3.3	2402	2402.732	2402.128	2402.888	2402.732	Pass
	2441	2441.710	2440.591	2440.260	2441.710	Pass
	2480	2480.539	2480.084	2480.864	2480.539	Pass
4.2	2402	2402.721	2402.440	2402.242	2402.721	Pass
	2441	2441.754	2440.907	2440.972	2441.754	Pass
42	721711					

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----