FCC and ISEDC Test Report

LARS THRANE A/S
Global Maritime Distress and Safety System,
Model: LT3100-S and LT-3140S

In accordance with FCC 47 CFR Part 15B, RSS-GEN and ICES-003

Prepared for: LARS THRANE A/S

Skovlytoften 33

Holte DK-2840 DENMARK

FCC ID: 2AP9E-10193100S IC: 24065-10193100S

COMMERCIAL-IN-CONFIDENCE

Document 75946681-01 Issue 01

SIGNATURE			
Torsell			
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Matthew Russell	Senior Engineer	Authorised Signatory	06 January 2020

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15B, RSS-GEN and ICES-003. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	Graeme Lawler	06 January 2020	Alawla :
ECC Approditation	Industry Con	ada Aparaditation	

FCC Accreditation Industry Canada Accreditation

90987 Octagon House, Fareham Test Laboratory 12669A Octagon House, Fareham Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B: 2018, RSS-GEN Issue 5 (2018, Amd 1:2019) and ICES-003: 2016 for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2020 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuv-sud.co.uk TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2	Introduction	2
1.3	Brief Summary of Results	3
1.4	Declaration of Build Status	4
1.5	Product Information	6
1.6	Deviations from the Standard	g
1.7	EUT Modification Record	
1.8	Test Location	10
2	Test Details	11
2.1	Radiated Disturbance	11
3	Incident Reports	21
4	Measurement Uncertainty	22

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	06 January 2020

Table 1

1.2 Introduction

Applicant LARS THRANE A/S

Manufacturer LARS THRANE A/S

Model Number(s) Controller: LT3100-S

Interface Unit: LT-3140S

Serial Number(s) Controller: 00006287 Interface: 00006294

1.00

Hardware Version(s) 1.00 Software Version(s) 1.00

Number of Samples Tested One System

Test Specification/Issue/Date FCC 47 CFR Part 15B: 2018

RSS-GEN Issue 5:2018(Amd 1:2019)

ICES-003: 2016

Order Number 1931-001
Date 29-July-2019
Date of Receipt of EUT 02-October-2019
Start of Test 13-October-2019
Finish of Test 13-October-2019

Name of Engineer(s) Graeme Lawler
Related Document(s) ANSI C63.4: 2014

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B, RSS-GEN and ICES-003 is shown below.

Section		Specification Clause Test Description		Result	Comments/Base		
	Part 15B	RSS-GEN	ICES-003			Standard	
Configuration and Mode: DC Powered - Receiving							
2.1	15.109	7.1	6.2	Radiated Disturbance	Pass	ANSI C63.4: 2014	

Table 2

1.4 Declaration of Build Status

EQUIPMENT DESCRIPTION					
Model Name/Number LT-3100S GMDSS System					
Part Number	Handset: L Cradle: LT Antenna U Interface U Alarm Pan	· · · · · · ·			
Control Unit: 1.00 Handset: 1.00 Cradle: 1.00 Antenna Unit: 2.00 Interface Unit1.00 Alarm Panel: 1.00 Printer Adapter: 1.00					
Software Version 1.00					
FCC ID (if applicable)		2AP9E-10193100S			
Industry Canada ID (if applicable)		24065-10193100S			
Technical Description (Please provide a brief description of the intended use of the equipment)		Voice and Data communication over the Iridium Communications Network.			

	INTENTIONAL RADIATORS								
Technology	Frequency Band			Supported Bandwidth (s)	Modulation	ITU Emission	Test (Channels (MHz)	
recrinology	(MHz)	Power (dBm)	(dBi)	(MHz)	Scheme(s)	Designator	Bottom	Middle	Тор
L-Band	1616- 1626.50	38.2	1	41.7kHz	DE- QPSK/DE- BPSK	41K7Q7W	1616.0 20833	1,621. 75	1625.9 79166
Bluetooth	2402-2480	8	0.5	1kHz	GFSK/DQ PSK	????	2402	2441	2480

UN-INTENTIONAL RADIATOR				
Highest frequency generated or used in the device or on which the device operates or tunes 2480 MHz				
Lowest frequency generated or used in the device or on which the device operates or tunes	1616.020833 MHz			
Class A Digital Device (Use in commercial, industrial or business environment) ☐ Class B Digital Device (Use in residential environment only) ☒				

	Power Source										
AC		Sing	le Phase		TI	hree F	Phase		Nom	ninal Volta	age
٨٥											
Fyte	rnal DC		Nomin	al Voltage	1		Maximum Current				
Еже		12 / 24 V					3.	7 A			
Battery Nominal Voltage				Battery	Operating	End	Point Vo	ltage			
Dalle	51 y										
Can EUT transmit whilst being charged?					Yes ☐ No ☐						
	EXTREME CONDITIONS										
Maxi	mum tempera	ture	+55	°C		Minir	inimum temperature			-40	°C
					Ancill	aries					
Plea	se list all anci	llaries which wi	II be used	with the d	levice.						
				ANT	TENNA CHAI	RACT	ERISTICS				
\boxtimes	Antenna con	nector				S	state impedance	50	Ohr	m	
	Temporary a	antenna connec	tor			S	tate impedance		Ohr	m	
\boxtimes	Integral ante	nna	Туре	Helix	·						
	External ante	enna	Туре								

I hereby declare that the information supplied is correct and complete.

Name: Carsten Thomsen

Position held: CTO Date: 2019-11-09

1.5 Product Information

1.5.1 Technical Description

The Equipment Under Test (EUT) is an LT-3100S GMDSS Marine Satellite Communications System.

The LT-3100 Satellite Communications System is a maritime fixed Iridium satellite phone. The system is designed for the professional marine market e.g. deep sea, fishing, and other forms of heavy marine use.

The LT-3100 system consists of a control unit, handset unit, and antenna unit. Each module connects to the control unit which in turn is connected to the marine vessels internal communications electronic systems. A single cable solution connects the control unit with the antenna unit. Using a standard coaxial cable, up to 500 meters of separation between the units can be obtained, giving freedom to mount the antenna in the best possible location, with free line of sight to the satellites.

Figure 1.5.1 Complete EUT

Figure 1.5.2 Control unit (Front)

Figure 1.5.3 Interface unit (Top)

Figure 1.5.4 Alarm Units (Top)

Figure 1.5.5 Handset

1.5.2 EUT Port/Cable Identification

Port	Max Cable Length specified	Usage	Туре	Screened
Configuration and Mode	e: DC Powered - Receiving	ng		
S1	25 m	Power and communications	Twisted pair 0.25 mm	Yes
RS1	25 m	Power and communications	Twisted pair 0.22 mm	Yes
РА	25 m	Power and communications	Twisted pair 0.22 mm	Yes

Table 3

1.5.3 Test Configuration

Configuration	Description
DC Powered	The EUT was powered from a 12 V DC supply.

Table 4

1.5.4 Modes of Operation

Mode	Description
Receiving	The EUT was configured to GNSS Receive. All transmitters were idle.

Table 5

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted						
Model: LT3100-S: Serial Number: 00006287									
0	As supplied by the customer	Not Applicable	Not Applicable						
Model: LT-3140S: S	Model: LT-3140S: Serial Number: 00006294								
0	As supplied by the customer	Not Applicable	Not Applicable						

Table 6

1.8 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation		
Configuration and Mode: DC Powered - Receiving				
Radiated Disturbance	Graeme Lawler	UKAS		

Table 7

Office Address:

Octagon House Concorde Way Segensworth North Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Radiated Disturbance

2.1.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.109 RSS-GEN, Clause 7.1 ICES-003, Clause 6.2

2.1.2 Equipment Under Test and Modification State

LT3100-S, S/N: 00006287 - Modification State 0 LT-3140S, S/N: 00006294 - Modification State 0

2.1.3 Date of Test

13-October-2019

2.1.4 Test Method

The EUT was set up in a semi-anechoic chamber on a remotely controlled turntable and placed on a non-conductive table 0.8m above a reference ground plane.

Pre-scans were performed with the EUT orientated in X and Y planes as discussed with the client as this represents normal installation.

A pre-scan of the EUT emissions profile was made at a 3m distance while varying the antenna-to-EUT azimuth and polarisation using a peak detector.

Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

2.1.5 Example Calculation

Below 1 GHz:

Quasi-Peak level $(dB\mu V/m)$ = Receiver level $(dB\mu V)$ + Correction Factor (dB/m) Margin (dB) = Limit $(dB\mu V/m)$ – Quasi-Peak level $(dB\mu V/m)$

Above 1 GHz:

CISPR Average level $(dB\mu V/m)$ = Receiver level $(dB\mu V)$ + Correction Factor (dB/m) Margin (dB) = Limit $(dB\mu V/m)$ - CISPR Average level $(dB\mu V/m)$

Peak level $(dB\mu V/m)$ = Receiver level $(dB\mu V)$ + Correction Factor (dB/m) Margin (dB) = Limit $(dB\mu V/m)$ - Peak level $(dB\mu V/m)$

2.1.6 Example Test Setup Diagram

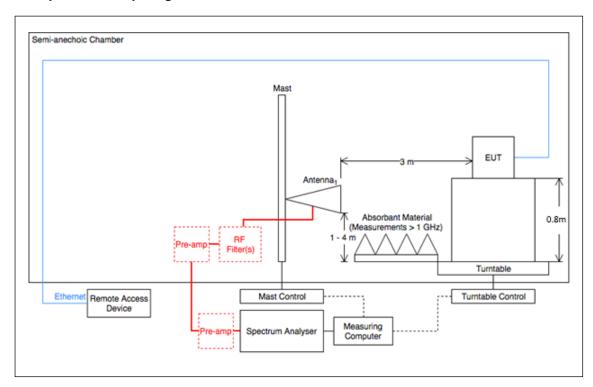


Figure 1 - Example Test Setup

2.1.7 Environmental Conditions

Ambient Temperature 20.0 °C Relative Humidity 44.0 %

2.1.8 Specification Limits

Required S	Required Specification Limits, Field Strength (Class A @ 10m)							
Frequency Range (MHz) (µV/m) (dBµV/m)								
30 to 88	90	39.1						
88 to 216	150	43.5						
216 to 960	210	46.4						
Above 960	300	49.5						

Supplementary information:

Quasi-peak detector to be used for measurements below 1 GHz
CISPR Average detector to be used for measurements above 1 GHz
Peak test limit above 1 GHz is 20 dB higher than the CISPR Average test limit.

Table 8

2.1.9 Test Results

Results for Configuration and Mode: DC Powered - Receiving.

The test was performed in accordance with the Class A limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Highest frequency generated or used within the EUT: 2480 MHz Which necessitates an upper frequency test limit of: 13 GHz

Frequency Range of Test: 30 MHz to 1 GHz - X Orientation

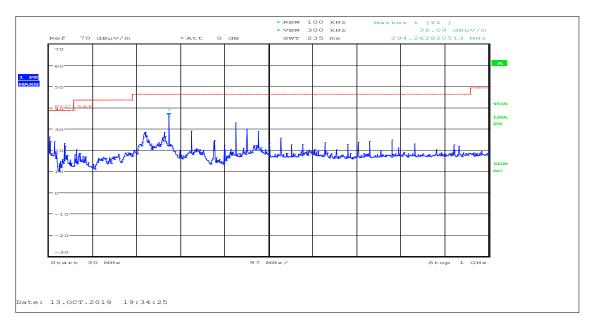


Figure 2 - Graphical Results - Horizontal and Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 9

^{*}No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 1 GHz to 8 GHz - X Orientation

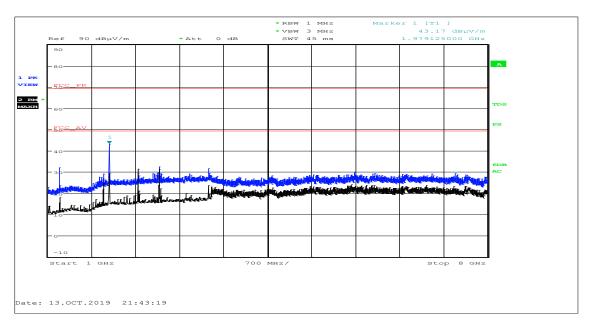


Figure 3 - Graphical Results - Horizontal and Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 10

Frequency Range of Test: 8 GHz to 13 GHz - X Orientation

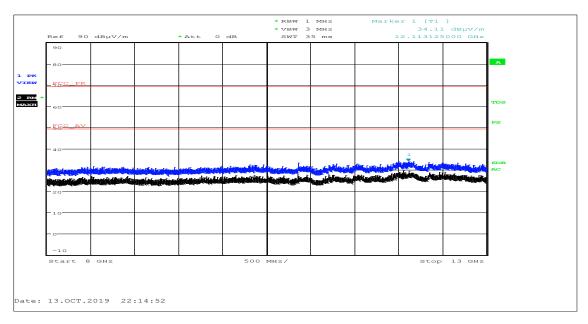


Figure 4 - Graphical Results - Horizontal and Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 11

Frequency Range of Test: 30 MHz to 1 GHz - Y Orientation

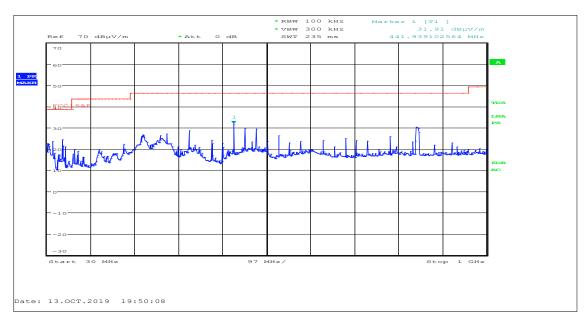


Figure 5 - Graphical Results - Horizontal and Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 12

^{*}No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 1 GHz to 8 GHz - Y Orientation

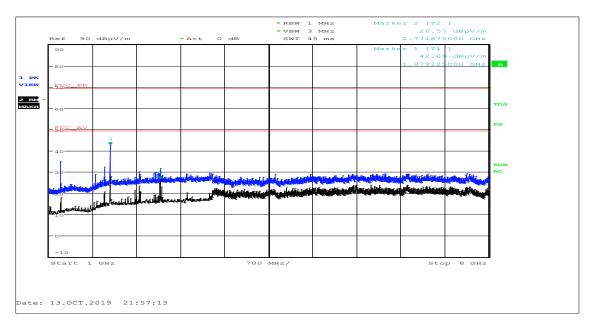


Figure 6 - Graphical Results - Horizontal and Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 13

Frequency Range of Test: 8 GHz to 13 GHz - Y Orientation

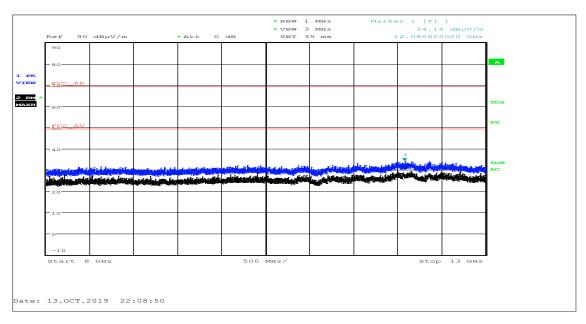


Figure 7 - Graphical Results - Horizontal and Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 14

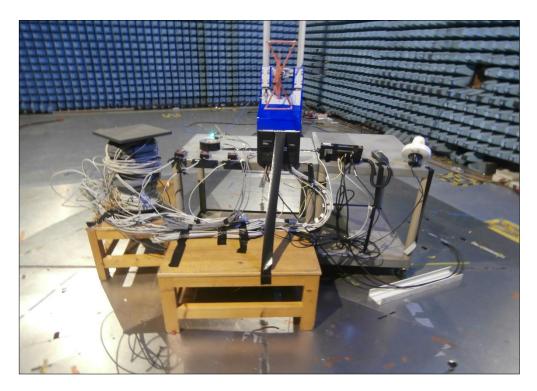


Figure 8 - Test Setup - 30 MHz to 1 GHz

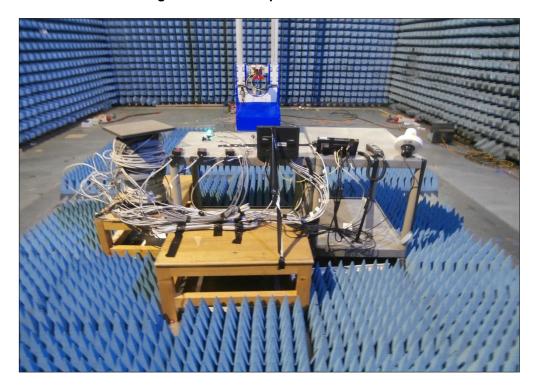


Figure 9 - Test Setup - 1 GHz to 13 GHz

2.1.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 7.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Screened Room (7)	Siemens	SM	1547	36	24-Jan-2021
Hygromer	Rotronic	A1	2677	12	20-Feb-2020
Comb Generator	Schaffner	RSG1000	3034	-	TU
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	17-Dec-2019
Turntable Controller	Heinrich Diesel	HD 050	280	-	TU
Tilt Antenna Mast	Maturo Gmbh	TAM 4.0-P	3916	-	TU
Mast Controller	Maturo Gmbh	NCD	3917	-	TU
Antenna with permanent attenuator (Bilog)	Schaffner	CBL6143	287	24	15-May-2020
Double Ridged Waveguide Horn Antenna	ETS-Lindgren	3117	4722	12	05-Mar-2020
Pre-Amplifier	Phase One	PS04-0086	1533	12	08-Feb-2020
1GHz to 8GHz Low Noise Amplifier	Wright Technologies	APS04-0085	4365	12	25-Oct-2019
3 GHz High pass filter	Wainwright	WHKX12-2580- 3000-18000-80SS	5220	12	15-Feb-2020
Cable (Rx, Km-Km 2m)	Scott Cables	KPS-1501-2000- KPS	4526	6	11-Dec-2019
2 Meter Cable	Teledyne	PR90-088-2MTR	5198	12	29-Jul-2020
8 Meter Cable	Teledyne	PR90-088-8MTR	5213	12	30-Aug-2020

Table 15

TU - Traceability Unscheduled

3 Incident Reports

No incidents reports were raised.

4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Radiated Disturbance	30 MHz to 1 GHz, Bilog Antenna, ±5.2 dB 1 GHz to 40 GHz, Horn Antenna, ±6.3 dB

Table 16

Worst case error for both Time and Frequency measurement 12 parts in 106.

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.