

Report on the Radio Testing

For

EkkoSense Ltd

on

EkkoSensor

Report no. TRA-036043-47-01B

27 November 2018

RF915 6.0

Report Number: TRA-036043-47-01B

Issue: E

REPORT ON THE RADIO TESTING OF A EkkoSense Ltd EkkoSensor WITH RESPECT TO SPECIFICATION FCC 47CFR 15.247

TEST DATE: 22nd August - 11th September 2018

Written by:		D Winstanley Senior Radio Test Engineer
Approved by:		J Charters Department Manager - Radio
Date:	27 November 2018	

Disclaimers

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

1 Revision Record

Issue Number	Issue Date	Revision History
А	26 th November 2018	Original
В	27 November 2018	

RF915 6.0 Page 3 of 38

2 Summary

TESTED BY:

TEST REPORT NUMBER: TRA-036043-47-01B WORKS ORDER NUMBER: TRA-036043-02 PURPOSE OF TEST: USA: Testing of radio frequency equipment per the relevant authorization procedure of chapter 47 of CFR (code of federal regulations) Part 2, subpart J.. TEST SPECIFICATION(S): 47CFR15.247 EQUIPMENT UNDER TEST (EUT): EkkoSensor FCC IDENTIFIER: 2AP4G-FS-SNS-02 **EUT SERIAL NUMBERS:** 3, 4, 9 and 11 MANUFACTURER/AGENT: EkkoSense Ltd ADDRESS: Sir Colin Campbell Building University of Nottingham Innovation Park Triumph Road Nottingham NG7 2TU United Kingdom **CLIENT CONTACT: David Corder 2** 0115 8232664 ⊠ david.corder@ekkosense.co.uk TEST DATE: 22nd August - 11th September 2018

RF915 6.0 Page 4 of 38

Element

D Winstanley, I Broadwell, D Garvey

2.1 Test Summary

Test Method and Descr	ription	Requirement Clause 47CFR15	Applicable to this equipment	Result / Note	
Radiated spurious emissions (restricted bands of operation and cabinet radiation)		15.205		Pass	
AC power line conducted emissions		15.207		Note 1	
Occupied bandwidth		15.247(a)(2)		Pass	
Conducted corrier power	Peak	15.247(b)(3)	\boxtimes	Pass	
Conducted carrier power	Max.	13.247(0)(3)			
Conducted / radiated RF power out-of-band		15.247(d)		Pass	
Power spectral density, conducted		15.247(e)		Pass	
Calculation of duty correct	on	15.35(c)		Note 2	

Notes:

- 1. The EUT is a Battery Powered device
- 2. Duty cycle is not required to be taken into account for any requirements to be met.

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

RF915 6.0 Page 5 of 38

3 Contents

1		ision Record	
2		nmary	
	2.1	Test Summary	
3		tents	
4		oduction	
5		t Specifications	
	5.1	Normative References	9
,	5.2	Deviations from Test Standards	
6	Glos	ssary of Terms	10
7	Equi	ipment Under Test	
-	7.1	EUT Identification	11
-	7.2	System Equipment	11
-	7.3	EUT Mode of Operation	11
	7.3.	1 Transmission	11
-	7.4	EUT Radio Parameters	12
	7.4.	1 General	12
	7.4.2	2 Antennas	12
	7.4.3	3 Product specific declarations	13
-	7.5	EUT Description	13
8	Mod	lifications	
9		Test Setup	
(9.1	Block Diagram	15
(9.2	General Set-up Photograph	16
10	Gen	neral Technical Parameters	
	10.1	Normal Conditions	
	10.2	Varying Test Conditions	
11	Rad	liated emissions	
	11.1	Definitions	
	11.2	Test Parameters	
	11.3	Test Limit	18
	11.4	Test Method	
	11.5	Test Set-up Photograph	20
	11.6	Test Equipment	21
	11.7	Test Results	
12	Occ	upied Bandwidth	
	12.1	Definition	28
	12.2	Test Parameters	28
	12.3	Test Limit	
	12.4	Test Method	
	12.5	Test Equipment	29
	12.6	Test Results	29
13	Max	rimum peak conducted output power	
	13.1	Definition	
	13.2	Test Parameters	30
	13.3	Test Limit	30
	13.4	Test Method	
	13.5	Test Equipment	
	13.6	Test Results	
		-of-band and conducted spurious emissions	
	14.1	Definition	
	14.2	Test Parameters	
	14.3	Test Limit	
	14.4	Test Method	
	14.5	Test Equipment	
	14.6	Test Results	
	-	ver spectral density	
	15.1	Definition	
	15.2	Test Parameters	
	15.3	Test Limit	
	15.4	Test Method	
	15.5	Test Equipment	
	15.6	Test Results	
		asurement Uncertainty	
-		•	

17	RF Exposure	38	

RF915 6.0 Page 7 of 38

Report Number: TRA-036043-47-01B

4 Introduction

This report TRA-036043-47-01B presents the results of the Radio testing on an EkkoSense Ltd, EkkoSensor to specification 47CFR15C.

The testing was carried out for EkkoSense Ltd by Element, at the addresses detailed below.

Unit E Unit 1

South Orbital Trading Park
Hedon Road
Skemersdale
Hull
West Lancashire
HU9 1NJ
WN8 9PN

UK UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

Element is accredited for the above sites under the US-EU MRA, Designation number UK0009.

IC Registration Number(s):

Element Hull 3483A Element North West 3930B

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF915 6.0 Page 8 of 38

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

5.2 Deviations from Test Standards

There were no deviations from the test standard.

RF915 6.0 Page 9 of 38

6 Glossary of Terms

§ denotes a section reference from the standard, not this document

AC Alternating Current

ANSI American National Standards Institute

BW bandwidth C Celsius

CFR Code of Federal Regulations

CW Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt

DC Direct Current

DSSS Direct Sequence Spread Spectrum
Equivalent Isotropically Radiated Power

ERP Effective Radiated Power EUT Equipment Under Test

FCC Federal Communications Commission FHSS Frequency Hopping Spread Spectrum

Hz hertz

IC Industry Canada

ITU International Telecommunication Union

LBT Listen Before Talk

m metre max maximum

MIMO Multiple Input and Multiple Output

min minimum

MRA Mutual Recognition Agreement

N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format

Pt-mptPoint-to-multipointPt-ptPoint-to-pointRFRadio FrequencyRHRelative HumidityRMSRoot Mean Square

Rx receiver second

SVSWR Site Voltage Standing Wave Ratio

Tx transmitter

UKAS United Kingdom Accreditation Service

 $\begin{array}{ll} \textbf{V} & \text{volt} \\ \textbf{W} & \text{watt} \\ \textbf{\Omega} & \text{ohm} \end{array}$

RF915 6.0 Page 10 of 38

Report Number: TRA-036043-47-01B

7 Equipment Under Test

7.1 EUT Identification

Name: EkkoSensor

Serial Numbers: 3, 4, 9 and 11

Model Number: FS-THX-02, FS-TSI-02, FS-TDX-02
Software Revision: Production V62, EMC_Test
Build Level / Revision Number: Production v0.5

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Not Applicable - No support/monitoring equipment required.

7.3 EUT Mode of Operation

7.3.1 Transmission

The mode of operation for transmit tests was as follows:-

The EUT was preprogrammed to produce a modulated carrier when powered up at 915.0 MHz

RF915 6.0 Page 11 of 38

7.4 EUT Radio Parameters

7.4.1 General

Frequency of operation:	915.0 MHz	
Modulation type(s):	GFSK	
Occupied channel bandwidth(s):	Wideband	
Channel spacing:	Single channel	
ITU emission designator(s):	F1D	
Declared output power(s):	10 dBm	
Nominal Supply Voltage:	3.6 Vdc	
Duty cycle:	100% for test	

7.4.2 Antennas

Туре:	Ethertronics M620720
Frequency range:	ISM 868/915
Impedance:	50 Ohms
Gain:	2.6 dBi gain
Polarisation:	Linear
Beam width:	Omni
Connector type:	PCB Mounted
Length:	6mm
Weight:	0.1/g
Environmental limits:	Not Stated
Mounting:	Solder

RF915 6.0 Page 12 of 38

7.4.3 Product specific declarations

Multiple antenna configuration(s), e.g. MIMO:	Single Antenna
Fixed pt-pt operations (yes/no):	No
Installation manual advice on pt-pt operational restrictions (yes/no):	Not Applicable
Fixed pt-mpt operations (yes/no):	No
Simultaneous tx (yes/no):	No

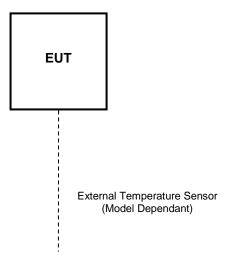
7.5 EUT Description

The system consists of multiple battery powered temperature and humidity sensors (EkkoSensors) communicating over the RF link back to the EkkoHub which processes the received data and forwards it over the Ethernet interface to data processing software.

This report cover the EkkoSensors operating at 915.0 MHz

RF915 6.0 Page 13 of 38

8 Modifications


No modifications were performed during this assessment.

RF915 6.0 Page 14 of 38

9 EUT Test Setup

9.1 Block Diagram

The following diagram shows basic EUT setup, the device is a standalone battery powered device:

RF915 6.0 Page 15 of 38

9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:

RF915 6.0 Page 16 of 38

10 General Technical Parameters

10.1 Normal Conditions

The E U T was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was ½AA 3.6 Vdc from a lithium-thionyl chloride battery (SAFT LS14250) supplied by the manufacturer.

10.2 Varying Test Conditions

There are no specific frequency stability requirements for the type of device. The results contained in this report demonstrate that the occupied bandwidth is contained within the authorised band and the manufacturer has declared sufficient frequency stability (refer to section 7.4).

Variation of supply voltage is required to ensure stability of the declared output power. During carrier power testing the following variations were made:

	Category	Nominal	Variation
	Mains	110 V ac +/-2 %	85 % and 115 %
\boxtimes	Battery	New battery	N/A

RF915 6.0 Page 17 of 38

Report Number: TRA-036043-47-01B

11 Radiated emissions

11.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location: Element Hull
Test Chamber: Wireless Lab 2

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6

EUT Frequency Measured: 915.0 MHz
EUT Channel Bandwidths: Wideband
Deviations From Standard: None

Measurement BW: 30 MHz to 1 GHz: 120 kHz

Above 1 GHz: 1 MHz

Measurement Detector: Up to 1 GHz: quasi-peak

Above 1 GHz: RMS average and Peak

Environmental Conditions (Normal Environment)

Temperature: 22 °C +15 °C to +35 °C (as declared)

Humidity: 50 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.6 V dc Battery 3.6 V

11.3 Test Limit

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength (μV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

RF915 6.0 Page 18 of 38

11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in dBµV/m at the regulatory distance, using:

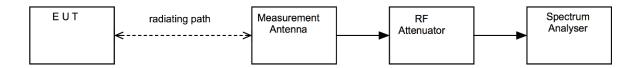
$$FS = PR + CL + AF - PA + DC - CF$$

Where,

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

CL is the cable loss in dB;

AF is the test antenna factor in dB/m;


PA is the pre-amplifier gain in dB (where used);

DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);

CF is the distance factor in dB (where measurement distance different to limit distance);

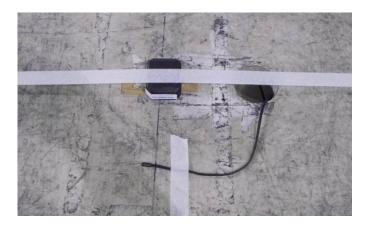

This field strength value is then compared with the regulatory limit.

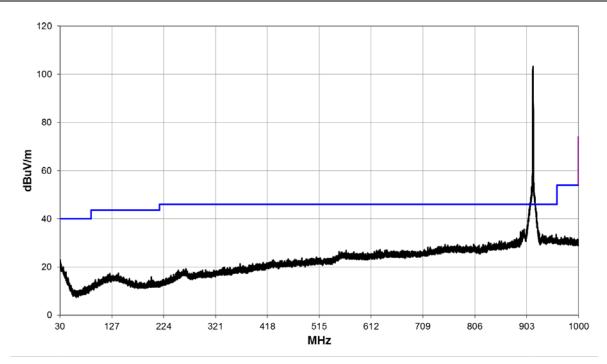
Figure i Test Setup

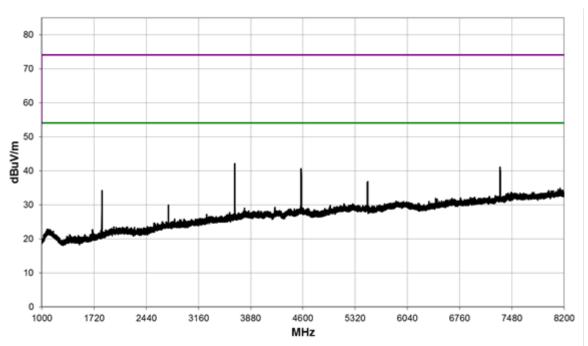
RF915 6.0 Page 19 of 38

11.5 Test Set-up Photograph

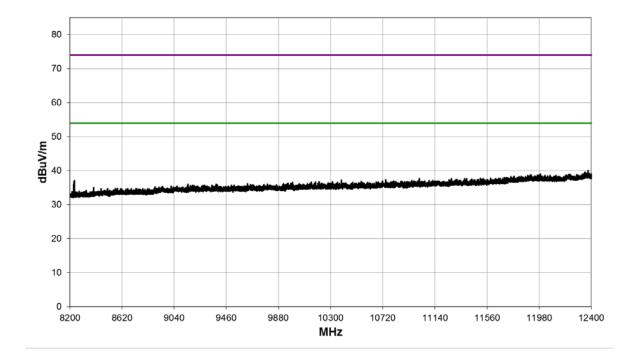
RF915 6.0 Page 20 of 38

11.6 Test Equipment

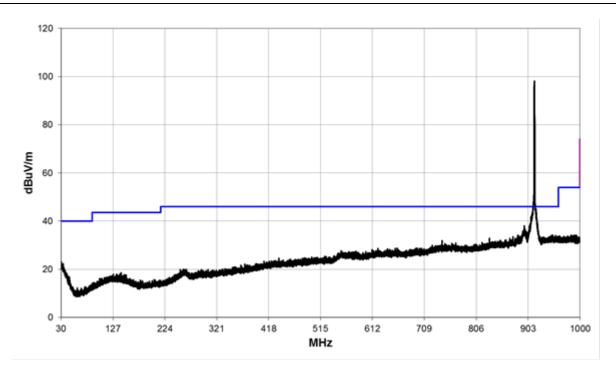

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
Pre-Amp (9kHz – 1GHz)	Sonoma	310	REF927	2019-05-22
Spectrum Analyser	R&S	FSU46	U281	2018-09-19
Bilog Antenna	Chase	CBL6111B	REF2218	2019-11-06
Ferrite Lined Chamber	Rainford	ATS	REF886	2019-07-24
Pre-Amp (1 – 26.5GHz)	Agilent	8449B	REF913	2019-02-07
Horn Antenna	EMCO	3115	RFG129	2020-02-12

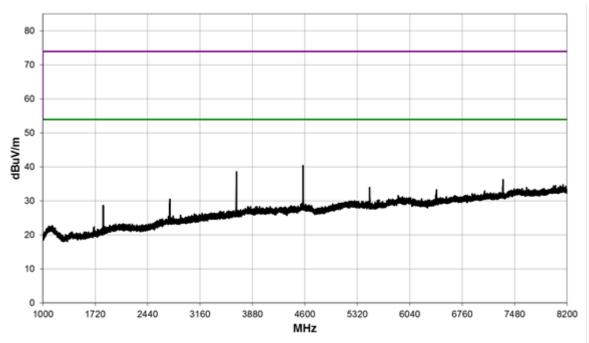

RF915 6.0 Page 21 of 38

11.7 Test Results

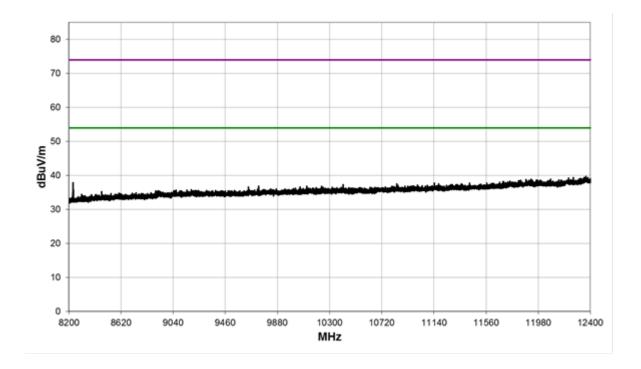

FS-THX-02

High Power; Frequency 915 MHz										
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Distance Extrap'n Factor (dB)	Field Strength (dBµV/m)	Field Strength (µV/m)	Limit (μV/m)
The plots below are pre-scans demonstrating no emissions above the noise floor, the noise floor is 10dB clear from the limit.										

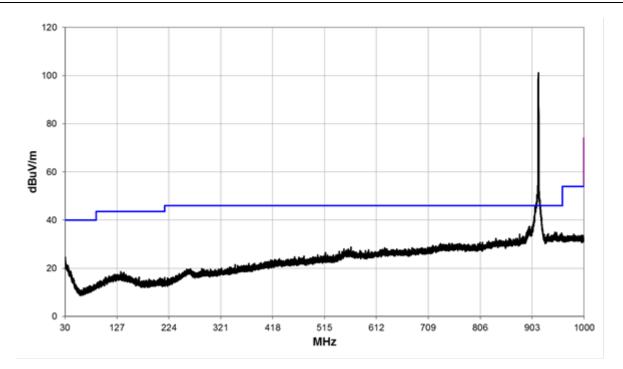

RF915 6.0 Page 22 of 38

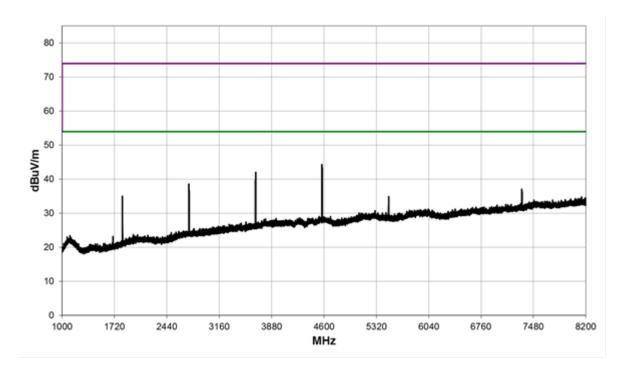


RF915 6.0 Page 23 of 38

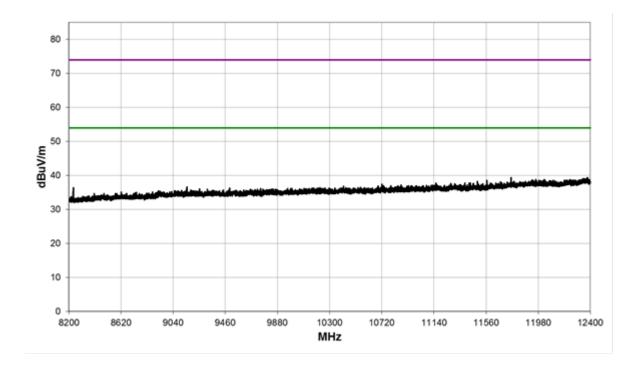

FS-TSI-02

High Power; Frequency 915 MHz										
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Distance Extrap'n Factor (dB)	Field Strength (dBµV/m)	Field Strength (µV/m)	Limit (μV/m)
The plots below are pre-scans demonstrating no emissions above the noise floor, the noise floor is 10dB clear from the limit.										


RF915 6.0 Page 24 of 38



RF915 6.0 Page 25 of 38


FS-TDX-02

High Power; Frequency 915 MHz										
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Distance Extrap'n Factor (dB)	Field Strength (dBµV/m)	Field Strength (μV/m)	Limit (μV/m)
Т	The plots below are pre-scans demonstrating no emissions above the noise floor, the noise floor is 10dB clear from the limit.									

RF915 6.0 Page 26 of 38

RF915 6.0 Page 27 of 38

12 Occupied Bandwidth

12.1 Definition

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

12.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 11.8

EUT Frequency Measured: 915.0 MHz
EUT Channel Bandwidths: Wideband

Deviations From Standard:

Measurement BW:

Spectrum Analyzer Video BW:

Measurement Span:

Measurement Detector:

None

100 kHz

300 kHz

Measurement Span:

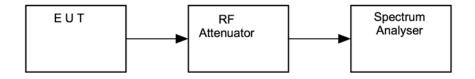
5 MHz

Environmental Conditions (Normal Environment)

Temperature: 22 °C +15 °C to +35 °C (as declared)

Humidity: 50 % RH 20 % RH to 75 % RH (as declared)

12.3 Test Limit

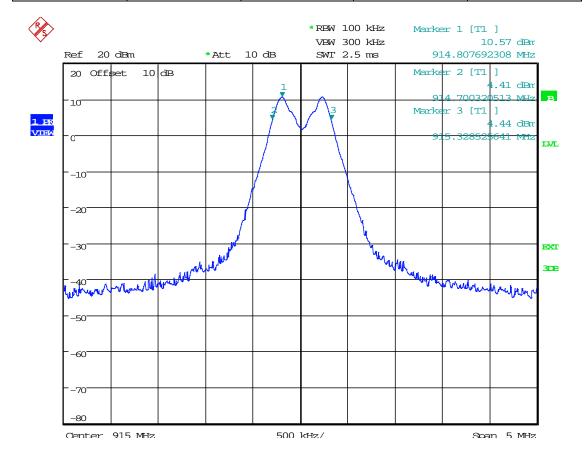

The minimum -6 dB bandwidth shall be at least 500 kHz.

12.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iii, the bandwidth of the EUT was measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure iii Test Setup


RF915 6.0 Page 28 of 38

12.5 Test Equipment

Equipment		Equipment	Element	Due For
Type	Manufacturer	Description	No	Calibration
Spectrum Analyser	R&S	FSU26	U405	2018-09-20
Attenuator	AtlantecRF	10 dB	U643	In Use

12.6 Test Results

Channel F _L Frequency (MHz)		F _H (MHz)	6dB Bandwidth (kHz)	Result	
915.0	914.7003205	915.3285256	628.205128	PASS	

RF915 6.0 Page 29 of 38

13 Maximum peak conducted output power

13.1 Definition

The maximum peak conducted output power is defined as the maximum power level measured with a peak detector using a filter with width and shape of which is sufficient to accept the signal bandwidth.

The maximum conducted output power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level.

13.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 11.9.1

EUT Frequency Measured: 915 MHz
EUT Channel Bandwidths: Wideband
Deviations From Standard: None
Measurement BW: 2 MHz

Spectrum Analyzer Video BW: (requirement at least 3x RBW)

Measurement Detector: Peak

Environmental Conditions (Normal Environment)

Temperature: 22 °C +15 °C to +35 °C (as declared)

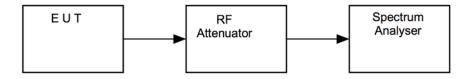
Humidity: 50 % RH 20 % RH to 75 % RH (as declared)

13.3 Test Limit

For systems employing digital modulation techniques operating in the bands 902 to 928 MHz, 2400 to 2483.5 MHz and 5725 to 5850 MHz, the maximum peak conducted output power shall not exceed 1 W.

10 MHz

RF915 6.0 Page 30 of 38


Report Number: TRA-036043-47-01B

13.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iv, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure iv Test Setup

13.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
Spectrum Analyser	R&S	FSU26	U405	2018-09-20
Attenuator	AtlantecRF	10 dB	U643	In Use

13.6 Test Results

Channel Frequency (MHz)	Analyzer Level (dBm)	Cable loss (dB)	Power (mW)	Result
915.0 MHz	0.69	10.00	11.72	PASS

RF915 6.0 Page 31 of 38

14 Out-of-band and conducted spurious emissions

14.1 Definition

Out-of-band emission.

Emission on a frequency or frequencies immediately outside the necessary bandwidth that results from the modulation process but excluding spurious emissions.

Spurious emission.

Emission on a frequency or frequencies that are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products, and frequency conversion products, but exclude out-of-band emissions.

14.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 11.11

EUT Frequency Measured: 915.0 MHz
EUT Channel Bandwidths: Wideband

Deviations From Standard:

Measurement BW:

Spectrum Analyzer Video BW:

None

100 kHz

300 kHz

(requirement at least 3x RBW)

Measurement Detector: Peak

Measurement Range: 9 kHz to 10 GHz

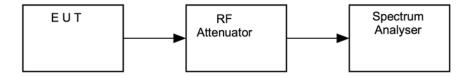
Environmental Conditions (Normal Environment)

Temperature: 22 °C +15 °C to +35 °C (as declared)

Humidity: 50 % RH 20 % RH to 75 % RH (as declared)

14.3 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in FCC 47CFR15.209(a) is not required.

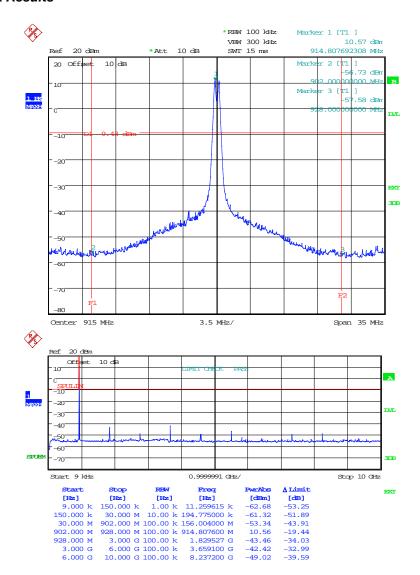

RF915 6.0 Page 32 of 38

14.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure v, the emissions from the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure v Test Setup



14.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
Spectrum Analyser	R&S	FSU26	U405	2018-09-20
Attenuator	AtlantecRF	10 dB	U643	In Use

RF915 6.0 Page 33 of 38

14.6 Test Results

Channel Frequency (MHz)	Emission Frequency (MHz)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result	
915.0 N/A 10.57 N/A N/A P					PASS	
No Significant Emissions Within 20 dB of the limit						

RF915 6.0 Page 34 of 38

15 Power spectral density

15.1 Definition

The power per unit bandwidth.

15.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 11.10

EUT Frequency Measured: 915.0 MHz
EUT Channel Bandwidths: Wideband
Deviations From Standard: None
Measurement BW: 3 kHz

Spectrum Analyzer Video BW: (requirement at least 3x RBW)

Measurement Span: 1 MHz

(requirement 1.5 times Channel BW)

Measurement Detector: Peak

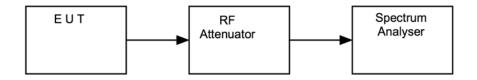
Environmental Conditions (Normal Environment)

Temperature: 22 °C +15 °C to +35 °C (as declared)

Humidity: 50 % RH 20 % RH to 75 % RH (as declared)

15.3 Test Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

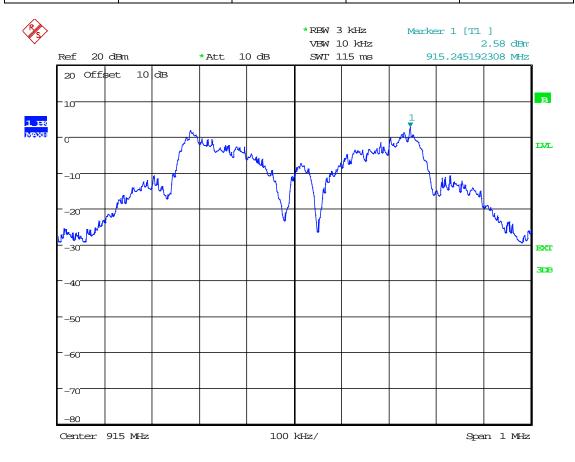

10 kHz

15.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vi, the peak emission of the EUT was measured on a spectrum analyser, with path losses taken into account.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure vi Test Setup


RF915 6.0 Page 35 of 38

15.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
Spectrum Analyser	R&S	FSU26	U405	2018-09-20
Attenuator	AtlantecRF	10 dB	U643	In Use

15.6 Test Results

Channel Frequency (MHz)	Analyzer Level (dBm)	Cable loss (dB)	Power (dBm)	Result
915.0 MHz	-7.42	10.00	2.58	PASS

RF915 6.0 Page 36 of 38

16 Measurement Uncertainty

Calculated Measurement Uncertainties

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence:

[1] Radiated spurious emissions

Uncertainty in test result (30 MHz to 1 GHz) = **4.75 dB** Uncertainty in test result (1 GHz to 18 GHz) = **4.46 dB**

[2] AC power line conducted emissions

Uncertainty in test result = **3.2 dB**

[3] Occupied bandwidth

Uncertainty in test result = 15.58 %

[4] Conducted carrier power

Uncertainty in test result (Power Meter) = 0.93 dB

[5] Conducted RF power out-of-band

Uncertainty in test result – up to 8.1 GHz = 3.31 dBUncertainty in test result – 8.1 GHz to 15.3 GHz = 4.43 dB

[6] Radiated RF power out-of-band

Uncertainty in test result (30 MHz to 1 GHz) = **4.75 dB** Uncertainty in test result (1 GHz to 18 GHz) = **4.46 dB**

[7] Power spectral density

Uncertainty in test result (Spectrum Analyser) = 3.11 dB

[8] ERP / EIRP

Uncertainty in test result (Laboratory) = 4.71 dBUncertainty in test result (Pershore OATS) = 4.26 dB

RF915 6.0 Page 37 of 38

17 RF Exposure

KDB 447498 - Section 4.3 General SAR test reduction and exclusion guidance

For Standalone SAR exclusion consideration, when SAR exclusion Threshold requirement in KDB 447498 is satisfied, standalone SAR evaluation for general population exposure conditions by measurement or numerical simulation is not required.

In the frequency range below 100 MHz to 6 GHz and test separation distance of 50mm, the SAR Test Exclusion Threshold for operation at 915.0 will be determined as follows

SAR Exclusion Threshold (SARET)

SAR Exclusion Threshold = Step 1 + Step 2

Step 1

$$NT = [(MP/TSD^A) * \sqrt{f_{GHz}}]$$

NT = Numeric Threshold (3.0 for 1-g SAR and 7.5 for 10-g SAR)

MP = Max Power of channel (mW) (inc tune up)

TSD^A = Min Test separation Distance or 50mm (whichever is lower) = 50

We can transpose this formula to allow us to find the maximum power of a channel allowed and compare this to the measured maximum power.

=
$$[(NT \times TSD^A) / \sqrt{f_{GHz}}]$$

For Distances Greater than 50 mm Step 2 applies

Step 2

$$(TSD^B - 50mm) * 10$$

Where:

TSD^B = Min Test separation Distance (mm) = 50

Operating Frequency 915 MHz

```
MP= [(3.0 \times 50) / \sqrt{0.915}] + \{(50 - 50) * [915/150]\}
MP= [150 / \sqrt{0.915}] + \{0 * 6.11\}
MP= 156.8 \text{ mW}
```

The calculated EIRP 21.33mW (Peak) is less than the SAR Exclusion Threshold of 156.8mW.

RF915 6.0 Page 38 of 38