

FCC TEST REPORT
FOR
XINYING TOYS FACTORY
REMOTE CONTROL CAR TOY

Test Model: AJ11-11

Additional Model No.: Please refer to page 6

Prepared for
Address

: XINYING TOYS FACTORY
: NANWAN INDUSTRIAL, LIANXIA, CHEGNHAI DISTRICT,
SHANTOU CITY, GUANGDONG PROVINCE, CHINA

Prepared by
Address

: Shenzhen LCS Compliance Testing Laboratory Ltd.
: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,
Bao'an District, Shenzhen, Guangdong, China

Tel

: (+86)755-82591330

Fax

: (+86)755-82591332

Web

: www.LCS-cert.com

Mail

: webmaster@LCS-cert.com

Date of receipt of test sample

: June 05, 2018

Number of tested samples

: 1

Serial number

: Prototype

Date of Test

: June 05, 2018~June 25, 2018

Date of Report

: June 28, 2018

FCC TEST REPORT
FCC CFR 47 PART 15 C (15.227)

Report Reference No. : LCS180605024AEA

Date of Issue : June 28, 2018

Testing Laboratory Name : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure : Full application of Harmonised standards ■

Partial application of Harmonised standards □

Other standard testing method □

Applicant's Name : XINYING TOYS FACTORY

Address : NANWAN INDUSTRIAL, LIANXIA, CHEGNHAI DISTRICT, SHANTOU CITY, GUANGDONG PROVINCE, CHINA

Test Specification

Standard : FCC CFR 47 PART 15 C (15.227)

Test Report Form No. : LCSEMC-1.0

TRF Originator : Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF : Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description : REMOTE CONTROL CAR TOY

Trade Mark : N/A

Test Model : AJ11-11

Ratings : DC 3.0V by 2*1.5V AA batteries

Result : **Positive**

Compiled by:

Aking Jin / File administrators

Supervised by:

Calvin Weng / Technique principal

Approved by:

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No. : LCS180605024AEA	June 28, 2018 Date of issue
-----------------------------------	--------------------------------

Test Model..... : AJ11-11

EUT..... : REMOTE CONTROL CAR TOY

Applicant..... : XINYING TOYS FACTORY

Address..... : NANWAN INDUSTRIAL, LIANXIA, CHEGNHAI DISTRICT,
SHANTOU CITY, GUANGDONG PROVINCE, CHINA

Telephone..... : /

Fax..... : /

Manufacturer..... : XINYING TOYS FACTORY

Address..... : NANWAN INDUSTRIAL, LIANXIA, CHEGNHAI DISTRICT,
SHANTOU CITY, GUANGDONG PROVINCE, CHINA

Telephone..... : /

Fax..... : /

Factory..... : XINYING TOYS FACTORY

Address..... : NANWAN INDUSTRIAL, LIANXIA, CHEGNHAI DISTRICT,
SHANTOU CITY, GUANGDONG PROVINCE, CHINA

Telephone..... : /

Fax..... : /

Test Result	Positive
--------------------	-----------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	June 28, 2018	Initial Issue	Gavin Liang

TABLE OF CONTENTS

Description	Page
1. GENERAL INFORMATION	6
1.1 Description of Device (EUT)	6
1.2 Support equipment List	6
1.3 External I/O	6
1.4 Description of Test Facility.....	6
1.5 Statement of The Measurement Uncertainty.....	7
1.6 Measurement Uncertainty.....	7
1.7 Description of Test Modes	7
2. TEST METHODOLOGY	8
2.1 EUT Configuration.....	8
2.2 EUT Exercise	8
2.3 General Test Procedures.....	8
3. SYSTEM TEST CONFIGURATION	9
3.1 Justification.....	9
3.2 EUT Exercise Software	9
3.3 Special Accessories.....	9
3.4 Block Diagram/Schematics.....	9
3.5 Equipment Modifications	9
3.6 Test Setup	9
4. SUMMARY OF TEST RESULT	10
5. RADIATED MEASUREMENT	11
6. BANDWIDTH OF THE OPERATING FREQUENCY	17
7. ANTENNA REQUIREMENT	18
8. TEST SETUP PHOTOGRAPHS OF EUT	19
9. EXTERIOR PHOTOGRAPHS OF THE EUT	19
10. INTERIOR PHOTOGRAPHS OF THE EUT	19
11. LIST OF MEASURING EQUIPMENT	20

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT : REMOTE CONTROL CAR TOY
Test Model : AJ11-11
Additional Model No. : 725679, PT2225,PT2221, AJ11-5, AJ11, AJ10, AJ12, AJ13, AJ14
Model Declaration : PCB board, structure and internal of these model(s) are the same, So no additional models were tested
Hardware Version : 811TA
Software Version : TX2S
Power Supply : DC 3.0V by 2*1.5V AA batteries
Transmitting Frequency : 27.145 MHz
Modulation Type : ASK
Antenna Description : External Antenna, 3.0dBi (Max.)

1.2 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
--	--	--	--	--

1.3 External I/O

I/O Port Description	Quantity	Cable
--	--	--

1.4 Description of Test Facility

FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

NVLAP Registration Code is 600167-0

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10:2013 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5 Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 “Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements” and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6 Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
Radiation Uncertainty	:	9KHz~30MHz	±3.10dB	(1)
		30MHz~200MHz	±2.96dB	(1)
		200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
		26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7 Description of Test Modes

The EUT was set to transmit at 100% duty cycle for testing.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC CFR PART 15C 15.227.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.227 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

2.3.1 Conducted Emissions (N/A)

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013.

3. SYSTEM TEST CONFIGURATION

3.1 Justification

N/A.

3.2 EUT Exercise Software

N/A.

3.3 Special Accessories

N/A.

3.4 Block Diagram/Schematics

Please refer to the report.

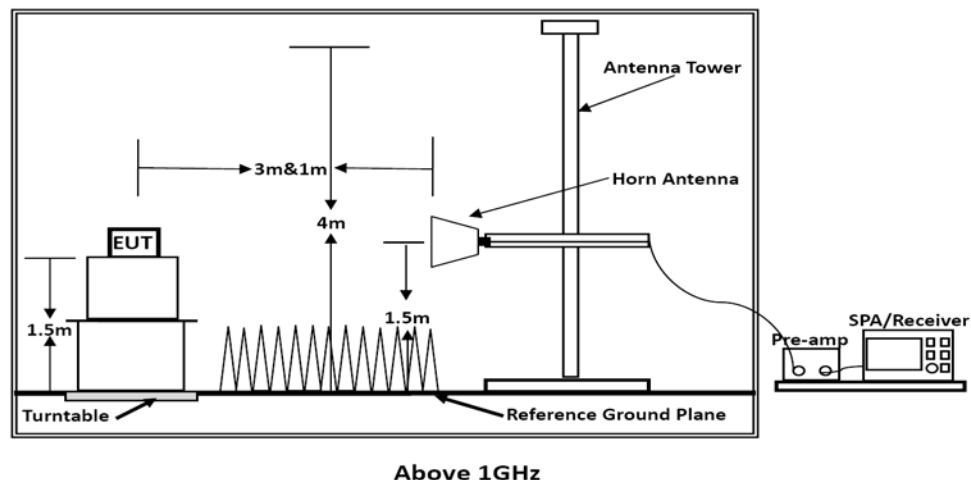
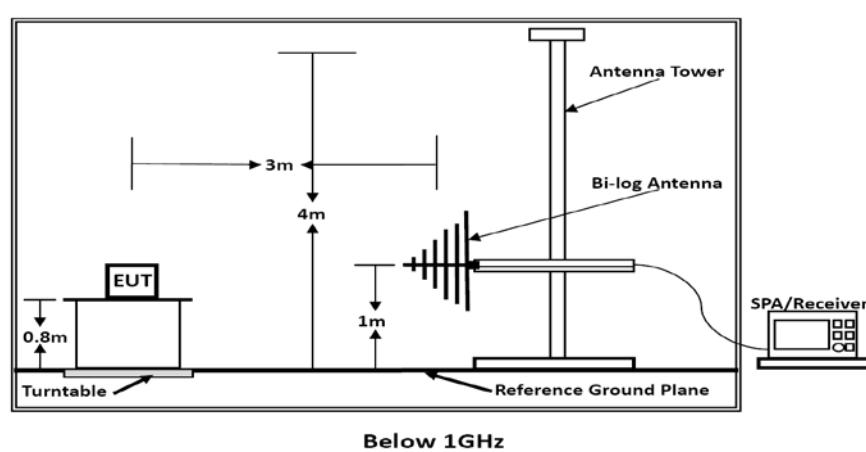
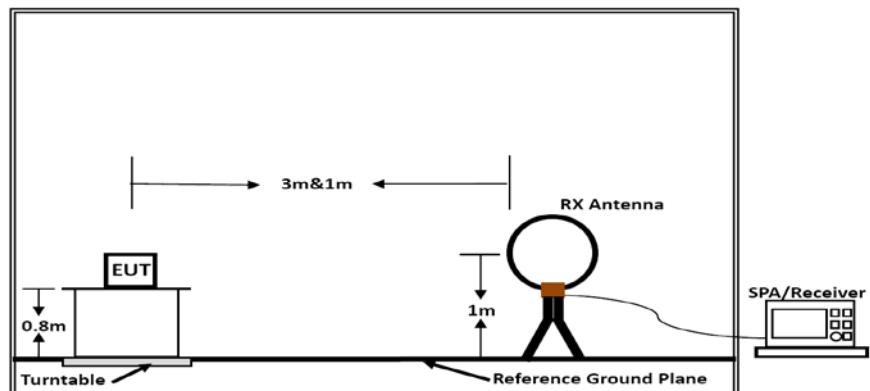
3.5 Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6 Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULT




FCC Rules	Test Items	Result
15.207	Power-line Conducted Emissions	N/A*
15.227	Fundamental and Harmonics	PASS
15.205 & 15.209	Radiated Emissions	PASS
15.215	20dB Bandwidth	PASS
15.203	Antenna Requirement	PASS

Remark:

N/A*: Not Applicable.

5. RADIATED MEASUREMENT

5.1 Block Diagram of Test Setup

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade from 3m to 1m.

Distance extrapolation factor = $20 \log (\text{specific distance [3m]} / \text{test distance [1.5m]})$ (dB);
 Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

5.2 Radiated Emission Limit

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	AJ11-110-4400	(2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency (MHz)	Limit (dBuV/m)	Distance (m)
0.009-0.490	$20\log(2400/F(KHz))+40\log(300/3)$	3
0.490-1.705	$20\log(2400/F(KHz))+40\log(30/3)$	3
1.705-30.0	49.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3

5.3. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

5.4. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premereasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 0.8 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

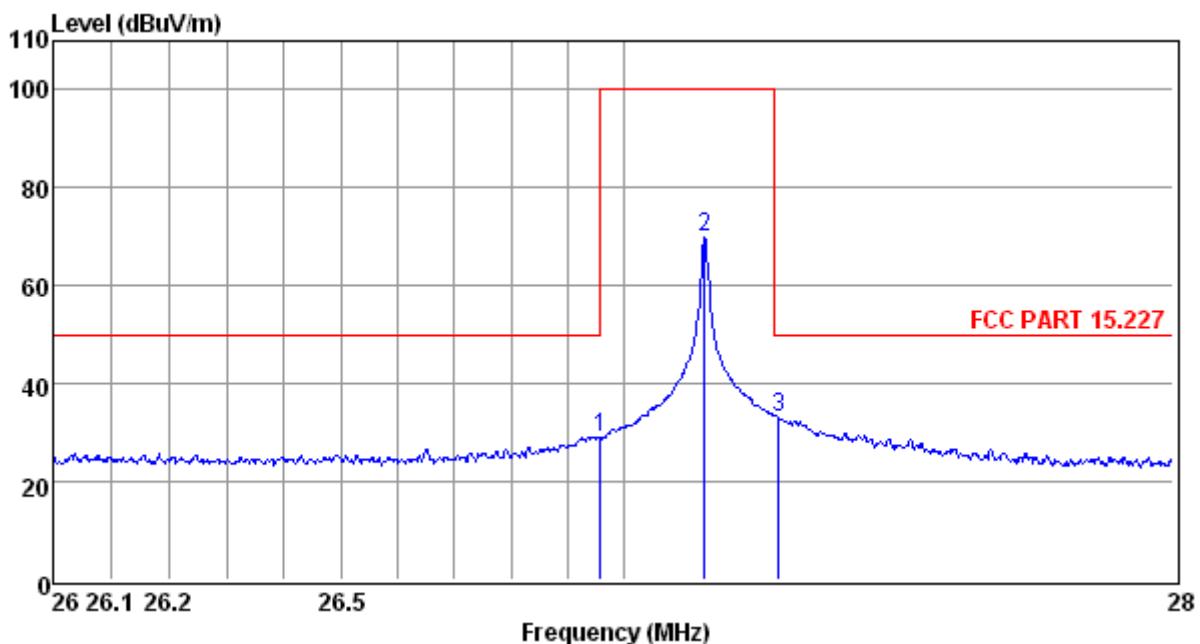
Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premeasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 3 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:


- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm 45^\circ$) and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP detector with an EMI receiver.
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.6. Results of Radiated Emissions (9 KHz~30MHz)

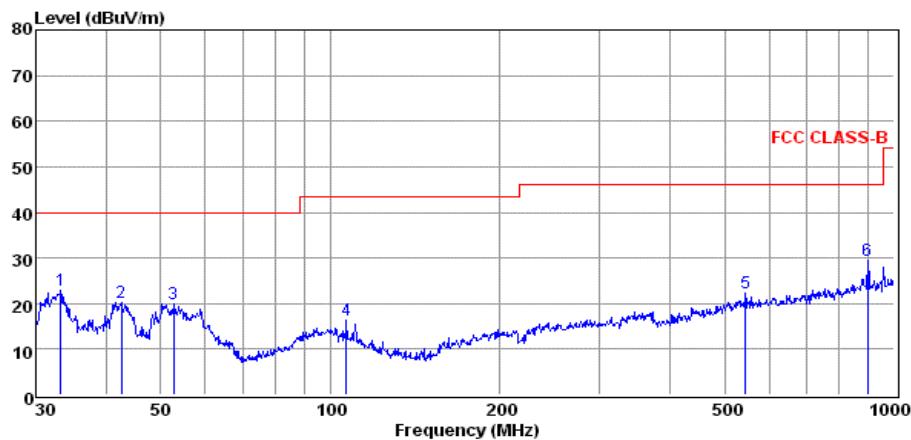
90 degree

28

	Frequency (MHz)	Reading dBuV	Cable Loss dB	Antenna factor dB/m	Measured dBuV/m	Limit dBuV/m	Over dB	Remark
1	26.96	8.70	0.30	19.95	28.95	50.00	-21.05	Peak
2*	27.145	49.86	0.30	19.95	70.11	100.00	-29.89	Peak
3	27.28	13.01	0.30	19.56	33.27	50.00	-16.73	Peak

Note:

1. All reading are Peak values.
2. Measured = Reading + Antenna factor + Cable loss.
3. Not recorded others emission from 9 KHz to 30 MHz as the emission that at least 20 dB below limits are not reported.
4. If peak values lower than Average limit, no need measured Average again.
5. ** is Fundamental frequency.
6. Measured antenna at both 0 degree and 90 degree, recorded worst case at 90 degree.

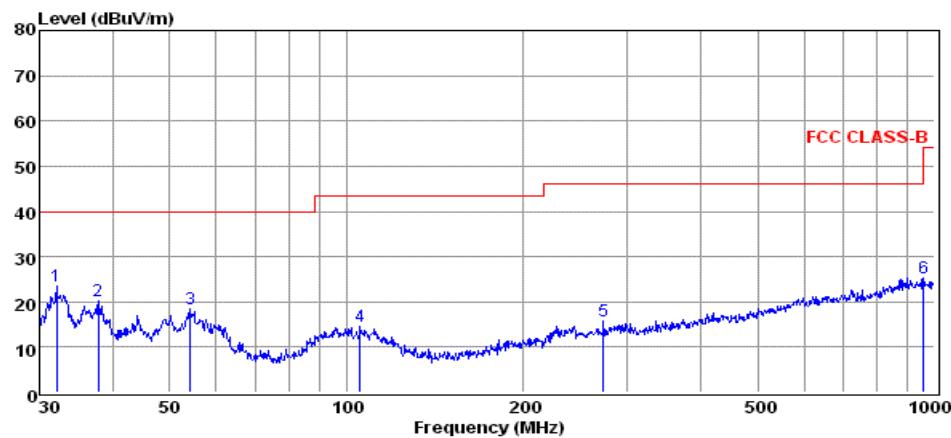

5.7. Results of Radiated Emissions (30 MHz~1000 MHz)

PASS.

Only record the worst test result in this report.

The test data please refer to following page.

Vertical



Env./Ins: 23.8 °C / 53.4 %
pol: VERTICAL

Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark	
							MHz	dBuV
1	33.21	10.27	0.37	12.31	22.95	40.00	-17.05	QP
2	42.60	6.23	0.50	13.56	20.29	40.00	-19.71	QP
3	52.76	6.31	0.46	13.12	19.89	40.00	-20.11	QP
4	106.76	3.08	0.68	12.54	16.30	43.50	-27.20	QP
5	545.18	3.43	1.44	17.42	22.29	46.00	-23.71	QP
6	897.00	6.32	1.97	21.06	29.35	46.00	-16.65	QP

Note: 1. All readings are Quasi-peak values.
2. Measured= Reading + Antenna Factor + Cable Loss
3. The emission that ate 20db blow the official limit are not reported

Horizontal

Env./Ins: 23.8 °C / 53.4 %
pol: HORIZONTAL

Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark	
							MHz	dBuV
1	32.07	10.86	0.37	12.32	23.55	40.00	-16.45	QP
2	37.81	6.73	0.38	13.02	20.13	40.00	-19.87	QP
3	54.26	4.98	0.46	13.05	18.49	40.00	-21.51	QP
4	105.27	1.14	0.61	12.68	14.43	43.50	-29.07	QP
5	273.23	2.29	1.04	12.46	15.79	46.00	-30.21	QP
6	958.79	2.04	1.90	21.47	25.41	46.00	-20.59	QP

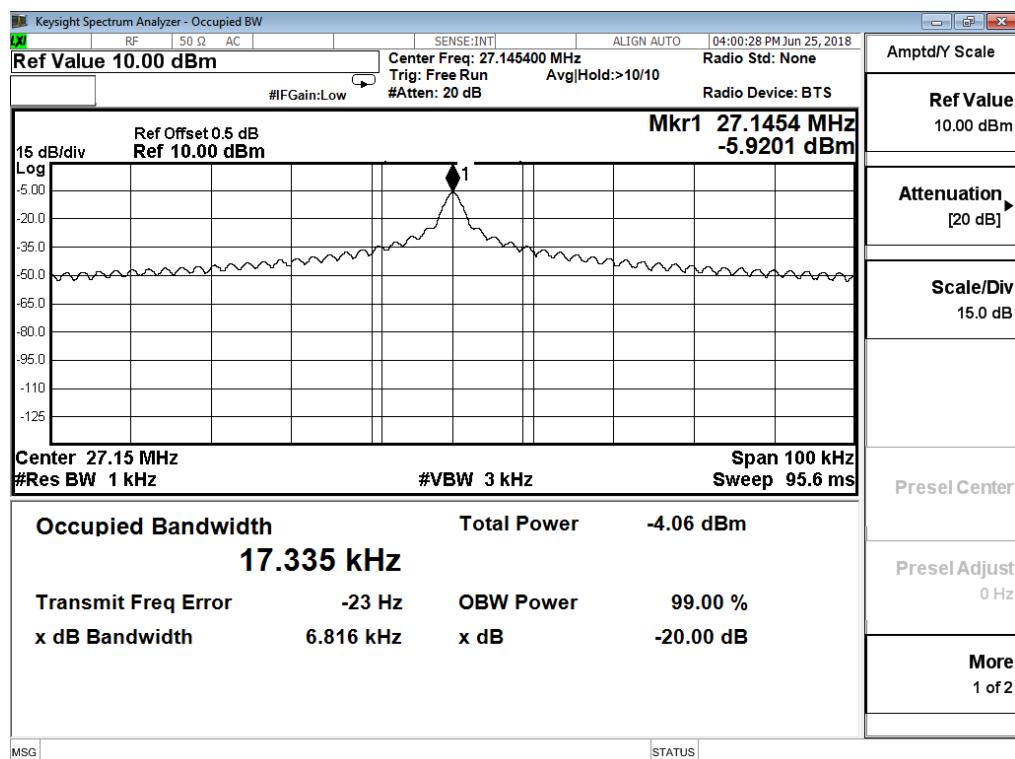
Note: 1. All readings are Quasi-peak values.
2. Measured= Reading + Antenna Factor + Cable Loss
3. The emission that ate 20db blow the official limit are not reported

***Note:

Pre-scan all modes and recorded the worst case results in this report.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level = Level.


6. BANDWIDTH OF THE OPERATING FREQUENCY

6.1 Standard Applicable

According to its specifications, the EUT must comply with the 20dB Bandwidth measurement of the Section 15.215 under the FCC Rules Part 15 Subpart C.

6.2 Test Result

EUT	REMOTE CONTROL CAR TOY	
RBW	1KHz	
VBW	3KHz	
SPAN	100KHz	
Carrier Freq. (MHz)	20dB Bandwidth (KHz)	Limit (KHz)
27.14	6.816	None

7. ANTENNA REQUIREMENT

7.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

7.2 Antenna Connected Construction

7.2.2.1. Standard Applicable

According to § 15.203 & RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.2.2.2. Antenna Connector Construction

The gains of antenna used for transmitting is 3.00 dBi, and the antenna is an external and ingrate antenna and no consideration of replacement, meets FCC part §15.203 antenna requirement. Please see EUT photo for details.

8. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

9. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

10. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

11. LIST OF MEASURING EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Meter	R&S	NRVS	100444	2018-06-16	2019-06-15
2	Power Sensor	R&S	NRV-Z81	100458	2018-06-16	2019-06-15
3	Power Sensor	R&S	NRV-Z32	10057	2018-06-16	2019-06-15
4	EPM Series Power Meter	Agilent	E4419B	MY45104493	2018-06-16	2019-06-15
5	E-SERIES AVG POWER SENSOR	Agilent	E9301H	MY41495234	2018-06-16	2019-06-15
6	ESA-E SERIES SPECTRUM ANALYZER	Agilent	E4407B	MY41440754	2017-11-17	2018-11-16
7	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2018-06-16	2019-06-15
8	SPECTRUM ANALYZER	R&S	FSP	100503	2018-06-16	2019-06-15
9	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2018-06-16	2019-06-15
10	Positioning Controller	MF	MF-7082	/	2018-06-16	2019-06-15
11	EMI Test Software	AUDIX	E3	/	N/A	N/A
12	EMI Test Receiver	R&S	ESR 7	101181	2018-06-16	2019-06-15
13	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-17	2018-11-16
14	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018-06-22	2019-06-21
15	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-05-02	2019-05-01
16	Horn Antenna	EMCO	3115	6741	2018-06-22	2019-06-21
17	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2017-09-21	2018-09-20
18	Broadband Preamplifier	SCHWARZBECK	BBV 9719	9719-025	2017-09-21	2018-09-20
19	RF Cable-R03m	Jye Bao	RG142	CB021	2018-06-16	2019-06-15
20	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2018-06-16	2019-06-15
21	TEST RECEIVER	R&S	ESCI	101142	2018-06-16	2019-06-15
22	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2018-06-16	2019-06-15
23	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-0032	2018-06-16	2019-06-15
24	Artificial Mains	R&S	ENV216	101288	2018-06-16	2019-06-15
25	RF Control Unit	JS Tonscend Corporation	JS0806-2	178060073	2017-10-28	2018-10-27
26	JS1120-3 BT/WIFI Test Software	JS Tonscend Corporation	JS1120-3	/	N/A	N/A

Note: All equipment is calibrated through GUANGZHOU LISAI CALIBRATION AND TEST CO.,LTD.

-----THE END OF REPORT-----