

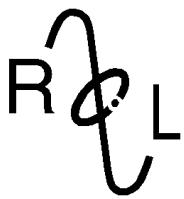
Application For Grant of Certification

Model: 081778
2402-2480 MHz
47CFR 15.249 and RSS-210
Low Power Transmitter

FCC ID: 2APDD081778

FOR

Eclipse Rx
1805 NW Platte Rd, Suite 120
Riverside, MO 64150


FCC Designation: US5305
IC Test Site Registration: 3041A-1
Test Report Number: 180417

Authorized Signatory: *Scot D Rogers*
Scot D. Rogers

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Eclipse Rx
Model: 081778
Test #: 180417
Test to: CFR47 15C, RSS-Gen, RSS-210
File: eclipseRX 081778 DXX TstRpt 180417

SN: Eng1
FCC ID: 2APDD081778
Date: June 13, 2018
Page 1 of 33

ROGERS LABS, INC.

4405 West 259th Terrace
Louisburg, KS 66053
Phone / Fax (913) 837-3214

Engineering Test Report For Grant of Certification Application

FOR
47 CFR, PART 15C - Intentional Radiators Paragraph 15.249,
Industry Canada RSS-210 Issue 9, and RSS-GEN Issue 4
License Exempt Intentional Radiator

For
Eclipse Rx
1805 NW Platte Rd, Suite 120
Riverside, MO 64150

Model: 081778

Low Power Transmitter
Frequency Range 2402-2480 MHz
FCC ID: 2APDD081778

Test Date: April 17, 2018

Certifying Engineer: *Scot D Rogers*
Scot D. Rogers
Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Telephone/Facsimile: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory.
This report must not be used by the client to claim product certification, approval, or
endorsement by NVLAP, NIST, or any agency of the Federal Government.

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Eclipse Rx
Model: 081778
Test #: 180417
Test to: CFR47 15C, RSS-Gen, RSS-210
File: eclipseRX 081778 DXX TstRpt 180417

SN: Eng1
FCC ID: 2APDD081778
Date: June 13, 2018
Page 2 of 33

Table of Contents

TABLE OF CONTENTS.....	3	
REVISIONS.....	5	
FOREWORD.....	6	
OPINION / INTERPRETATION OF RESULTS	6	
EQUIPMENT TESTED.....	6	
Equipment Function	7	
Equipment Configuration.....	8	
APPLICATION FOR CERTIFICATION	9	
APPLICABLE STANDARDS & TEST PROCEDURES	10	
TESTING PROCEDURES	10	
AC Line Conducted Emission Test Procedure	10	
Radiated Emission Test Procedure.....	10	
Diagram 1 Test arrangement for Conducted emissions	11	
Diagram 2 Test arrangement for radiated emissions of tabletop equipment.....	12	
Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)	13	
TEST SITE LOCATIONS	13	
LIST OF TEST EQUIPMENT	14	
UNITS OF MEASUREMENTS	15	
ENVIRONMENTAL CONDITIONS.....	15	
STATEMENT OF MODIFICATIONS AND DEVIATIONS	15	
INTENTIONAL RADIATORS.....	15	
Antenna Requirements	15	
Restricted Bands of Operation.....	16	
Rogers Labs, Inc.	Eclipse Rx	SN: Eng1
4405 West 259 th Terrace	Model: 081778	FCC ID: 2APDD081778
Louisburg, KS 66053	Test #: 180417	
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen, RSS-210	Date: June 13, 2018
Revision 1	File: eclipseRX 081778 DXX TstRpt 180417	Page 3 of 33

Table 1 Radiated Emissions in Restricted Frequency Bands Data	16
Summary of Results for Radiated Emissions in Restricted Bands	17
AC Line Conducted Emissions Procedure	17
Figure 1 AC Line Conducted emissions of EUT line 1 (Configuration #2)	18
Figure 2 AC Line Conducted emissions of EUT line 2 (Configuration #2)	18
Figure 3 AC Line Conducted emissions of EUT line 1 (Configuration #3)	19
Figure 4 AC Line Conducted emissions of EUT line 2 (Configuration #3)	19
Table 2 AC Line Conducted Emissions Data L1 (Configuration #2)	20
Table 3 AC Line Conducted Emissions Data L2 (Configuration #2)	20
Table 4 AC Line Conducted Emissions Data L1 (Configuration #3)	21
Table 5 AC Line Conducted Emissions Data L2 (Configuration #3)	21
Summary of Results for AC Line Conducted Emissions Results	22
General Radiated Emissions Procedure	22
Table 6 General Radiated Emissions Data	23
Summary of Results for General Radiated Emissions	23
Operation in the Band 2400 – 2483.5 MHz	24
Figure 5 Plot of Transmitter Emissions (Operation in 2402-2480 MHz)	25
Figure 6 Plot of Transmitter Emissions (99% Occupied Bandwidth)	25
Figure 7 Plot of Transmitter Emissions (Low Band Edge)	26
Figure 8 Plot of Transmitter Emissions (High Band Edge)	26
Transmitter Emissions Data	27
Table 7 Transmitter Radiated Emissions (Worst-case)	27
Summary of Results for Transmitter Radiated Emissions of Intentional Radiator	28
ANNEX	29
Annex A Measurement Uncertainty Calculations	30

Rogers Labs, Inc. 4405 West 259 th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1	Eclipse Rx Model: 081778 Test #: 180417 Test to: CFR47 15C, RSS-Gen, RSS-210 File: eclipseRX 081778 DXX TstRpt 180417	SN: Eng1 FCC ID: 2APDD081778 Date: June 13, 2018 Page 4 of 33
--	---	--

Annex B Rogers Labs Test Equipment List.....	31
Annex C Rogers Qualifications	32
Annex D Rogers Labs Certificate of Accreditation.....	33

Revisions

Revision 1 Issued June 13, 2018

Rogers Labs, Inc.	Eclipse Rx	SN: Eng1
4405 West 259 th Terrace	Model: 081778	FCC ID: 2APDD081778
Louisburg, KS 66053	Test #: 180417	
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen, RSS-210	Date: June 13, 2018
Revision 1	File: eclipseRX 081778 DXX TstRpt 180417	Page 5 of 33

Foreword

The following information is submitted for consideration in obtaining Grant of Certification for low power intentional radiator per 47 CFR Paragraph 15.249, Industry Canada RSS-210 Issue 9 and RSS-GEN Issue 4, low power digital device transmitter operations in the 2400 – 2483.5 MHz frequency band.

Name of Applicant: Eclipse Rx
 1805 NW Platte Rd, Suite 120
 Riverside, MO 64150

M/N: 081778

FCC ID: 2APDD081778

Operating power: 2402-2480 MHz Maximum Average power 92.2 dB μ V/m @ 3 meters,
 (and peak 93.6 dB μ V/m @ 3 meters), 99% OBW 1058.0 kHz

Opinion / Interpretation of Results

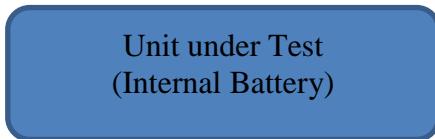
Tests Performed	Margin (dB)	Results
Restricted Bands 47CFR 15.205, RSS-210 2.2	-9.4	Complies
AC Line Conducted 47CFR 15.207, RSS-GEN 8.8	-25.5	Complies
Radiated Emissions 47CFR 15.209, RSS-GEN 8.9	-24.2	Complies
Harmonic Emissions per 47CFR 15.249, RSS-210 A2.9	-5.5	Complies

Equipment Tested

<u>Equipment</u>	<u>Model / PN</u>	<u>Serial Number</u>
EUT	081778	Eng1
USB Cable	Not Available	N/A
AC/DC Adapter	A3185	D2931155VSG9DHLHCY
Laptop Computer	Latitude E6320	FCN03Q1
USB Printer	Dell 0N5819	5D1SL61

Test results in this report relate only to the items tested.

Rogers Labs, Inc.	Eclipse Rx	SN: Eng1
4405 West 259 th Terrace	Model: 081778	FCC ID: 2APDD081778
Louisburg, KS 66053	Test #: 180417	
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen, RSS-210	Date: June 13, 2018
Revision 1	File: eclipseRX 081778 DXX TstRpt 180417	Page 6 of 33


Equipment Function

The EUT is a body worn exposure sensor for monitoring personal exposure to sunlight. The design incorporates transmitter circuitry for wireless communications with compatible equipment. The transmitter design offers wireless operation across the 2402-2480 MHz frequency band. The product operates from internal rechargeable battery. The battery is recharged while exposed to sun light using the solar cell on the design or may be charged using the charge clip and USB compatible DC interface. The design offers no other interface options than those presented below in the configuration diagram. The design utilizes internal fixed antenna system and offers no provision for antenna replacement or modification.

The test sample was provided with test software which provided the ability to enable transmitter functions on defined channels. The EUT was arranged as described by the manufacturer emulating typical user configurations for testing purposes. For testing purposes, the EUT was powered from freshly charged battery or external power options and configured to operate in available modes. As requested by the manufacturer and required by regulations, the equipment was tested for emissions compliance using the available configurations with the worst-case data presented. The test software enabled the transmitter to operate near 100% duty cycle for testing purposes. The production product will not operate at these high duty cycles. This report documents compliance testing and results for applicable product mode of operation. Test results in this report relate only to the products described in this report.

Equipment Configuration

- 1) Unit operating off internal battery

- 2) Unit connected to (and powered by) AC adapter through USB cable

- 3) Unit connected to Computer USB port through cable assembly

Application for Certification

(1) Manufacturer: Eclipse Rx
1805 NW Platte Rd, Suite 120
Riverside, MO 64150

(2) Identification: M/N: 081778
FCC ID: 2APDD081778

(3) Instruction Book:
Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:
Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:
Refer to Exhibit of Operational Description.

(6) Report of Measurements:
Report of measurements follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:
Refer to Exhibit for photographs of equipment.

(8) List of Peripheral Equipment Necessary for operation. The equipment operates from direct current power provided from internal rechargeable battery and requires battery recharge using appropriate DC power or solar energy. The design provides interface with charge clip and USB interface as presented in this filing. The EUT offers no other connection ports than those presented in this filing.

(9) Transition Provisions of CFR47 15.37 are not requested.

(10) Not Applicable. The unit is not a scanning receiver.

(11) Not Applicable. The EUT does not operate in the 59 – 64 GHz frequency band.

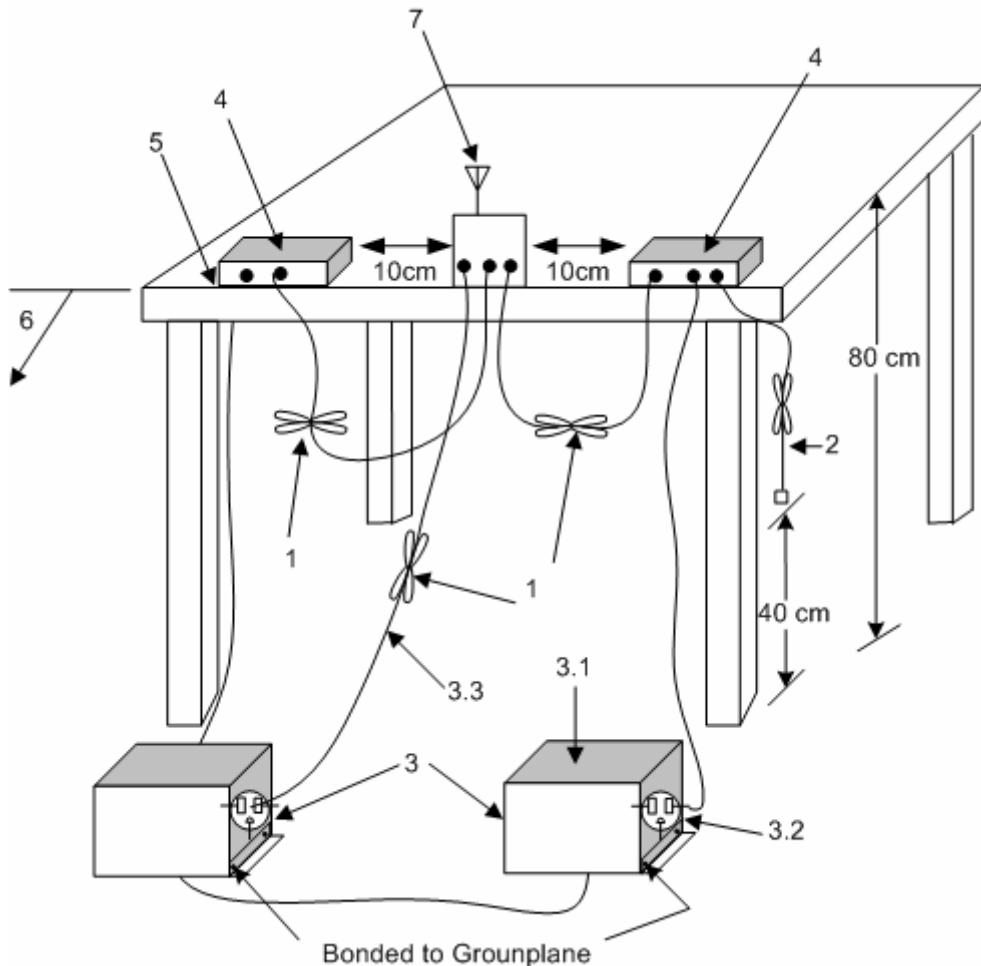
(12) The equipment is not software defined and this section is not applicable.

(13) Applications for certification of U-NII devices in the 5.15-5.35 GHz and the 5.47-5.85 GHz bands must include a high-level operational description of the security procedures that control the radio frequency operating parameters and ensure that unauthorized modifications cannot be made. This requirement is not applicable to his DTS device.

(14) Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used. This information is provided in this report and Test Setup Exhibits provided with the application filing.

Applicable Standards & Test Procedures

In accordance with the e-CFR Code of Federal Regulations Title 47, dated April 17, 2018: Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable parts of paragraph 15, Part 15C Paragraph 15.249, Industry Canada RSS-210 Issue 9, and RSS-GEN Issue 4 operation in the 2400 – 2483.5 MHz Frequency band. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.10-2013.


Testing Procedures

AC Line Conducted Emission Test Procedure

Testing for the AC line-conducted emissions was performed as required in 47CFR 15C, RSS-210 and specified in ANSI C63.10-2013. The test setup, including the EUT, was arranged in the test configurations as presented during testing. The test configuration was placed on a 1 x 1.5-meter bench, 0.8 meters high located in a screen room. The power lines of the system were isolated from the power source using a standard LISN with a 50- μ Hy choke. EMI was coupled to the spectrum analyzer through a 0.1 μ F capacitor internal to the LISN. The LISN was positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables were draped over the back edge of the table. Refer to diagram one showing typical test arrangement and photographs in exhibits for EUT placement used during testing.

Radiated Emission Test Procedure

Radiated emissions testing was performed as required in 47CFR 15C, RSS-210 and specified in ANSI C63.10-2013. The EUT was placed on a rotating 0.9 x 1.2-meter platform, elevated as required above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement permitting orientation in three orthogonal axes, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken and recorded. The frequency spectrum from 9 kHz to 25,000 MHz was searched for emissions during preliminary investigation. Refer to diagrams two and three showing typical test setup. Refer to photographs in the test setup exhibits for specific EUT placement during testing.

1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long see (see 6.2.3.1).
2. I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m (see 6.2.2).
3. EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN can be placed on top of, or immediately beneath, reference ground plane (see 6.2.2 and 6.2.3).
 - 3.1 All other equipment powered from additional LISN(s).
 - 3.2 Multiple-outlet strip can be used for multiple power cords of non-EUT equipment.
 - 3.3 LISN at least 80 cm from nearest part of EUT chassis.
4. Non-EUT components of EUT system being tested.
5. Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop (see 6.2.3.1).
6. Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane (see 6.2.2 for options).
7. Antenna may be integral or detachable. If detachable, the antenna shall be attached for this test.

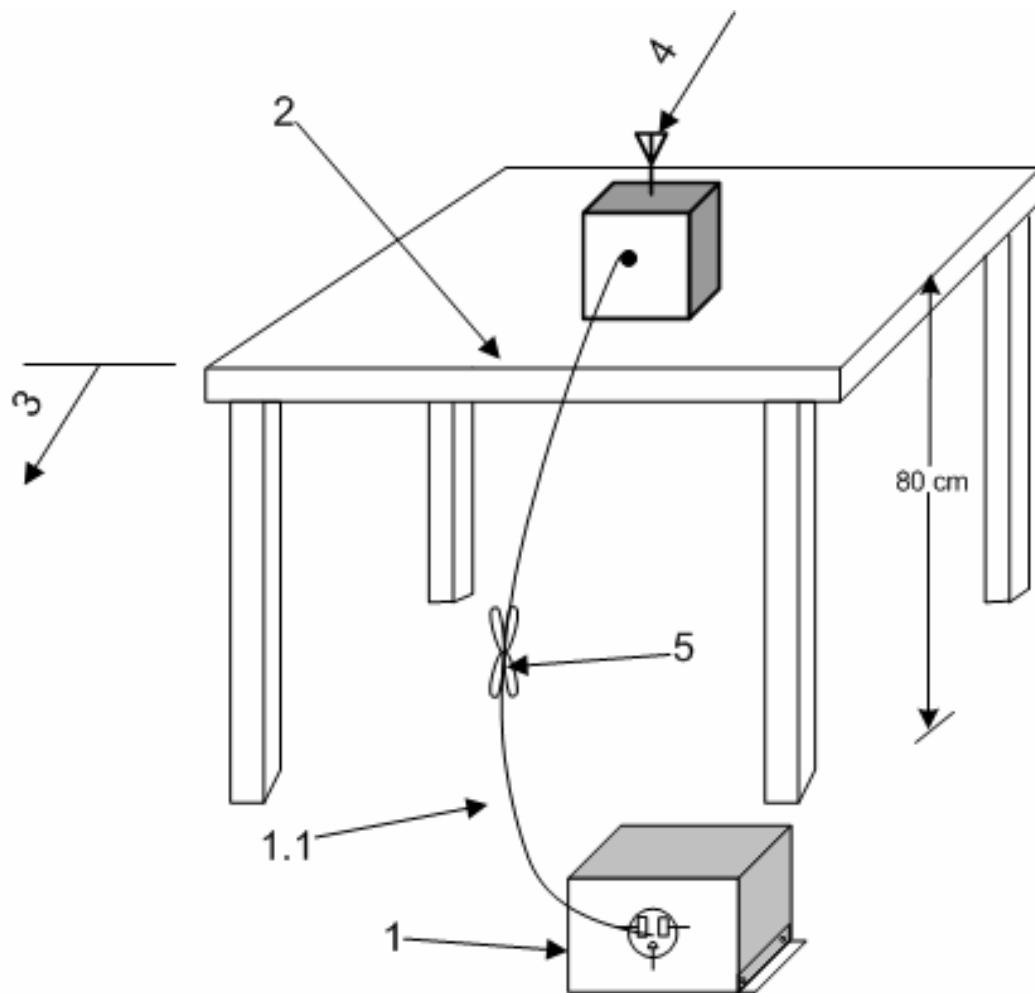

Diagram 1 Test arrangement for Conducted emissions

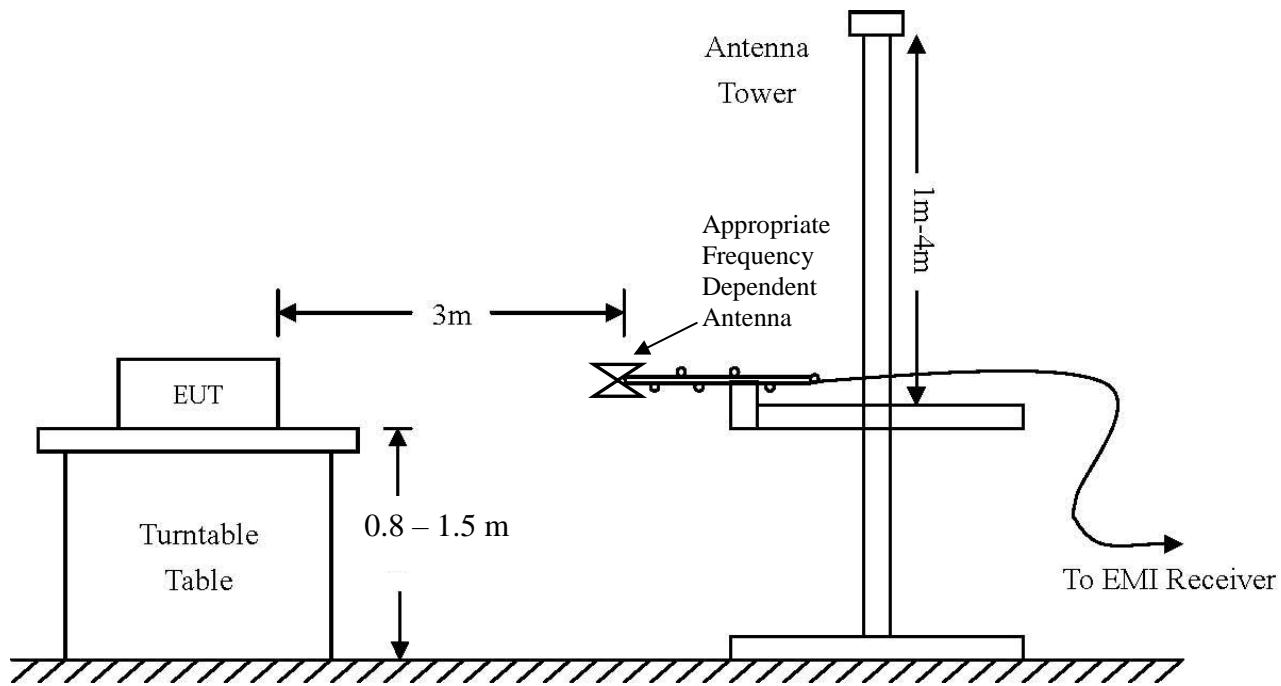
Diagram 1 Test arrangement for Conducted emissions

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Eclipse Rx
Model: 081778
Test #: 180417
Test to: CFR47 15C, RSS-Gen, RSS-210
File: eclipseRX 081778 DXX TstRpt 180417

SN: Eng1
FCC ID: 2APDD081778

1—A LISN is optional for radiated measurements between 30 MHz and 1000 MHz but not allowed for measurements below 30 MHz and above 1000 MHz (see 6.3.1). If used, then connect EUT to one LISN. Unused LISN measuring port connectors shall be terminated in 50Ω loads. The LISN may be placed on top of, or immediately beneath, the reference ground plane (see 6.2.2 and 6.2.3.2).


1.1—LISN spaced at least 80 cm from the nearest part of the EUT chassis.

2—Antenna can be integral or detachable, depending on the EUT (see 6.3.1).

3—Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long (see 6.3.1).

4—For emission measurements at or below 1 GHz, the table height shall be 80 cm. For emission measurements above 1 GHz, the table height shall be 1.5 m for measurements, except as otherwise specified (see 6.3.1 and 6.6.3.1).

Diagram 2 Test arrangement for radiated emissions of tabletop equipment

AC Line Conducted Emissions (0.150 -30 MHz)		
RBW	AVG. BW	Detector Function
9 kHz	30 kHz	Peak / Quasi Peak
Emissions (30-1000 MHz)		
RBW	AVG. BW	Detector Function
120 kHz	300 kHz	Peak / Quasi Peak
Emissions (Above 1000 MHz)		
RBW	Video BW	Detector Function
100 kHz	100 kHz	Peak
1 MHz	1 MHz	Peak / Average

Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)

Test Site Locations

Conducted EMI The AC power line conducted emissions testing performed in a shielded

screen room located at Rogers Labs, Inc., 4405 West 259th Terrace,

Louisburg, KS

Radiated EMI The radiated emissions tests were performed at the 3 meters, Open Area

Test Site (OATS) located at Rogers Labs, Inc., 4405 West 259th Terrace,

Louisburg, KS

Site Registration FCC Site Designation US5305, Industry Canada Registration: 3041A-1

NVLAP Accreditation Lab code 200087-0

Rogers Labs, Inc.

4405 West 259th Terrace

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

Eclipse Rx

Model: 081778

Test #: 180417

Test to: CFR47 15C, RSS-Gen, RSS-210

File: eclipseRX 081778 DXX TstRpt 180417

SN: Eng1

FCC ID: 2APDD081778

Date: June 13, 2018

Page 13 of 33

List of Test Equipment

<u>Equipment</u>	<u>Manufacturer</u>	<u>Model (SN)</u>	<u>Band</u>	<u>Cal Date(m/d/y)</u>	<u>Due</u>
<input checked="" type="checkbox"/> LISN	FCC	FCC-LISN-50-2-10(1PA) (160611)	.15-30MHz	5/15/17	5/15/18
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(L10M)(303073)9kHz-40 GHz	9kHz-40 GHz	10/24/17	10/24/18
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(1.5M)(303069)9kHz-40 GHz	9kHz-40 GHz	10/24/17	10/24/18
<input checked="" type="checkbox"/> Cable	Belden	RG-58 (L1-CAT3-11509)	9kHz-30 MHz	10/24/17	10/24/18
<input checked="" type="checkbox"/> Cable	Belden	RG-58 (L2-CAT3-11509)	9kHz-30 MHz	10/24/17	10/24/18
<input type="checkbox"/> Antenna	ARA	BCD-235-B (169)	20-350MHz	10/24/17	10/24/18
<input type="checkbox"/> Antenna	EMCO	3147 (40582)	200-1000MHz	10/24/17	10/24/18
<input checked="" type="checkbox"/> Antenna	ETS-Lindgren	3117 (200389)	1-18 GHz	5/15/17	5/15/18
<input type="checkbox"/> Antenna	Com Power	AH-118 (10110)	1-18 GHz	10/24/17	10/24/19
<input checked="" type="checkbox"/> Antenna	Com Power	AH-840 (101046)	18-40 GHz	5/15/17	5/15/19
<input checked="" type="checkbox"/> Antenna	Com Power	AL-130 (121055)	.001-30 MHz	10/24/17	10/24/18
<input checked="" type="checkbox"/> Antenna	Sunol	JB-6 (A100709)	30-1000 MHz	10/24/17	10/24/18
<input type="checkbox"/> Antenna	EMCO	3143 (9607-1277)	20-1200 MHz	5/15/17	5/15/18
<input checked="" type="checkbox"/> Analyzer	Rohde & Schwarz	ESU40 (100108)	20Hz-40GHz	5/15/17	5/15/18
<input type="checkbox"/> Analyzer	Rohde & Schwarz	ESW44 (101534)	20Hz-44GHz	12/22/17	12/22/18
<input type="checkbox"/> Analyzer	Rohde & Schwarz	FS-Z60, 90, 140, and 220	40GHz-220GHz	12/22/17	12/22/19
<input type="checkbox"/> Analyzer	HP	8591EM (3628A00871)	9kHz-1.8GHz	5/15/17	5/15/18
<input type="checkbox"/> Analyzer	HP	8562A (3051A05950)	9kHz-125GHz	5/15/17	5/15/18
<input type="checkbox"/> Analyzer	HP External Mixers	11571, 11970	25GHz-110GHz	5/15/17	5/15/18
<input checked="" type="checkbox"/> Amplifier	Com-Power	PA-010 (171003)	100Hz-30MHz	10/24/17	10/24/18
<input checked="" type="checkbox"/> Amplifier	Com-Power	CPPA-102 (01254)	1-1000 MHz	10/24/17	10/24/18
<input checked="" type="checkbox"/> Amplifier	Com-Power	PAM-118A (551014)	0.5-18 GHz	10/24/17	10/24/18
<input type="checkbox"/> Power Meter	Agilent	N1911A with N1921A	0.05-40 GHz	5/15/17	5/15/18
<input type="checkbox"/> Generator	Rohde & Schwarz	SMB100A6 (100150)	20Hz-6 GHz	5/15/17	5/15/18
<input type="checkbox"/> Generator	Rohde & Schwarz	SMBV100A6 (260771)	20Hz-6 GHz	5/15/17	5/15/18
<input type="checkbox"/> RF Filter	Micro-Tronics	BRC50722 (009).9G notch	30-1800 MHz	5/15/17	5/15/18
<input type="checkbox"/> RF Filter	Micro-Tronics	HPM50114 (017)1.5G HPF	30-18000 MHz	5/15/17	5/15/18
<input type="checkbox"/> RF Filter	Micro-Tronics	HPM50117 (063) 3G HPF	30-18000 MHz	5/15/17	5/15/18
<input type="checkbox"/> RF Filter	Micro-Tronics	HPM50105 (059) 6G HPF	30-18000 MHz	5/15/17	5/15/18
<input type="checkbox"/> RF Filter	Micro-Tronics	BRM50702 (172) 2G notch	30-1800 MHz	5/15/17	5/15/18
<input type="checkbox"/> RF Filter	Micro-Tronics	BRC50703 (G102) 5G notch	30-1800 MHz	5/15/17	5/15/18
<input type="checkbox"/> RF Filter	Micro-Tronics	BRC50705 (024) 5G notch	30-1800 MHz	5/15/17	5/15/18
<input type="checkbox"/> RF Filter	Micro-Tronics	BRC17663 (001) 9G notch	30-1800 MHz	5/15/17	5/15/18
<input type="checkbox"/> Attenuator	Fairview	SA6NFNF100W-14 (1625)	30-1800 MHz	5/15/17	5/15/18
<input type="checkbox"/> Attenuator	Mini-Circuits	VAT-3W2+ (1735)	30-6000 MHz	5/15/17	5/15/18
<input type="checkbox"/> Attenuator	Mini-Circuits	VAT-3W2+ (1436)	30-6000 MHz	5/15/17	5/15/18
<input type="checkbox"/> Attenuator	Mini-Circuits	VAT-3W2+ (14362)	30-6000 MHz	5/15/17	5/15/18
<input type="checkbox"/> Attenuator	Mini-Circuits	VAT-3W2+ (1445)	30-6000 MHz	5/15/17	5/15/18
<input type="checkbox"/> Attenuator	Mini-Circuits	VAT-3W2+ (14452)	30-6000 MHz	5/15/17	5/15/18
<input type="checkbox"/> Attenuator	Mini-Circuits	VAT-6W2+ (1438)	30-6000 MHz	5/15/17	5/15/18
<input type="checkbox"/> Attenuator	Mini-Circuits	VAT-6W2+ (1736)	30-6000 MHz	5/15/17	5/15/18
<input checked="" type="checkbox"/> Weather station	Davis	6312 (A70927D44N)		10/24/2017	10/24/2018

Rogers Labs, Inc.

 4405 West 259th Terrace

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

Eclipse Rx

Model: 081778

Test #: 180417

Test to: CFR47 15C, RSS-Gen, RSS-210

File: eclipseRX 081778 DXX TstRpt 180417

SN: Eng1

FCC ID: 2APDD081778

Date: June 13, 2018

Page 14 of 33

Units of Measurements

Conducted EMI Data is in dB μ V; dB referenced to one microvolt

Radiated EMI Data is in dB μ V/m; dB/m referenced to one microvolt per meter

Sample Calculation:

RFS = Radiated Field Strength, FSM = Field Strength Measured

A.F. = Receive antenna factor, Gain = amplification gains and/or cable losses

RFS (dB μ V/m @ 3m) = FSM (dB μ V) + A.F. (dB) - Gain (dB)

Environmental Conditions

Ambient Temperature 21.3° C

Relative Humidity 37%

Atmospheric Pressure 1018.5 mb

Statement of Modifications and Deviations

No modifications to the EUT were required for the equipment to demonstrate compliance with the CFR47 Part 15C, Industry Canada RSS-210 Issue 9, and RSS-GEN emission requirements. There were no deviations to the specifications.

Intentional Radiators

The following information is submitted supporting compliance with the requirements of 47CFR, Subpart C, paragraph 15.249, Industry Canada RSS-210 Issue 9 and RSS-GEN Issue 4.

Antenna Requirements

The EUT incorporates integral antenna system. Production equipment offers no provision for connection to alternate antenna system. The antenna connection point complies with the unique antenna connection requirements. There are no deviations or exceptions to the specification.

Rogers Labs, Inc.	Eclipse Rx	SN: Eng1
4405 West 259 th Terrace	Model: 081778	FCC ID: 2APDD081778
Louisburg, KS 66053	Test #: 180417	
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen, RSS-210	Date: June 13, 2018
Revision 1	File: eclipseRX 081778 DXX TstRpt 180417	Page 15 of 33

Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at the OATS. The EUT utilizes frequency determining circuitry, which generates harmonics falling in the restricted bands. Emissions were investigated at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. Peak and average amplitudes of frequencies above 1000 MHz were compared to the required limits with worst-case data presented below. Test procedures of ANSI C63.10-2013 were used during testing. No other significant emission was observed which fell into the restricted bands of operation. Computed emission values take into account the received radiated field strength, receive antenna correction factor, amplifier gain stage, and test system cable losses.

Table 1 Radiated Emissions in Restricted Frequency Bands Data

Frequency in MHz	Horizontal Peak (dB μ V/m)	Horizontal Quasi-Peak (dB μ V/m)	Horizontal Average (dB μ V/m)	Vertical Peak (dB μ V/m)	Vertical Quasi-Peak (dB μ V/m)	Vertical Average (dB μ V/m)	Limit @ 3m (dB μ V/m)
2390.0	44.0	N/A	30.7	43.8	N/A	30.5	54.0
2483.5	52.0	N/A	32.2	50.8	N/A	31.6	54.0
4804.0	47.9	N/A	35.4	48.3	N/A	34.9	54.0
4884.0	48.4	N/A	36.6	48.6	N/A	36.8	54.0
4960.0	48.6	N/A	36.3	46.7	N/A	34.1	54.0
7206.0	50.9	N/A	38.5	50.8	N/A	38.3	54.0
7326.0	51.5	N/A	38.6	51.4	N/A	38.6	54.0
7440.0	53.4	N/A	41.0	51.1	N/A	38.3	54.0
12010.0	56.0	N/A	42.9	56.1	N/A	42.9	54.0
12210.0	57.6	N/A	44.4	57.4	N/A	44.4	54.0
12400.0	57.6	N/A	44.5	57.5	N/A	44.6	54.0

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Summary of Results for Radiated Emissions in Restricted Bands

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR Part 15C and RSS-210 Intentional Radiator requirements. The EUT demonstrated a worst-case minimum margin of -9.4 dB below the emissions requirements in restricted frequency bands. Peak, Quasi-peak, and average amplitudes were checked for compliance with the regulations. Worst-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements.

AC Line Conducted Emissions Procedure

The EUT was arranged in typical equipment configurations operating from AC power adapter. Testing was performed with the EUT placed on a 1 x 1.5-meter wooden bench 80 cm above the conducting ground plane, floor of a screen room. The bench was positioned 40 cm away from the wall of the screen room. The LISN was positioned on the floor of the screen room 80-cm from the rear of the EUT. Testing for the line-conducted emissions were the procedures of ANSI C63.10-2013 paragraph 6. The AC adapter for the EUT was connected to the LISN for line-conducted emissions testing. A second LISN was positioned on the floor of the screen room 80-cm from the rear of the supporting equipment of the EUT. All power cords except the EUT were then powered from the second LISN. EMI was coupled to the spectrum analyzer through a 0.1 μ F capacitor, internal to the LISN. Power line conducted emissions testing was carried out individually for each current carrying conductor of the EUT. The excess length of lead between the system and the LISN receptacle was folded back and forth to form a bundle not exceeding 40 cm in length. The screen room, conducting ground plane, analyzer, and LISN were bonded together to the protective earth ground. Preliminary testing was performed to identify the frequencies of each of the emissions, which demonstrated the highest amplitudes. The cables were repositioned to obtain maximum amplitude of measured EMI level. Once the worst-case configuration was identified, plots were made of the EMI from 0.15 MHz to 30 MHz then data was recorded with maximum conducted emissions levels.

Refer to figures one and two showing plots of the configuration #2 AC Adapter configuration line conducted emissions. Refer to figures three and four for plots of the configuration #3 EUT – USB Computer interface AC Line conducted emissions.

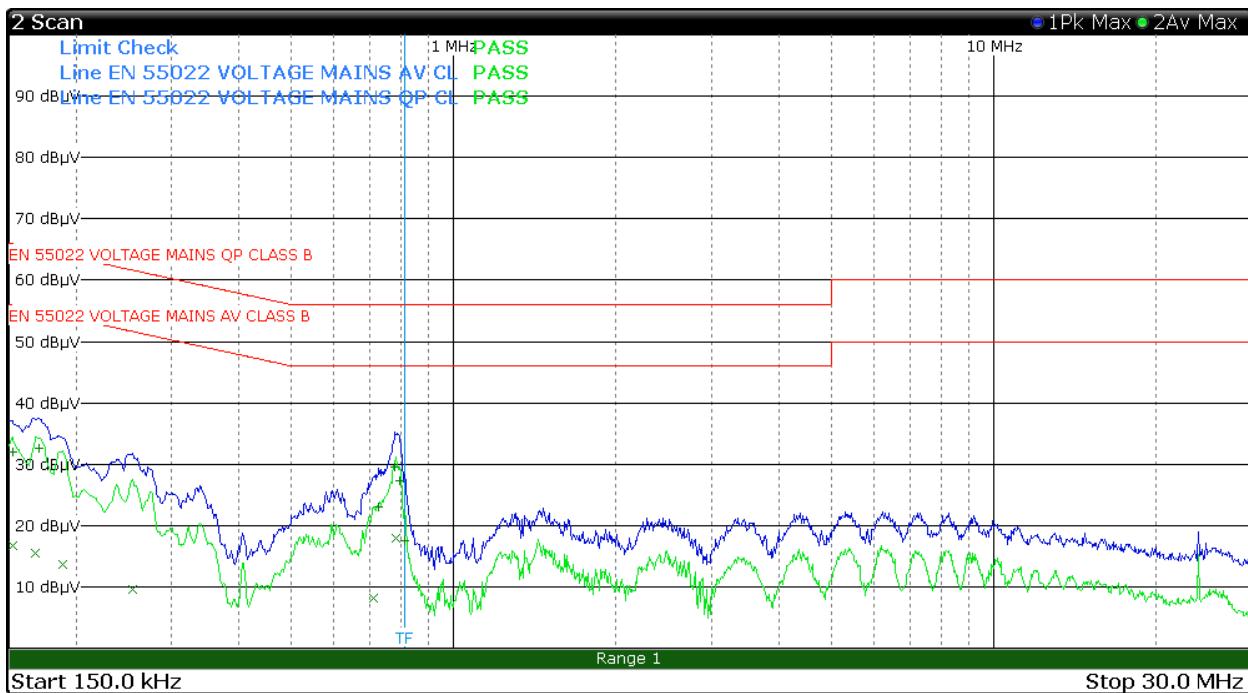


Figure 1 AC Line Conducted emissions of EUT line 1 (Configuration #2)

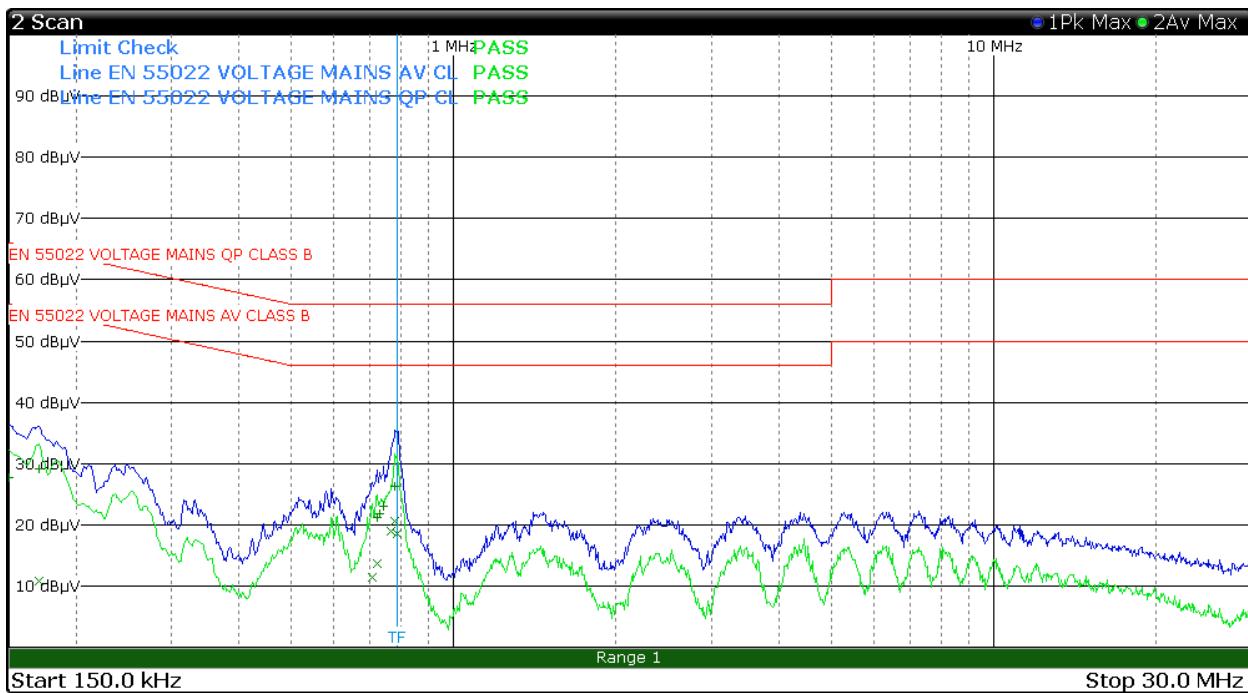
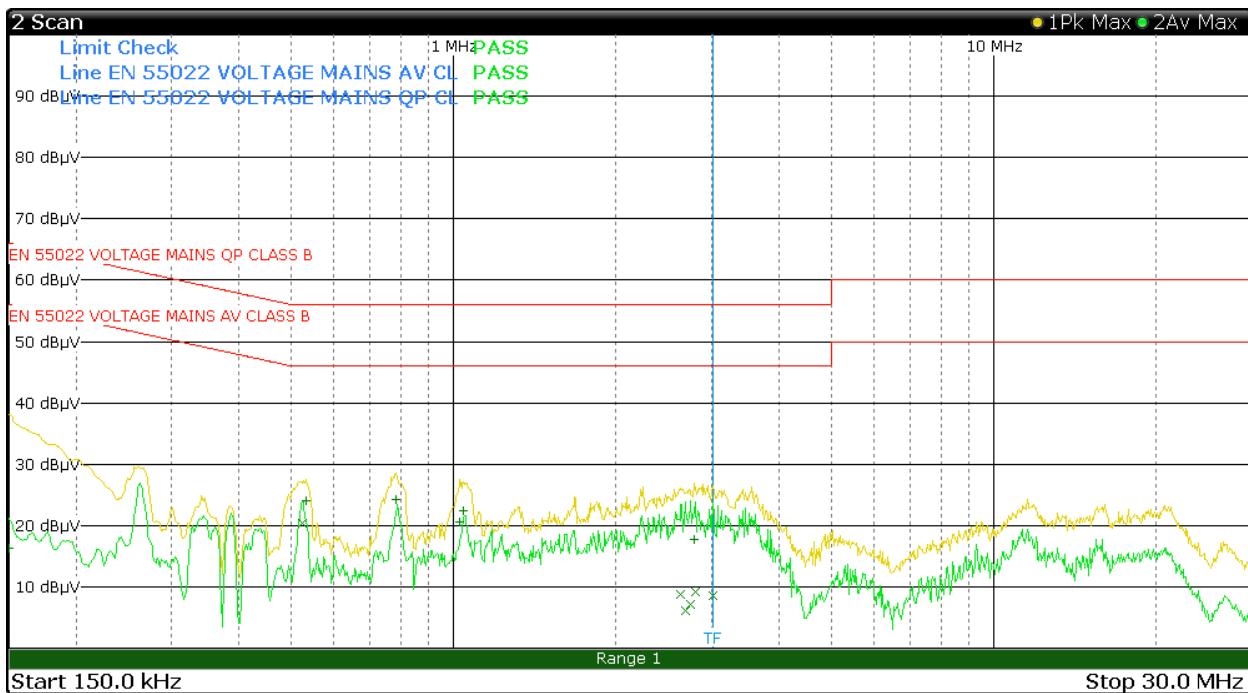
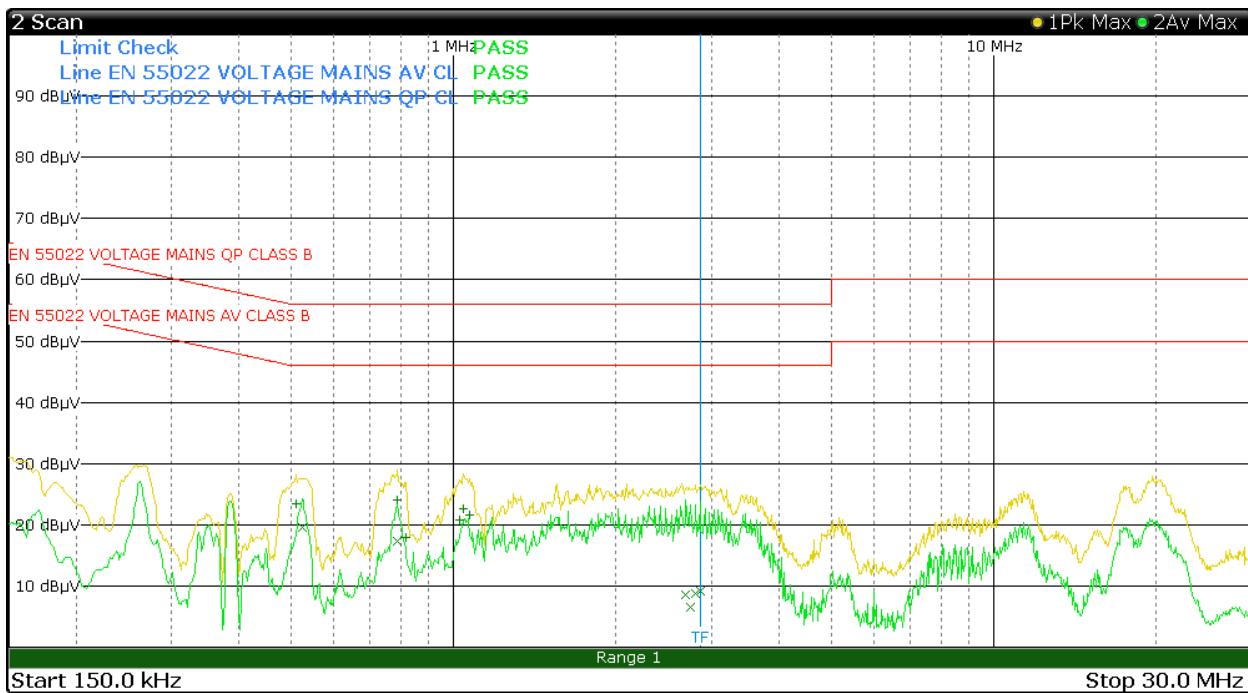




Figure 2 AC Line Conducted emissions of EUT line 2 (Configuration #2)

Figure 3 AC Line Conducted emissions of EUT line 1 (Configuration #3)

Figure 4 AC Line Conducted emissions of EUT line 2 (Configuration #3)

Table 2 AC Line Conducted Emissions Data L1 (Configuration #2)

Trace	Frequency	Level	Delta Limit
1	152.2 kHz	31.89 dB μ V	-33.99 dB μ V
2	152.2 kHz	16.79 dB μ V	-39.09 dB μ V
2	168 kHz	15.47 dB μ V	-39.59 dB μ V
1	170.2 kHz	32.68 dB μ V	-32.27 dB μ V
2	188.2 kHz	13.7 dB μ V	-40.41 dB μ V
2	253.5 kHz	9.62 dB μ V	-42.02 dB μ V
2	710.2 kHz	8.16 dB μ V	-37.84 dB μ V
1	726 kHz	23.06 dB μ V	-32.94 dB μ V
1	777.8 kHz	29.5 dB μ V	-26.5 dB μ V
2	780 kHz	17.84 dB μ V	-28.16 dB μ V
1	793.5 kHz	27.37 dB μ V	-28.63 dB μ V
1	809.2 kHz	17.52 dB μ V	-38.48 dB μ V

Other emissions present had amplitudes at least 20 dB below the limit.

Table 3 AC Line Conducted Emissions Data L2 (Configuration #2)

Trace	Frequency	Level	Delta Limit
1	150 kHz	27.73 dB μ V	-38.27 dB μ V
1	170.2 kHz	29.08 dB μ V	-35.87 dB μ V
2	170.2 kHz	10.77 dB μ V	-44.18 dB μ V
2	705.8 kHz	11.37 dB μ V	-34.63 dB μ V
1	721.5 kHz	21.18 dB μ V	-34.82 dB μ V
2	721.5 kHz	13.71 dB μ V	-32.29 dB μ V
1	728.2 kHz	21.73 dB μ V	-34.27 dB μ V
1	741.8 kHz	22.95 dB μ V	-33.05 dB μ V
2	766.5 kHz	18.9 dB μ V	-27.1 dB μ V
1	777.8 kHz	26.36 dB μ V	-29.64 dB μ V
2	777.8 kHz	20.49 dB μ V	-25.51 dB μ V
2	786.8 kHz	18.55 dB μ V	-27.45 dB μ V

Other emissions present had amplitudes at least 20 dB below the limit.

Table 4 AC Line Conducted Emissions Data L1 (Configuration #3)

Trace	Frequency	Level	Delta Limit
1	150 kHz	16.38 dB μ V	-49.62 dB μ V
2	523.5 kHz	20.34 dB μ V	-25.66 dB μ V
1	532.5 kHz	24.07 dB μ V	-31.93 dB μ V
1	780 kHz	24.32 dB μ V	-31.68 dB μ V
1	1.028 MHz	20.6 dB μ V	-35.4 dB μ V
1	1.043 MHz	22.46 dB μ V	-33.54 dB μ V
2	2.634 MHz	8.68 dB μ V	-37.32 dB μ V
2	2.69 MHz	6.12 dB μ V	-39.88 dB μ V
2	2.744 MHz	7.15 dB μ V	-38.85 dB μ V
1	2.796 MHz	17.71 dB μ V	-38.29 dB μ V
2	2.798 MHz	9.09 dB μ V	-36.91 dB μ V
2	3.028 MHz	8.53 dB μ V	-37.47 dB μ V

Other emissions present had amplitudes at least 20 dB below the limit.

Table 5 AC Line Conducted Emissions Data L2 (Configuration #3)

Trace	Frequency	Level	Delta Limit
1	510 kHz	23.42 dB μ V	-32.58 dB μ V
2	523.5 kHz	19.59 dB μ V	-26.41 dB μ V
1	786.8 kHz	23.94 dB μ V	-32.06 dB μ V
2	786.8 kHz	17.33 dB μ V	-28.67 dB μ V
1	816 kHz	17.85 dB μ V	-38.15 dB μ V
1	1.023 MHz	20.86 dB μ V	-35.14 dB μ V
1	1.043 MHz	22.58 dB μ V	-33.42 dB μ V
1	1.073 MHz	21.51 dB μ V	-34.49 dB μ V
2	2.695 MHz	8.65 dB μ V	-37.35 dB μ V
2	2.751 MHz	6.56 dB μ V	-39.44 dB μ V
2	2.809 MHz	8.7 dB μ V	-37.3 dB μ V
2	2.866 MHz	9.18 dB μ V	-36.82 dB μ V

Other emissions present had amplitudes at least 20 dB below the limit.

Summary of Results for AC Line Conducted Emissions Results

The EUT demonstrated compliance with the AC Line Conducted Emissions requirements of 47CFR Part 15C and other applicable emissions requirements. The EUT worst-case configuration #2 demonstrated a minimum margin of -25.5 dB below the requirement. The EUT worst-case configuration #3 demonstrated a minimum margin of -25.7 dB below the requirement. Other emissions were present with amplitudes at least 20 dB below the limit and worst-case amplitudes recorded.

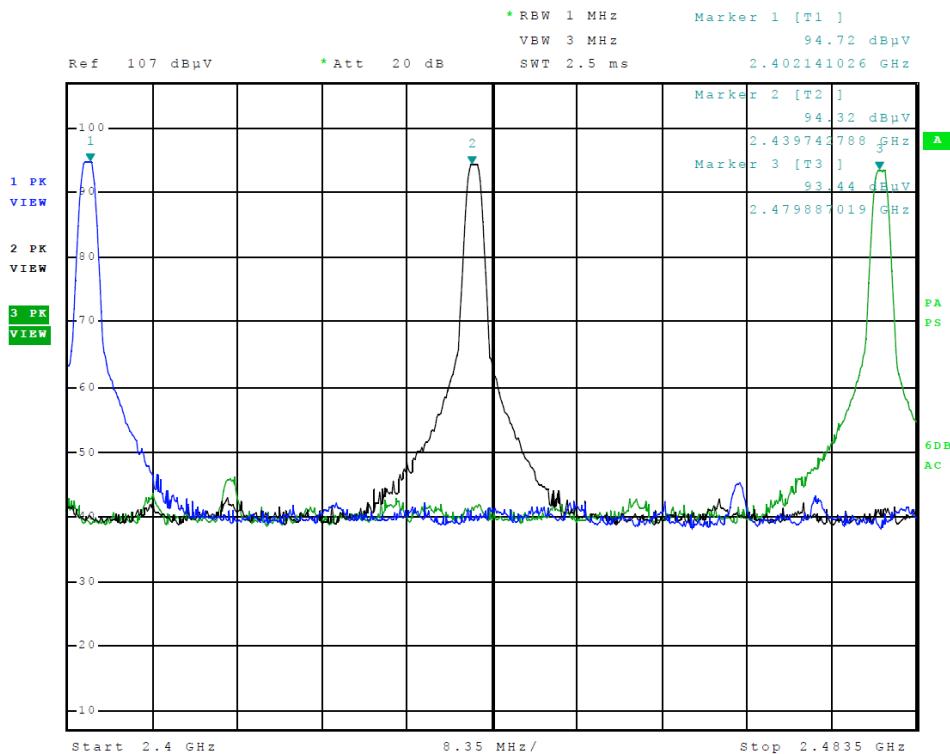
General Radiated Emissions Procedure

The EUT was arranged in a typical equipment configuration and operated through available modes during testing. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Each radiated emission was then maximized at the OATS location before final radiated measurements were performed. Final data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 9 kHz to 25,000 MHz was searched for general radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Loop from 9 kHz to 30 MHz, Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 1 GHz and or double Ridge or pyramidal horns and mixers above 1 GHz, notch filters and appropriate amplifiers and external mixers were utilized.

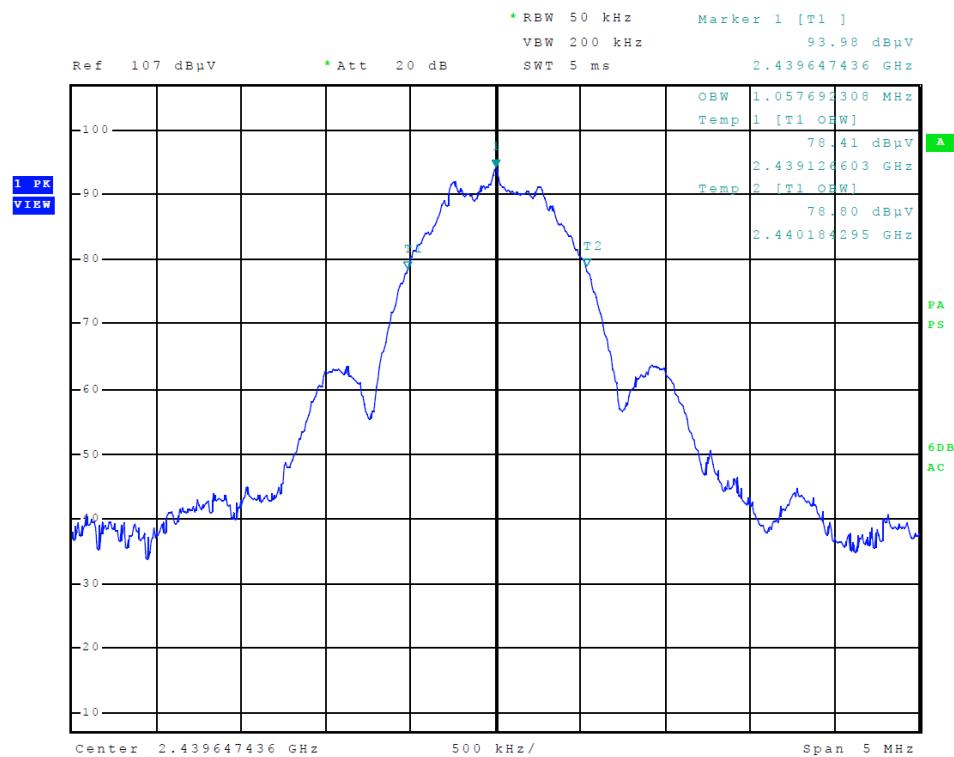
Table 6 General Radiated Emissions Data

Frequency in MHz	Horizontal Peak (dB μ V/m)	Horizontal Quasi-Peak (dB μ V/m)	Horizontal Average (dB μ V/m)	Vertical Peak (dB μ V/m)	Vertical Quasi-Peak (dB μ V/m)	Vertical Average (dB μ V/m)	Limit @ 3m (dB μ V/m)
111.7	31.6	13.9	N/A	25.9	10.5	N/A	40.0
116.8	28.1	9.9	N/A	25.4	9.7	N/A	40.0
120.0	28.1	15.8	N/A	25.5	11.8	N/A	40.0
138.1	26.4	9.0	N/A	20.9	8.3	N/A	40.0
141.7	29.5	14.4	N/A	25.8	8.7	N/A	40.0
354.3	20.4	8.3	N/A	21.8	8.7	N/A	47.0

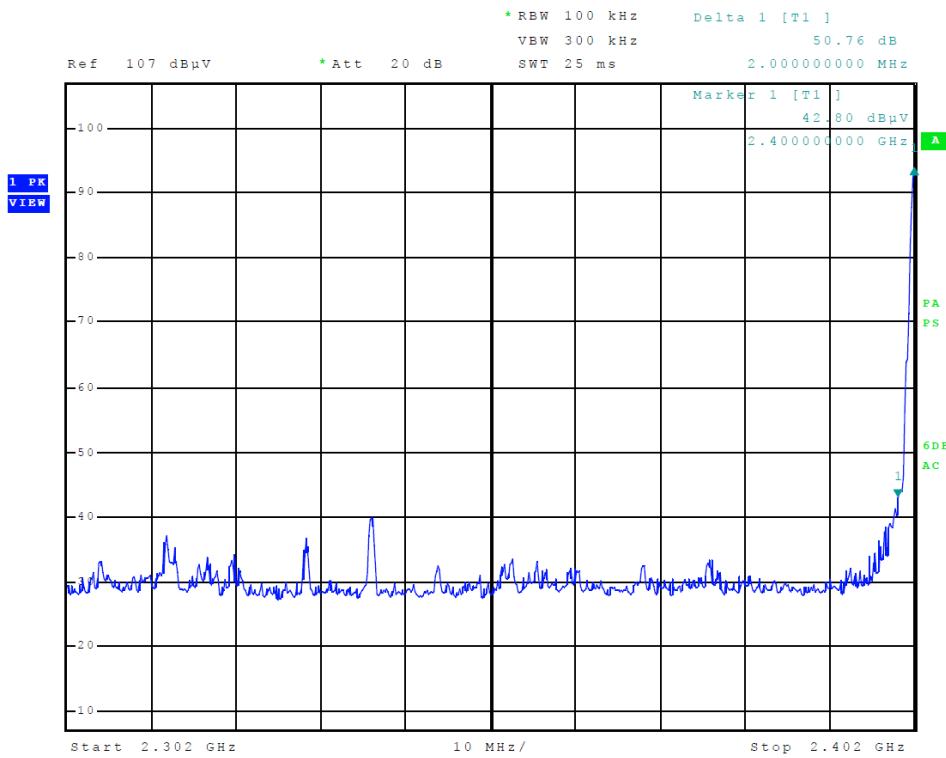
Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.


Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of CFR47 Part 15C paragraph 15.209, RSS-210 and RSS-GEN Intentional Radiators. The EUT demonstrated a minimum margin of -24.2 dB below the requirements. Other emissions were present with amplitudes at least 20 dB below the Limits.


Operation in the Band 2400 – 2483.5 MHz

The transmitter output power, harmonics, and general emissions were measured on an open area test site @ 3 meters. The EUT was placed on a turntable elevated as required above the ground plane and at a distance of 3 meters from the FSM antenna. The peak and quasi-peak amplitude of frequencies below 1000 MHz were measured using a spectrum analyzer. The peak and average amplitude of frequencies above 1000 MHz were measured using a spectrum analyzer. The amplitude of each emission was then recorded from the analyzer display. Emission requirements state the radiated outside of the specified bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits, whichever is the lesser attenuation. The amplitude of each radiated emission was measured on the OATS at a distance of 3 meters from the FSM antenna testing was performed on sample representative of production with integral antenna with worse case data provided. The amplitude of each radiated emission was maximized by equipment orientation and placement on the turn table, raising and lowering the FSM (Field Strength Measuring) antenna, changing the FSM antenna polarization, and by rotating the turntable. A Loop antenna was used for measuring emissions from 0.009 to 30 MHz, Biconilog Antenna for 30 to 1000 MHz, Double-Ridge, and/or Pyramidal Horn Antennas from 1 GHz to 25 GHz. Emissions were measured in dB μ V/m @ 3 meters.


Refer to figures five through eight showing plots taken of the 2402-2480 MHz transmitter performance displaying compliance with the specifications.

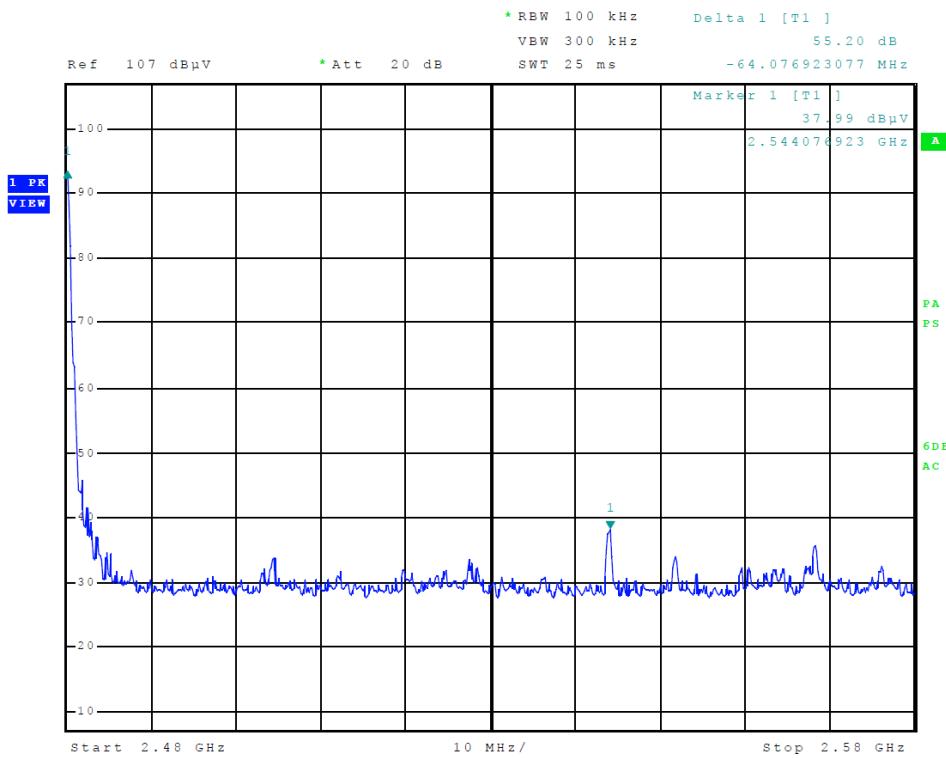

Figure 5 Plot of Transmitter Emissions (Operation in 2402-2480 MHz)

Figure 6 Plot of Transmitter Emissions (99% Occupied Bandwidth)

Figure 7 Plot of Transmitter Emissions (Low Band Edge)

Figure 8 Plot of Transmitter Emissions (High Band Edge)

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Eclipse Rx
Model: 081778
Test #: 180417
Test to: CFR47 15C, RSS-Gen, RSS-210
File: eclipseRX 081778 DXX TstRpt 180417

SN: Eng1
FCC ID: 2APDD081778
Date: June 13, 2018
Page 26 of 33

Transmitter Emissions Data

Table 7 Transmitter Radiated Emissions (Worst-case)

Frequency in MHz	Horizontal Peak (dB μ V/m)	Horizontal Quasi-Peak (dB μ V/m)	Horizontal Average (dB μ V/m)	Vertical Peak (dB μ V/m)	Vertical Quasi-Peak (dB μ V/m)	Vertical Average (dB μ V/m)	Limit @ 3m (dB μ V/m)
2402.0	93.6	N/A	92.2	87.3	N/A	85.1	94.0
4804.0	47.9	N/A	35.4	48.3	N/A	34.9	54.0
7206.0	50.9	N/A	38.5	50.8	N/A	38.3	54.0
9608.0	53.5	N/A	40.9	53.6	N/A	40.9	54.0
12010.0	56.0	N/A	42.9	56.1	N/A	42.9	54.0
14412.0	59.5	N/A	46.2	59.4	N/A	46.3	54.0
16814.0	61.3	N/A	48.4	61.5	N/A	48.5	54.0
2442.0	93.3	N/A	91.7	88.2	N/A	86.5	94.0
4884.0	48.4	N/A	36.6	48.6	N/A	36.8	54.0
7326.0	51.5	N/A	38.6	51.4	N/A	38.6	54.0
9768.0	53.8	N/A	40.7	53.8	N/A	40.7	54.0
12210.0	57.6	N/A	44.4	57.4	N/A	44.4	54.0
14652.0	58.6	N/A	46.1	59.0	N/A	46.1	54.0
17094.0	60.6	N/A	47.1	60.5	N/A	47.1	54.0
2480.0	92.6	N/A	91.1	85.7	N/A	83.9	94.0
4960.0	48.6	N/A	36.3	46.7	N/A	34.1	54.0
7440.0	53.4	N/A	41.0	51.1	N/A	38.3	54.0
9920.0	53.4	N/A	40.6	53.3	N/A	40.6	54.0
12400.0	57.6	N/A	44.5	57.5	N/A	44.6	54.0
14880.0	59.3	N/A	46.1	58.8	N/A	46.0	54.0
17360.0	61.4	N/A	48.4	61.5	N/A	48.3	54.0

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Rogers Labs, Inc.

4405 West 259th Terrace

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

Eclipse Rx

Model: 081778

Test #: 180417

Test to: CFR47 15C, RSS-Gen, RSS-210

File: eclipseRX 081778 DXX TstRpt 180417

SN: Eng1

FCC ID: 2APDD081778

Date: June 13, 2018

Page 27 of 33

Summary of Results for Transmitter Radiated Emissions of Intentional Radiator

The EUT demonstrated compliance with the radiated emission requirements of FCC 47 CFR Part 15.249, Industry Canada RSS-GEN Issue 4, RSS-210 Issue 9 Intentional Radiator regulations.

The EUT worst-case configuration demonstrated minimum average margin of -1.8 dB below the average emission limit for the fundamental. The EUT worst-case configuration demonstrated minimum radiated harmonic emission margin of -5.5 dB below the limit. No other radiated emissions were found in the restricted bands less than 20 dB below limits than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the limits.

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Rogers Labs Test Equipment List
- Annex C Rogers Qualifications
- Annex D Rogers Labs Certificate of Accreditation

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Eclipse Rx
Model: 081778
Test #: 180417
Test to: CFR47 15C, RSS-Gen, RSS-210
File: eclipseRX 081778 DXX TstRpt 180417

SN: Eng1
FCC ID: 2APDD081778
Date: June 13, 2018
Page 29 of 33

Annex A Measurement Uncertainty Calculations

Measurement uncertainty calculations were made for the laboratory. Result of measurement uncertainty calculations are recorded below for AC line conducted and radiated emission measurements.

Measurement Uncertainty	U _(E)	U _(lab)
3 Meter Horizontal 30-200 MHz Measurements	2.08	4.16
3 Meter Vertical 30-200 MHz Measurements	2.16	4.33
3 Meter Vertical Measurements 200-1000 MHz	2.99	5.97
10 Meter Horizontal Measurements 30-200 MHz	2.07	4.15
10 Meter Vertical Measurements 30-200 MHz	2.06	4.13
10 Meter Horizontal Measurements 200-1000 MHz	2.32	4.64
10 Meter Vertical Measurements 200-1000 MHz	2.33	4.66
3 Meter Measurements 1-6 GHz	2.57	5.14
3 Meter Measurements 6-18 GHz	2.58	5.16
AC Line Conducted	1.72	3.43

Annex B Rogers Labs Test Equipment List

List of Test Equipment	Calibration	<u>Cal Date(m/d/y)</u>	<u>Due</u>
Spectrum Analyzer: Rohde & Schwarz ESU40		5/15/17	5/15/18
Spectrum Analyzer: HP 8562A, HP Adapters: 11518, 11519, and 11520		5/15/17	5/15/18
Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W			
Spectrum Analyzer: HP 8591EM		5/15/17	5/15/18
Antenna: Schwarzbeck Model: BBA 9106/VHBB 9124 (9124-627)		5/15/17	5/15/18
Antenna: Schwarzbeck Model: VULP 9118 A (VULP 9118 A-534)		5/15/17	5/15/18
Antenna: EMCO Log Periodic Model: 3147		10/24/17	10/24/18
Antenna: EMCO 6509		10/24/17	24/10/19
LISN: Compliance Design Model: FCC-LISN-2.Mod.cd, 50 μ Hy/50 ohms/0.1 μ f	10/24/17	10/24/18	
R.F. Preamp CPPA-102		10/24/17	10/24/18
Attenuator: HP Model: HP11509A		10/24/17	10/24/18
Cable: Belden 8268 (L3)		10/24/17	10/24/18
Cable: Time Microwave: 4M-750HF290-750		10/24/17	10/24/18
Cable: Time Microwave: 10M-750HF290-750		10/24/17	10/24/18
Frequency Counter: Leader LDC825		2/23/18	2/23/19
Oscilloscope Scope: Tektronix 2230		2/23/18	2/23/19
Wattmeter: Bird 43 with Load Bird 8085		2/23/18	2/23/19
Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140		2/23/18	2/23/19
R.F. Generators: HP 606A, HP 8614A, HP 8640B		2/23/18	2/23/19
R.F. Power Amp 65W Model: 470-A-1010		2/23/18	2/23/19
R.F. Power Amp 50W M185- 10-501		2/23/18	2/23/19
R.F. Power Amp A.R. Model: 10W 1010M7		2/23/18	2/23/19
R.F. Power Amp EIN Model: A301		2/23/18	2/23/19
LISN: Compliance Eng. Model 240/20		2/23/18	2/23/19
LISN: Fischer Custom Communications Model: FCC-LISN-50-16-2-08		2/23/18	2/23/19
Antenna: EMCO Dipole Set 3121C		2/23/18	2/23/19
Antenna: C.D. B-101		2/23/18	2/23/19
Antenna: Solar 9229-1 & 9230-1		2/23/18	2/23/19
Audio Oscillator: H.P. 201CD		2/23/18	2/23/19
ESD Test Set 2010i		2/23/18	2/23/19
Fast Transient Burst Generator Model: EFT/B-101		2/23/18	2/23/19
Field Intensity Meter: EFM-018		2/23/18	2/23/19
KEYTEK Ecat Surge Generator		2/23/18	2/23/19
Shielded Room Calibration not required			

Annex C Rogers Qualifications

Scot D. Rogers, Engineer

Rogers Labs, Inc.

Mr. Rogers has approximately 17 years' experience in the field of electronics. Engineering experience includes six years in the automated controls industry and remaining years working with the design, development and testing of radio communications and electronic equipment.

Positions Held

Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

Educational Background

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Scot D Rogers

Scot D. Rogers

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Eclipse Rx
Model: 081778
Test #: 180417
Test to: CFR47 15C, RSS-Gen, RSS-210
File: eclipseRX 081778 DXX TstRpt 180417

SN: Eng1
FCC ID: 2APDD081778
Date: June 13, 2018
Page 32 of 33

Annex D Rogers Labs Certificate of Accreditation

United States Department of Commerce
National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 200087-0

Rogers Labs, Inc.
Louisburg, KS

*is accredited by the National Voluntary Laboratory Accreditation Program for specific services,
listed on the Scope of Accreditation, for:*

Electromagnetic Compatibility & Telecommunications

*This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality
management system (refer to joint ISO-ILAC-IAF Communiqué dated January 2009).*

2018-02-21 through 2019-03-31

Effective Dates

For the National Voluntary Laboratory Accreditation Program

A handwritten signature in blue ink that reads "Daniel S. Lamm".

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Eclipse Rx
Model: 081778
Test #: 180417
Test to: CFR47 15C, RSS-Gen, RSS-210
File: eclipseRX 081778 DXX TstRpt 180417

SN: Eng1
FCC ID: 2APDD081778
Date: June 13, 2018
Page 33 of 33