

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057
Telephone: +86 (0) 755 2601 2053
Fax: +86 (0) 755 2671 0594
Email: ee.shenzhen@sgs.com

Report No.: SZEM180400245805

Page: 1 of 49

FCC REPORT

Application No: SZEM1804002458CR

Applicant: NGSTB Company Limited

Address of Applicant: F11,BLOCK B,ZhiYuan Bldg,No. 89 Industry 8th Road Nanshan District,

Shenzhen, 518067, China

Manufacturer: ABOX42 GmbH

Address of Manufacturer: 76227 Karlsruhe Germany

Factory: Aztech Communication Device (DG) Ltd

Address of Factory:

Jiu Jiang Shui Village, Chang Ping Town, Dong Guan City, GUangdong

Province

Product Name: Set Top Box for Smart TV/OTT/Hybrid

Model No.(EUT): M30WL.11

Trade Mark: ABOX42 GmbH

FCC ID: 2APK9-M30WL11

Standards: 47 CFR Part 15, Subpart C 15.247

Date of Receipt: 2016-12-26

Date of Test: 2016-12-26 to 2017-03-03

Date of Issue: 2018-04-08

Test Result : PASS *

Authorized Signature:

Keny Xu EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM180400245805

Page: 2 of 46

2 Version

Revision Record							
Version	Chapter	Date	Modifier	Remark			
01		2018-04-08		Original			

Authorized for issue by:		
	Moon-Zhang	
	(Moon Zhang) /Project Engineer	
	Eric Fu	
	(Eric Fu) /Reviewer	

Report No.: SZEM180400245805

Page: 3 of 46

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	PASS
Conducted Emission	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	PASS
Power Spectral Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	PASS
Band-Edge for RF Transmit Conducted Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6	PASS
Spurious RF Transmit Conducted Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8	PASS
Radiated Transmit Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.4	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	PASS

Report No.: SZEM180400245805

Page: 4 of 46

4 Contents

			Page
1	C	OVER PAGE	1
2	V	ERSION	2
3	TI	EST SUMMARY	3
4		ONTENTS	
5	G	ENERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST ENVIRONMENT	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	TEST LOCATION	
	5.5	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	
	5.8 5.9	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.10	·	
6		EST RESULTS AND MEASUREMENT DATA	
	6.1	Antenna Requirement	11
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	RF ANTENNA CONDUCTED SPURIOUS EMISSIONS	
	6.8 6.9	RADIATED SPURIOUS EMISSION	
		RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	P	HOTOGRAPHS - EUT TEST SETUP	45
	7.1	RADIATED SPURIOUS EMISSION TEST SETUP	45
	7.2	CONDUCTED EMISSION TEST SETUP	46
R	P	HOTOGRAPHS - FUT CONSTRUCTIONAL DETAILS	46

Report No.: SZEM180400245805

Page: 5 of 46

5 General Information

5.1 General Description of EUT

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	Bluetooth 4.0 dual
	This test report is for BLE mode.
Modulation Type:	GFSK
Number of Channel:	40
Sample Type:	Mobile production
Antenna Type:	Embedded Antenna
Antenna Gain:	5dBi
Power Supply:	AC/DC Adapter: MODEL: F18W6-050250SPAU INPUT:AC100-240V, 50/60Hz, 0.6A OUTPUT:DC 5V, 2.5A
Cable:	HDMI Cable: 150cm unsheilded LAN Cable: 200cm unsheilded

Report No.: SZEM180400245805

Page: 6 of 46

Operation F	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz	
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz	
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz	
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz	
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz	
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2440MHz
The Highest channel	2480MHz

Report No.: SZEM180400245805

Page: 7 of 46

5.2 Test Environment

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	55 % RH	
Atmospheric Pressure:	1010 mbar	

5.3 Description of Support Units

The EUT was tested independent unit.

5.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

5.5 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Duty cycle	0.37%
2	Total RF power, conducted	0.75dB
3	RF power density, conducted	2.84dB
4	Spurious emissions, conducted	0.75dB
5	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
5	nadiated Spurious emission test	4.8dB (1GHz-25GHz)
6	Temperature test	1℃
7	Humidity test	3%
8	DC and low frequency voltages	0.5%

Report No.: SZEM180400245805

Page: 8 of 46

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

FCC –Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM180400245805

Page: 9 of 46

5.10 Equipment List

	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm- dd)	Cal. Due date (yyyy- mm-dd)			
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13			
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2016-10-09	2017-10-09			
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25			
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T8- 02	EMC0120	2016-09-28	2017-09-28			
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T4- 02	EMC0121	2016-09-28	2017-09-28			
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T2- 02	EMC0122	2016-09-28	2017-09-28			
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2016-04-25	2017-04-25			
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09			
9	Coaxial Cable	SGS	N/A	SEM024-01	2016-07-13	2017-07-12			

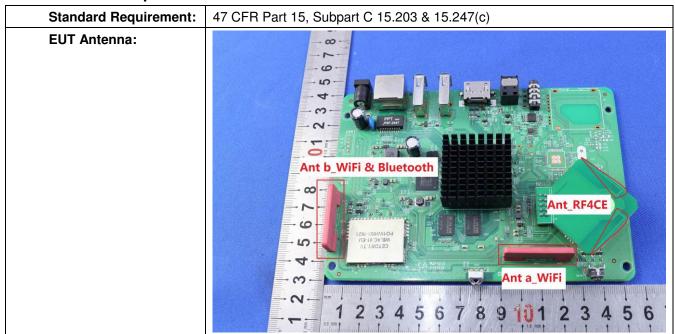
	RF connected test									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm- dd)	Cal. Due date (yyyy- mm-dd)				
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09				
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09				
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25				
4	Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09				
5	Coaxial Cable	SGS	N/A	SEM031-02	2016-07-13	2017-07-12				

Report No.: SZEM180400245805

Page: 10 of 46

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm- dd)	Cal. Due date (yyyy- mm-dd)
1	3m Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2016-07-19	2017-07-19
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24
7	Horn Antenna(26GHz- 40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
8	Low Noise Amplifier	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2016-10-09	2017-10-09
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
10	Coaxial Cable	SGS	N/A	SEM026-01	2016-07-13	2017-07-12

Note: The calibration interval is one year, all the instruments are valid.



Report No.: SZEM180400245805

Page: 11 of 46

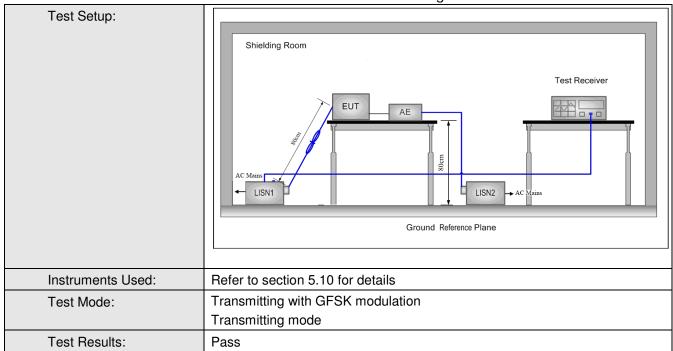
6 Test Results and Measurement Data

6.1 Antenna Requirement

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 5dBi.

Report No.: SZEM180400245805

Page: 12 of 46


6.2 Conducted Emissions

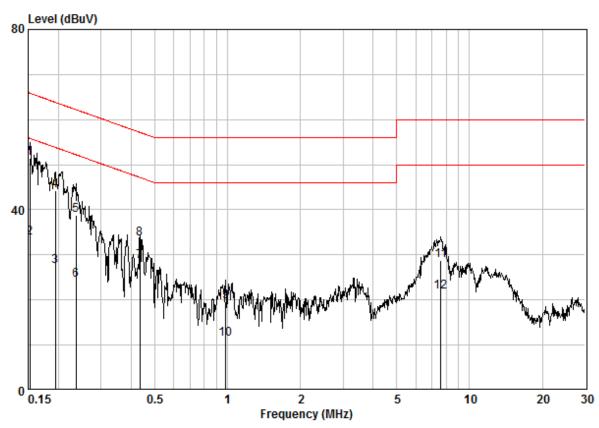
Test Requirement:	47 CFR Part 15, Subpart C 15	5.247(d)					
Test Method:	ANSI C63.10 (2013) Section 7	7.8.8					
Test Frequency Range:	150kHz to 30MHz						
Limit:	Frequency range (MHz)	Limit (c	dBuV)				
	Quasi-peak Average						
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46	_			
	5-30	60	50				
	* Decreases with the logarithm						
Test Procedure:	1) The mains terminal disturb room. 2) The EUT was connected to Impedance Stabilization Not linear impedance. The pow connected to a second LIS reference plane in the sam measured. A multiple sock power cables to a single LI exceeded. 3) The tabletop EUT was place ground reference plane. At was placed on the horizont 4) The test was performed with of the EUT shall be 0.4 m for vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated ecceptions. 5) In order to find the maximum equipment and all of the in ANSI C63.10: 2013 on contributions.	o AC power source throetwork) which provides wer cables of all other u.N 2, which was bonde e way as the LISN 1 foet outlet strip was used SN provided the rating sed upon a non-metalling for floor-standing articled ground reference plane was bonded to the 1 was placed 0.8 m from the vertical ground reference plane was bonded to the 1 to a ground reference plane. The first of the LISN 1 and the quipment was at least 0 the form the relative terface cables must be	ough a LISN 1 (Line is a 50Ω/50μH + 5Ω units of the EUT were do to the ground or the unit being do to connect multiple is of the LISN was not contained the connect multiple is of the LISN was not contained the connect multiple is of the LISN was not contained the EUT ane, are erence plane. The redirect reference plane. The endirect plane for LISNs his distance was EUT. All other units on the positions of endirect plane for the LISN of the positions of endirect plane according the plane according the plane for the LISN of the positions of the changed according the plane for the LISN of the positions of the changed according the plane for the LISN of the positions of the changed according the properties and the plane for the LISN of the positions of the changed according the properties are the plane for the LISN of the positions of the plane for the plane for the LISN of the plane for t	he ear he of 2.			

Report No.: SZEM180400245805

Page: 13 of 46

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

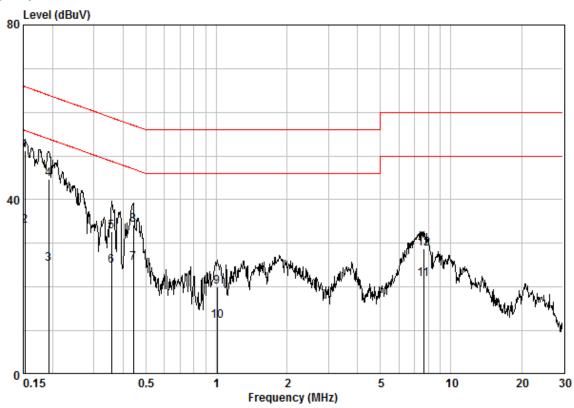

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No.: SZEM180400245805

Page: 14 of 46

Live Line:

Site : Shielding Room Condition : CE LINE Job No. : 11090CR Test Mode : TX mode


		Cable	LISN	Read		Limit	Over	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15240	0.02	9.64	41.80	51.46	65.87	-14.41	QP
2	0.15240	0.02	9.64	24.02	33.68	55.87	-22.19	AVERAGE
3	0.19447	0.02	9.64	17.87	27.53	53.84	-26.31	AVERAGE
4	0.19447	0.02	9.64	34.60	44.26	63.84	-19.59	QP
5	0.23658	0.02	9.64	29.20	38.86	62.22	-23.35	QP
6	0.23658	0.02	9.64	14.67	24.33	52.22	-27.89	AVERAGE
7	0.43511	0.02	9.64	18.95	28.61	47.15	-18.54	AVERAGE
8	0.43511	0.02	9.64	24.01	33.67	57.15	-23.48	QP
9	0.98391	0.03	9.65	9.99	19.67	56.00	-36.33	QP
10	0.98391	0.03	9.65	1.75	11.43	46.00	-34.57	AVERAGE
11	7.606	0.09	9.80	18.99	28.88	60.00	-31.12	QP
12	7.606	0.09	9.80	11.83	21.73	50.00	-28.27	AVERAGE

Report No.: SZEM180400245805

Page: 15 of 46

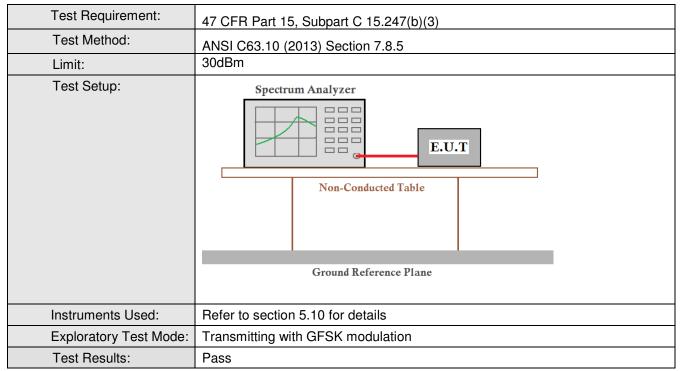
Neutral Line:

Site : Shielding Room Condition : CE NEUTRAL Job No. : 11090CR Test Mode : TX mode

		Cable	LISN	Read		Limit	Over	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15240	0.02	9.64	41.67	51.33	65.87	-14.54	QP
2	0.15240	0.02	9.64	24.33	33.99	55.87	-21.88	AVERAGE
3	0.19242	0.02	9.63	15.62	25.27	53.93	-28.66	AVERAGE
4	0.19242	0.02	9.63	35.13	44.78	63.93	-19.15	QP
5	0.35765	0.02	9.63	23.06	32.71	58.78	-26.07	QP
6	0.35765	0.02	9.63	15.21	24.86	48.78	-23.92	AVERAGE
7	0.44208	0.02	9.63	15.93	25.58	47.02	-21.45	AVERAGE
8	0.44208	0.02	9.63	24.49	34.14	57.02	-22.89	QP
9	1.005	0.03	9.64	10.49	20.16	56.00	-35.84	QP
10	1.005	0.03	9.64	2.56	12.23	46.00	-33.77	AVERAGE
11	7.646	0.09	9.79	11.93	21.81	50.00	-28.19	AVERAGE
12	7.646	0.09	9.79	18.95	28.83	60.00	-31.17	QP

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's Sind indiges at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exponerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

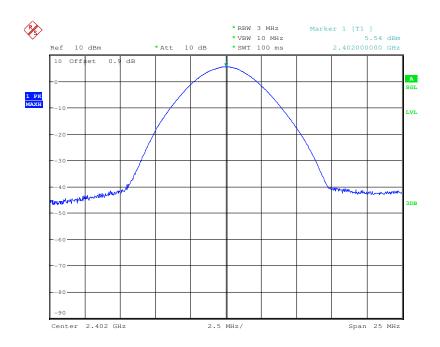
Report No.: SZEM180400245805

Page: 16 of 46

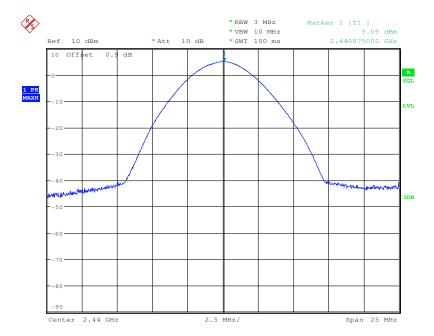
6.3 Conducted Peak Output Power

Measurement Data

GFSK mode								
Test channel Peak Output Power (dBm) Limit (dBm) Result								
Lowest	5.54	30.00	Pass					
Middle	5.09	30.00	Pass					
Highest	4.06	30.00	Pass					

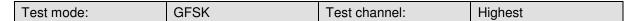


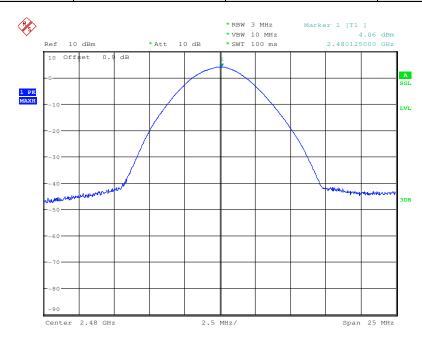
Report No.: SZEM180400245805


Page: 17 of 46

Test plot as follows:

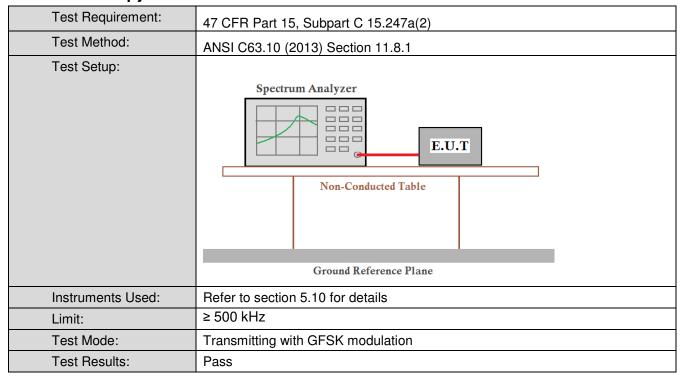
Test mode: GFSK Test channel: Lowest


Test mode: GFSK Test channel: Middle



Report No.: SZEM180400245805

Page: 18 of 46



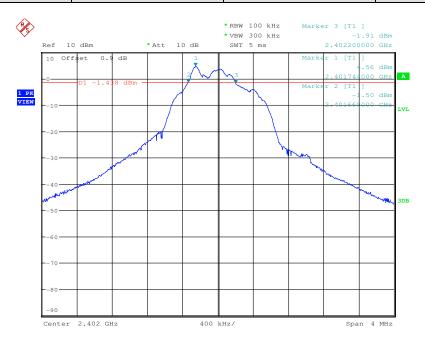
Report No.: SZEM180400245805

Page: 19 of 46

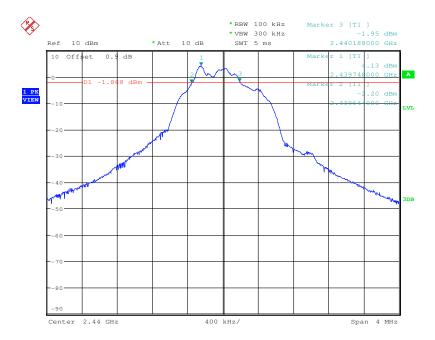
6.4 6dB Occupy Bandwidth

Measurement Data

WCasarcincin Data			
	GFSK mode		
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	0.540	≥500	Pass
Middle	0.544	≥500	Pass
Highest	0.540	≥500	Pass

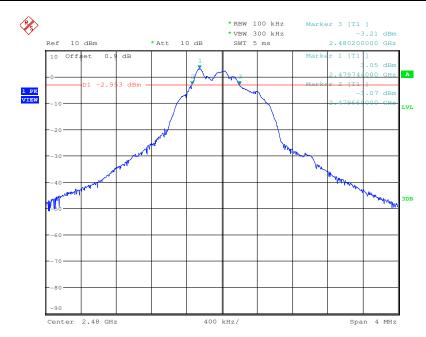


Report No.: SZEM180400245805


Page: 20 of 46

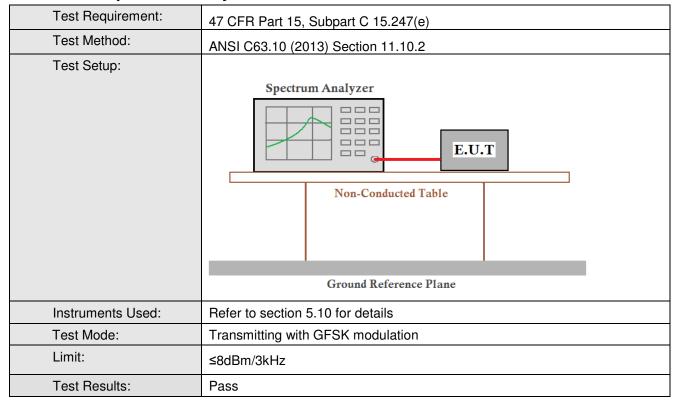
Test plot as follows:

Test mode: GFSK Test channel: Lowest



Report No.: SZEM180400245805

Page: 21 of 46

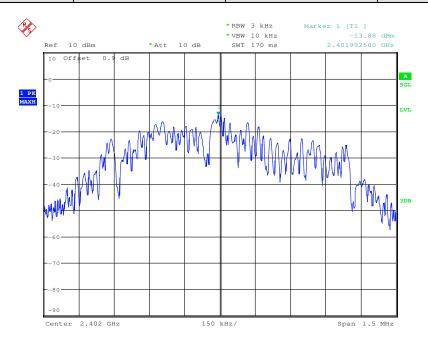


Report No.: SZEM180400245805

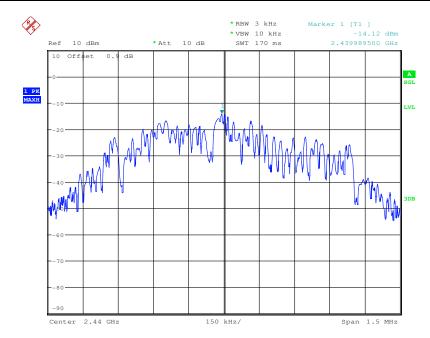
Page: 22 of 46

6.5 Power Spectral Density

GFSK mode								
Test channel	Power Spectral Density (dBm/MHz)	Limit (dBm/3kHz)	Result					
Lowest	-13.88	≤8.00	Pass					
Middle	-14.12	≤8.00	Pass					
Highest	-15.11	≤8.00	Pass					



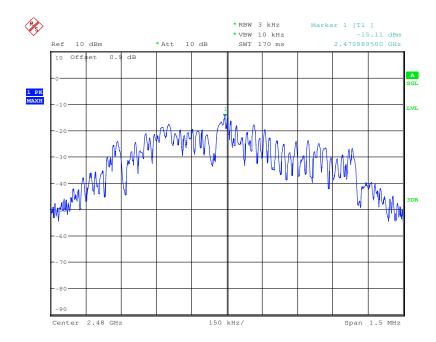
Report No.: SZEM180400245805


Page: 23 of 46

Test plot as follows:

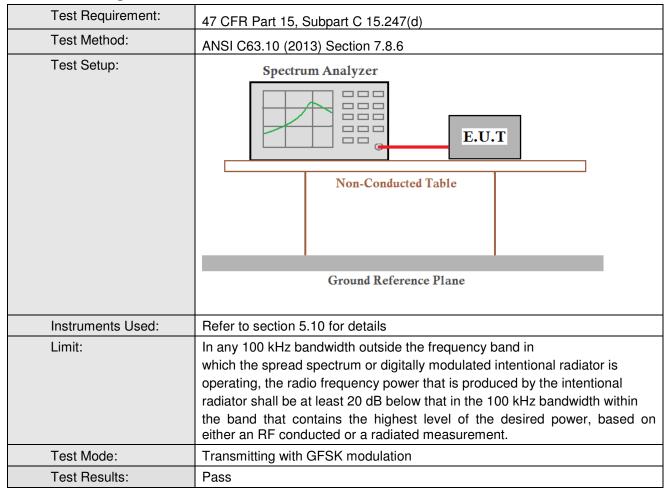
Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle



Report No.: SZEM180400245805

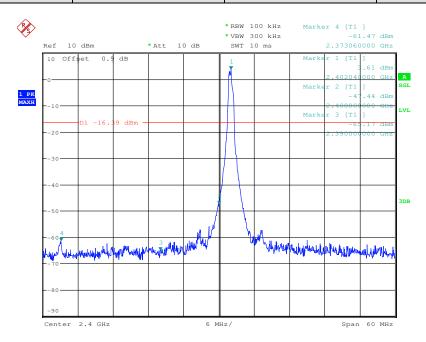
Page: 24 of 46



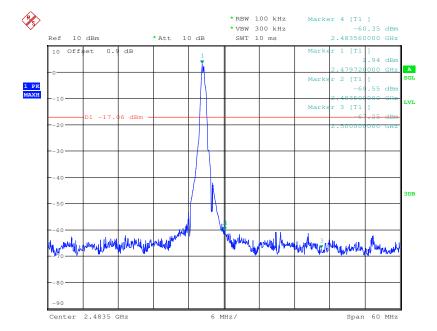
Report No.: SZEM180400245805

Page: 25 of 46

6.6 Band Edge for RF Conducted Emissions



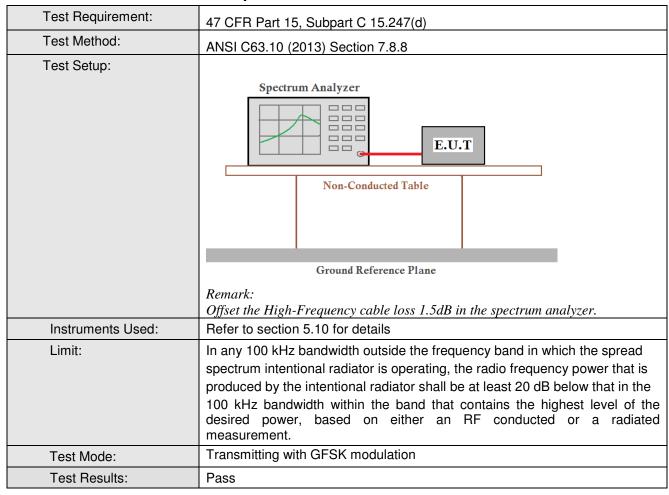
Report No.: SZEM180400245805


Page: 26 of 46

Test plot as follows:

Test mode: GFSK Test channel: Lowest

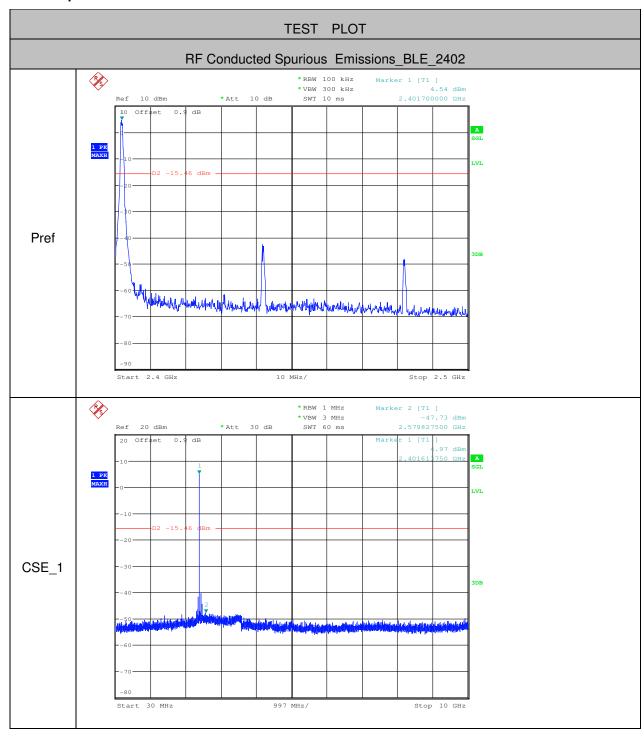
Test mode: GFSK Test channel: Highest



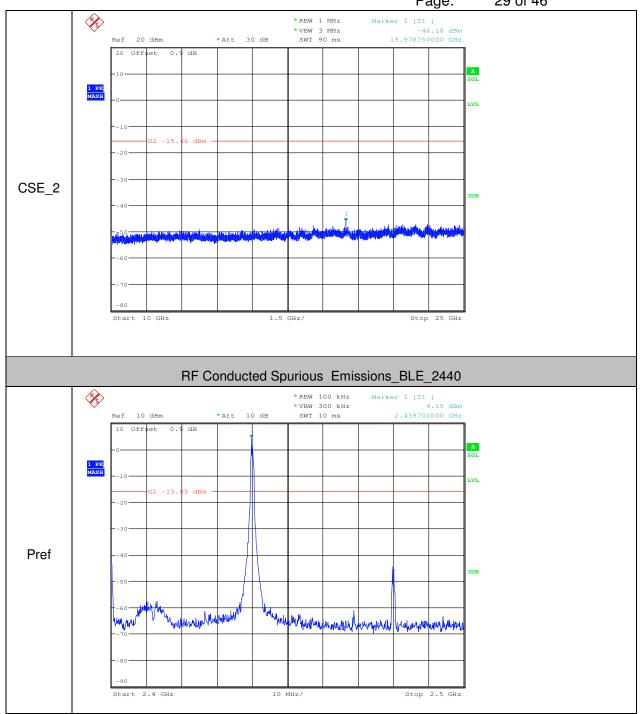
Report No.: SZEM180400245805

Page: 27 of 46

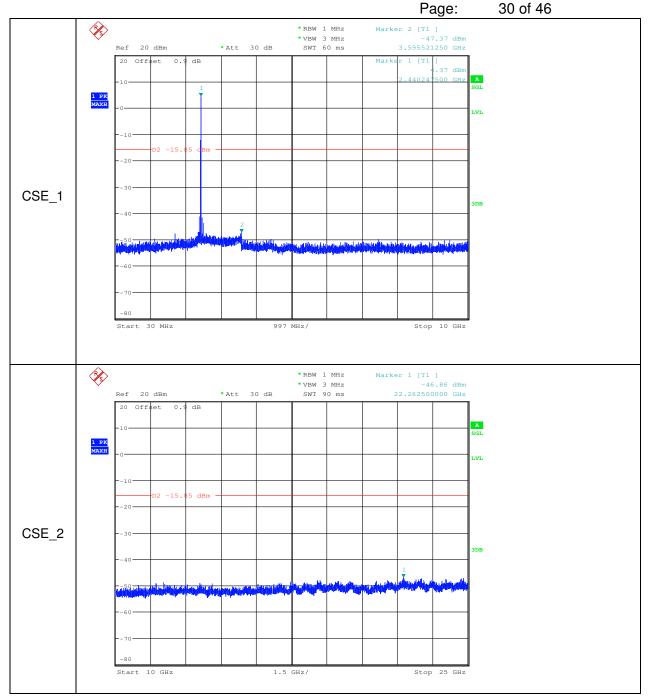
6.7 RF Antenna Conducted Spurious Emissions



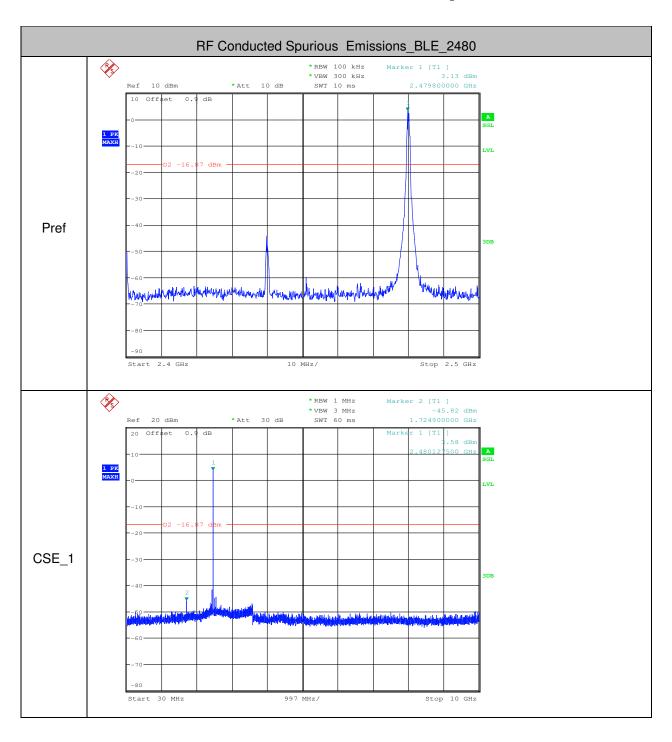
Report No.: SZEM180400245805


Page: 28 of 46

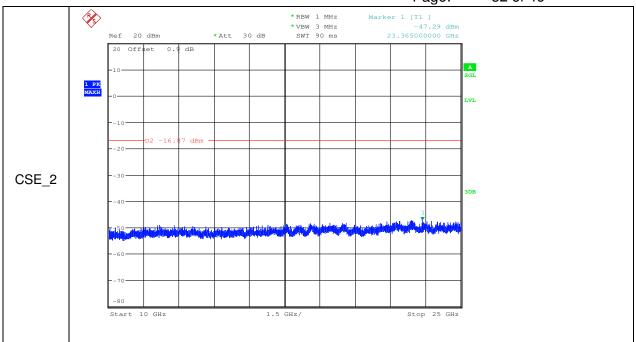
Test plot as follows:



Report No.: SZEM180400245805 Page: 29 of 46


Report No.: SZEM180400245805

Report No.: SZEM180400245805

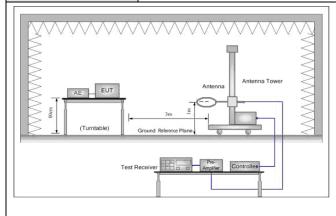

Page: 31 of 46

Report No.: SZEM180400245805

Page: 32 of 46

Remark:

Use 100kHz RBW to determine the relative limit in the band 2.4GHz to 2.5GHz, and Use 1MHz RBW to measure spurious emissions in the band 30MHz to 10GHz and 10GHz to 25GHz. The sweep points set to 30001.

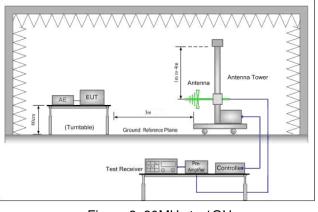

Report No.: SZEM180400245805

Page: 33 of 46

6.8 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15, Subpart C 15.205 & 15.209								
Test Method:	ANSI C63.10 (2013) Section 6.10.4								
Test Site:	Measurement Distance: 3m								
Receiver Setup:	Frequency Detector R			VBW	Remark				
	0.009MHz-0.015MHz	Quasi-peak	200Hz	1kHz	Quasi-peak				
	0.015MHz-30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above IGHZ	Peak	1MHz	10Hz	Average				
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)	-	Quasi-peak	300				
	0.490MHz-1.705MHz	24000/F(kHz)	-	Quasi-peak	30				
	1.705MHz-30MHz	30	-	Quasi-peak	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	960MHz-1GHz 500		Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
	Above IGHZ	500	74.0	Peak	3				

Test Setup:



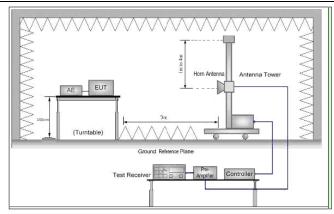
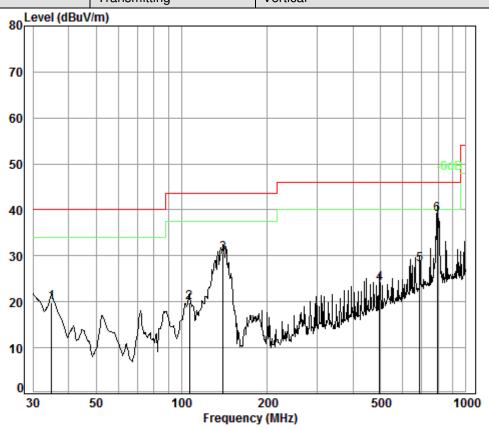

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Report No.: SZEM180400245805

Page: 34 of 46


	Figure 3. Above 1 GHz
Test Procedure:	a. For below 1GHz test, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. For above 1GHz test, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to height 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	h. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	j. Repeat above procedures until all frequencies measured was complete.
Instruments Used:	Refer to section 5.10 for details
Final Test Mode:	Transmitting mode with GFSK modulation
	For below 1GHz part, through pre-scan, the worst case is the lowest channel.
Toot Dooulton	Only the worst case is recorded in the report.
Test Results:	Pass

Report No.: SZEM180400245805

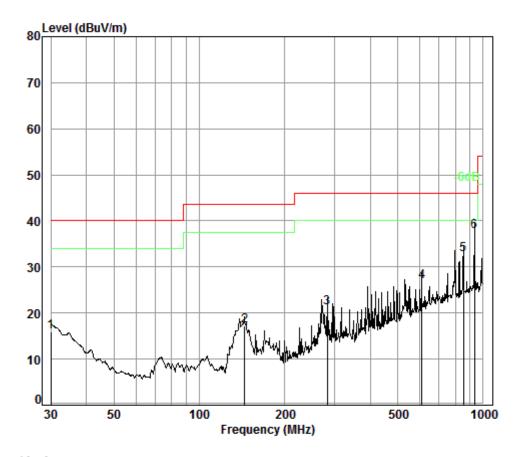
35 of 46 Page:

Radiated Emission below 1GHz 30MHz~1GHz (QP) Test mode: **Transmitting** Vertical

Condition: 3m VERTICAL

Job No. : 11090CR

Test mode: TX : BT


		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	34.88	0.60	15.97	27.34	30.52	19.75	40.00	-20.25
2	106.76	1.22	8.76	27.15	36.92	19.75	43.50	-23.75
3	139.85	1.30	8.09	26.96	48.04	30.47	43.50	-13.03
4	497.68	2.59	17.80	27.70	31.32	24.01	46.00	-21.99
5	687.15	2.88	21.50	27.43	31.19	28.14	46.00	-17.86
6 pp	793.40	3.18	22.07	27.31	41.06	39.00	46.00	-7.00

Report No.: SZEM180400245805

Page: 36 of 46

Condition: 3m HORIZONTAL

Job No. : 11090CR

Test mode: TX : BT

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	30.00	0.60	18.70	27.36	23.87	15.81	40.00	-24.19
2	144.33	1.31	8.49	26.94	34.31	17.17	43.50	-26.33
3	281.99	1.82	13.11	26.45	32.75	21.23	46.00	-24.77
4	607.79	2.72	20.02	27.53	31.66	26.87	46.00	-19.13
5	851.04	3.41	22.42	27.02	33.88	32.69	46.00	-13.31
6 pp	932.27	3.63	23.30	26.61	37.41	37.73	46.00	-8.27

Report No.: SZEM180400245805

Page: 37 of 46

Transmit	Transmitter Emission above 1GHz								
Test mode: GFSK		Test	Test channel:		Rema	rk:	Peak		
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
3174.157	31.63	7.55	37.92	47.12	48.38	74.00	-25.62	Vertical	
4804.000	34.16	8.87	38.40	43.53	48.16	74.00	-25.84	Vertical	
5820.005	34.59	10.06	38.34	44.59	50.90	74.00	-23.10	Vertical	
7206.000	36.42	10.68	37.11	41.85	51.84	74.00	-22.16	Vertical	
9608.000	37.52	12.50	35.10	37.23	52.15	74.00	-21.85	Vertical	
12102.870	38.66	14.47	35.85	35.93	53.21	74.00	-20.79	Vertical	
3673.633	32.71	7.70	37.97	43.78	46.22	74.00	-27.78	Horizontal	
4804.000	34.16	8.87	38.40	42.73	47.36	74.00	-26.64	Horizontal	
5811.590	34.59	10.03	38.34	44.26	50.54	74.00	-23.46	Horizontal	
7206.000	36.42	10.68	37.11	41.39	51.38	74.00	-22.62	Horizontal	
9608.000	37.52	12.50	35.10	37.83	52.75	74.00	-21.25	Horizontal	
12050.440	38.63	14.52	35.72	35.71	53.14	74.00	-20.86	Horizontal	

Test mode:	(GFSK	Tes	st channel:	Middle	Middle Remark:		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/r	l limit	Polarization
3652.432	32.65	7.69	37.97	42.78	45.15	74.00	-28.85	Vertical
4880.000	34.29	8.97	38.44	41.43	46.25	74.00	-27.75	Vertical
6140.076	34.82	10.38	38.16	43.73	50.77	74.00	-23.23	Vertical
7320.000	36.37	10.72	37.01	42.18	52.26	74.00	-21.74	Vertical
9920.000	37.58	12.67	34.94	36.52	51.83	74.00	-22.17	Vertical
12350.530	38.81	14.27	36.44	36.38	53.02	74.00	-20.98	Vertical
3792.453	33.04	7.74	37.98	43.32	46.12	74.00	-27.88	Horizontal
4880.000	34.29	8.97	38.44	41.55	46.37	74.00	-27.63	Horizontal
6122.333	34.80	10.40	38.18	43.50	50.52	74.00	-23.48	Horizontal
7320.000	36.37	10.72	37.01	40.41	50.49	74.00	-23.51	Horizontal
9760.000	37.55	12.58	35.02	36.97	52.08	74.00	-21.92	Horizontal
12067.890	38.64	14.50	35.76	36.10	53.48	74.00	-20.52	Horizontal

Report No.: SZEM180400245805

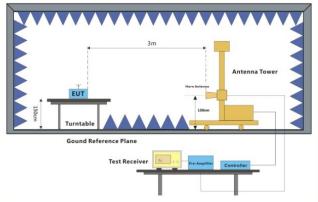
Page: 38 of 46

Test mode:		GFSK	Test	channel:	Highest		Remark:		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)		mit ιV/m)	Over limit (dB)	Polarization
3721.784	32.84	7.71	37.97	44.68	47.26	74	.00	-26.74	Vertical
4960.000	34.43	9.09	38.48	42.53	47.57	74	.00	-26.43	Vertical
6025.661	34.72	10.53	38.27	44.38	51.36	74	.00	-22.64	Vertical
7440.000	36.32	10.77	36.90	40.52	50.71	74	.00	-23.29	Vertical
9920.000	37.58	12.67	34.94	36.92	52.23	74	.00	-21.77	Vertical
12085.370	38.65	14.49	35.80	35.94	53.28	74	.00	-20.72	Vertical
3803.444	33.07	7.74	37.98	44.14	46.97	74	.00	-27.03	Horizontal
4960.000	34.43	9.09	38.48	43.56	48.60	74	.00	-25.40	Horizontal
6202.582	34.87	10.30	38.10	44.34	51.41	74	.00	-22.59	Horizontal
7440.000	36.32	10.77	36.90	41.59	51.78	74	.00	-22.22	Horizontal
9920.000	37.58	12.67	34.94	37.08	52.39	74	.00	-21.61	Horizontal
12297.040	38.78	14.31	36.31	37.01	53.79	74	.00	-20.21	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.




Report No.: SZEM180400245805

Page: 39 of 46

6.9 Restricted bands around fundamental frequency

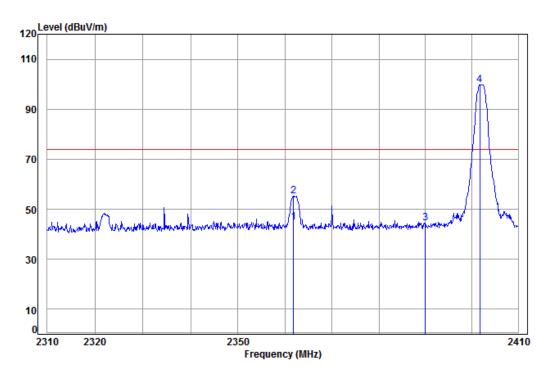
Test Requirement:	47 CFR Part 15, Subpart C	47 CFR Part 15, Subpart C 15.205 & 15.209									
Test Method:	ANSI C63.10 (2013) Section	NSI C63.10 (2013) Section 6.10.5									
Test Site:	Measurement Distance: 3r	leasurement Distance: 3m									
Limit:	Frequency	Limit (dBuV/m @3m)	Remark								
	30MHz-88MHz	40.0	Quasi-peak Value								
	88MHz-216MHz	43.5	Quasi-peak Value								
	216MHz-960MHz	46.0	Quasi-peak Value								
	960MHz-1GHz	54.0	Quasi-peak Value								
	Aba 4011-	54.0	Average Value								
	Above 1GHz	74.0	Peak Value								
Test Setup:		<u> </u>									

30MHz-1GHz Above 1GHz

Report No.: SZEM180400245805

Page: 40 of 46

Test Procedure:	 a. The EUT was placed on the top of a rotating table 0.8/1.5 meters above the ground at a 3 meter semi-anechoic/full-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel g. Test the EUT in the lowest channel, the Highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.
Instruments Used:	Refer to section 5.10 for details
Final Test Mode:	Transmitting mode with GFSK modulation.
Test Results:	Pass



Report No.: SZEM180400245805

Page: 41 of 46

Test plot as follows:

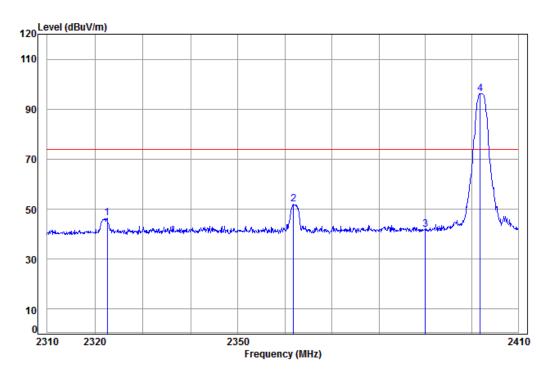
Test mode: GFSK Test channel: Lowest Remark: Peak Vertical

Condition: 3m VERTICAL Job No: : 11090CR

Mode: : 2402 Bandedge

: BLE

1 2 3


Freq				Read Level				Remark
MHz	dB	dB/m	——dB	dBuV	dBuV/m	dBuV/m	——dB	
2361.771 2361.771								_
2390.000	5.34	29.08	37.96	48.04	44.50	74.00	-29.50	reak

Report No.: SZEM180400245805

Page: 42 of 46

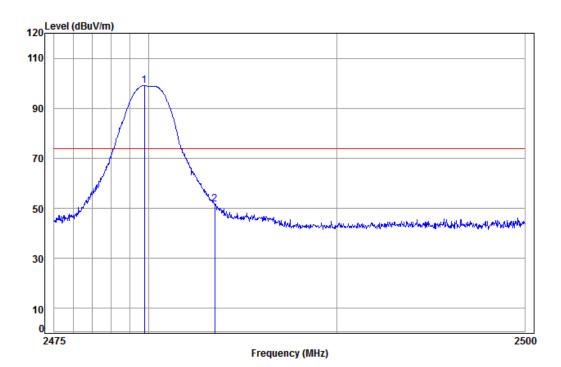
Test mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No: : 11090CR

Mode: : 2402 Bandedge

: BLE


		_			Preamp					
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2322.466	5.28	28.87	37.97	50.14	46.32	74.00	-27.68	
2		2361.771	5.32	28.99	37.96	55.56	51.91	74.00	-22.09	
3		2390.000	5.34	29.08	37.96	45.29	41.75	74.00	-32.25	
4	pp	2401.843	5.35	29.11	37.96	99.77	96.27	74.00	22.27	

Report No.: SZEM180400245805

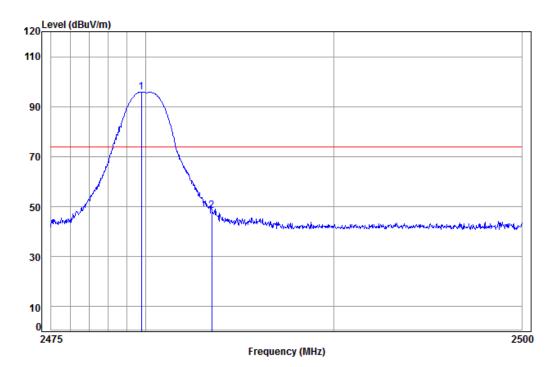
Page: 43 of 46

|--|

Condition: 3m VERTICAL Job No: : 11090CR

Mode: : 2480 Bandedge

: BLE


Cable Ant Preamp Read Limit 0ver Freq Loss Factor Factor Level Level Line Limit Remark dBuV dBuV/m dBuV/m MHz dΒ dB dB/m 1 pp 2479.781 5.41 29.34 37.95 102.22 99.02 74.00 25.02 5.41 29.35 37.95 54.78 51.59 74.00 -22.41 2483.500

Report No.: SZEM180400245805

Page: 44 of 46

Total model Total manual Transfer Transfer	Test mode:	GFSK	Test channel:	Highest	Remark:	Peak	Horizontal
--	------------	------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No: : 11090CR

Mode: : 2480 Bandedge

: BLE

	Freq			Preamp Factor					Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
pp	2479.781 2483.500								

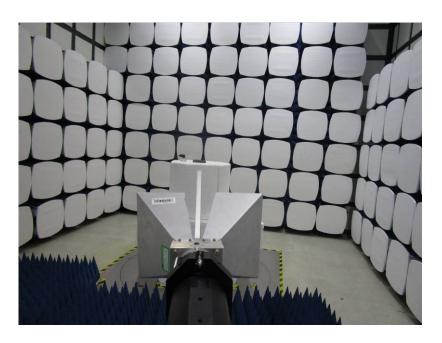
Note:

1

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEM180400245805


Page: 45 of 46

7 Photographs - EUT Test Setup

Test model No.: M30WL.11

7.1 Radiated Spurious Emission Test Setup

Report No.: SZEM180400245805

Page: 46 of 46

7.2 Conducted Emission Test Setup

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1804002458CR.