

FCC Test Report

Report No.: AGC06164200504FE02

FCC ID : 2AP3QFG1921

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION : smart scale

BRAND NAME : N/A

MODEL NAME : FG1921(LB), FG263LB, FG1912RB, FG1921LB, FG1921RB, FG220LB, FG223LB, FG850LB, FG830LB, FG315LB, FG400RB, FG370RB, FB371UB, FG430RB, FG260RB, FG260WB, FG266RB, FG266WB, FG460RB, FG460WB, FG210RB, FG270RB, FG270WB, FI270RB, FI270WB, FG290RB, FG290WB, FI290RB, FI290WB, FG300RB, FG300WB, FI300RB, FI300WB, FG320LB, FI320LB, FG266RB-A, FG1921, FG265, FG266, FG430, FG1921B, FG1921WB.

APPLICANT : Guangdong Welland Technology Co, Ltd

DATE OF ISSUE : Jun. 19, 2020

STANDARD(S) : FCC Part 15.247

REPORT VERSION : V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jun. 19, 2020	Valid	Initial Release

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: <http://cn.agc-cert.com/>

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE.....	5
2. GENERAL INFORMATION.....	6
2.1 PRODUCT DESCRIPTION	6
2.2. TABLE OF CARRIER FREQUENCYS	6
2.3 RELATED SUBMITTAL(S)/GRANT(S).....	7
2.4 TEST METHODOLOGY	7
2.5 SPECIAL ACCESSORIES.....	7
2.6 EQUIPMENT MODIFICATIONS.....	7
3. MEASUREMENT UNCERTAINTY	8
4. DESCRIPTION OF TEST MODES	9
5. SYSTEM TEST CONFIGURATION.....	10
5.1 CONFIGURATION OF TESTED SYSTEM.....	10
5.2 EQUIPMENT USED IN TESTED SYSTEM	10
5.3. SUMMARY OF TEST RESULTS	10
6. TEST FACILITY	11
7. PEAK OUTPUT POWER	12
7.1. MEASUREMENT PROCEDURE.....	12
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	12
7.3. LIMITS AND MEASUREMENT RESULT.....	13
8. 6 DB BANDWIDTH.....	15
8.1. MEASUREMENT PROCEDURE.....	15
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	15
8.3. LIMITS AND MEASUREMENT RESULTS	15
9. CONDUCTED SPURIOUS EMISSION.....	17
9.1. MEASUREMENT PROCEDURE.....	17
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	17
9.3. MEASUREMENT EQUIPMENT USED	17
9.4. LIMITS AND MEASUREMENT RESULT.....	17
10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	22

10.1 MEASUREMENT PROCEDURE	22
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	22
10.3 MEASUREMENT EQUIPMENT USED	22
10.4 LIMITS AND MEASUREMENT RESULT	22
11. RADIATED EMISSION	24
11.1. MEASUREMENT PROCEDURE	24
11.2. TEST SETUP	25
11.3. LIMITS AND MEASUREMENT RESULT	26
11.4. TEST RESULT	26
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	36
APPENDIX B: PHOTOGRAPHS OF EUT	37

1. VERIFICATION OF COMPLIANCE

Applicant	Guangdong Welland Technology Co, Ltd
Address	NO. 85 Minke East Road, Min Ying Science Technology Park, Shiqi District , Zhongshan, Guangdong, China
Manufacturer	Guangdong Welland Technology Co, Ltd
Address	NO. 85 Minke East Road, Min Ying Science Technology Park, Shiqi District , Zhongshan, Guangdong, China
Factory	Guangdong Welland Technology Co, Ltd
Address	NO. 85 Minke East Road, Min Ying Science Technology Park, Shiqi District , Zhongshan, Guangdong, China
Product Designation	smart scale
Brand Name	N/A
Test Model	FG1921(LB)
Series Model	FG263LB, FG1912RB, FG1921LB, FG1921RB, FG220LB, FG223LB, FG850LB, FG830LB, FG315LB, FG400RB, FG370RB, FB371UB, FG430RB, FG260RB, FG260WB, FG266RB, FG266WB, FG460RB, FG460WB, FG210RB, FG270RB, FG270WB, FI270RB, FI270WB, FG290RB, FG290WB, FI290RB, FI290WB, FG300RB, FG300WB, FI300RB, FI300WB, FG320LB, FI320LB, FG266RB-A, FG1921, FG265, FG266, FG430, FG1921B, FG1921WB.
Difference Description	All the same except for the model name
Date of test	May 26, 2020 to Jun. 09, 2020 and Jun. 19, 2020
Deviation	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Report Template	AGCRT-US-BLE/RF

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC part 15.247.

Prepared By

Erik Yang
(Project Engineer)

Jun. 19, 2020

Reviewed By

Max Zhang
(Reviewer)

Jun. 19, 2020

Approved By

Forrest Lei
(Authorized Officer)

Jun. 19, 2020

2.GENERAL INFORMATION

2.1 PRODUCT DESCRIPTION

The EUT is designed as a "smart scale". It is designed by way of utilizing the GFSK technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz
RF Output Power	-2.201dBm(Max)
Modulation	GFSK
Number of channels	3 Channel
Antenna Designation	PCB Antenna(Comply with requirements of the FCC part 15.203)
Antenna Gain	-13.2dBi
Hardware Version	1.0.0
Software Version	1.0.0
Power Supply	DC 4.5V by battery

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
2400~2483.5MHZ	0	2402MHZ
	1	2426MHZ
	2	2480MHZ

2.3 RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for **FCC ID: 2AP3QFG1921** filing to comply with the FCC Part 15.247 requirements.

2.4 TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.5 SPECIAL ACCESSORIES

Refer to section 2.2.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: <http://cn.agc-cert.com/>

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, $U_c = \pm 3.2 \text{ dB}$
- Uncertainty of Radiated Emission below 1GHz, $U_c = \pm 3.9 \text{ dB}$
- Uncertainty of Radiated Emission above 1GHz, $U_c = \pm 4.8 \text{ dB}$
- Uncertainty of total RF power, conducted, $U_c = \pm 0.8 \text{ dB}$
- Uncertainty of RF power density, conducted, $U_c = \pm 2.6 \text{ dB}$
- Uncertainty of spurious emissions, conducted, $U_c = \pm 2.7 \text{ dB}$
- Uncertainty of Occupied Channel Bandwidth: $U_c = \pm 2 \%$

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1	Low channel TX
2	Middle channel TX
3	High channel TX

Note:

1. Only the result of the worst case was recorded in the report, if no other cases.
2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
3. For Conducted Test method, a temporary antenna connector is provided by the manufacturer.
4. The EUT enters test modes by pressing keys of EUT.

5. SYSTEM TEST CONFIGURATION

5.1 CONFIGURATION OF TESTED SYSTEM

5.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	smart scale	FG1921(LB)	2AP3QFG1921	EUT

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.247 (b)(3)	Peak Output Power	Compliant
15.247 (a)(2)	6 dB Bandwidth	Compliant
15.247 (d)	Conducted Spurious Emission	Compliant
15.247 (e)	Maximum Conducted Output Power Density	Compliant
15.209	Radiated Emission	Compliant
15.207	Conducted Emission	N/A

Note: The EUT is only powered by battery.

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: <http://cn.agc-cert.com/>

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
FCC Test Firm Registration Number	975832
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

TEST EQUIPMENT OF RADIATED EMISSION TEST(May 26, 2020 to Jun. 09)

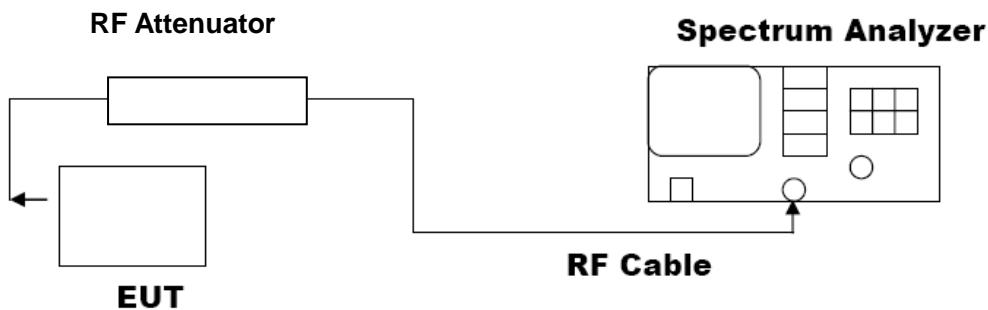
Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2019	Jun. 11, 2020
EXA Signal Analyzer	Agilent	N9010A	MY53470504	Dec. 12, 2019	Dec. 11, 2020
2.4GHz Fliter	EM Electronics	2400-2500MHz	N/A	Mar, 23, 2020	Mar. 22, 2021
Attenuator	ZHINAN	E-002	N/A	Aug. 26, 2019	Aug. 25, 2020
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 09, 2019	Sep. 08, 2021
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 14, 2018	Jun. 13, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May 17, 2019	May 16, 2021
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 15, 2019	Oct. 14, 2020
ANTENNA	SCHWARZBECK	VULB9168	494	Jan. 09, 2019	Jan. 08, 2021
Test software	Tonscend	JS32-RE (Ver.2.5)	N/A	N/A	N/A

TEST EQUIPMENT OF RADIATED EMISSION TEST(2020 and Jun. 19, 2020)

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
EXA Signal Analyzer	Agilent	N9010A	MY53470504	Dec. 12, 2019	Dec. 11, 2020

7. PEAK OUTPUT POWER

7.1. MEASUREMENT PROCEDURE


For peak power test:

1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
2. $RBW \geq DTS$ bandwidth
3. $VBW \geq 3 \times RBW$
4. $SPAN \geq VBW$
5. Sweep: Auto.
6. Detector function: Peak.
7. Trace: Max hold.

Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

PEAK POWER TEST SETUP

7.3. LIMITS AND MEASUREMENT RESULT

PEAK OUTPUT POWER MEASUREMENT RESULT FOR GFSK MOUDULATION			
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.402	-2.201	30	Pass
2.426	-2.281	30	Pass
2.480	-2.962	30	Pass

CH0

CH1

CH2

8. 6 DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW \geq 3 \times RBW.
4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

8.3. LIMITS AND MEASUREMENT RESULTS

Limits and Measurement Result				
Applicable Limits	Applicable Limits			Criteria
	Test Data (kHz)		Criteria	
>500KHZ	Low Channel	803.6	PASS	
	Middle Channel	768.7	PASS	
	High Channel	784.0	PASS	

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: <http://cn.agc-cert.com/>

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
3. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.

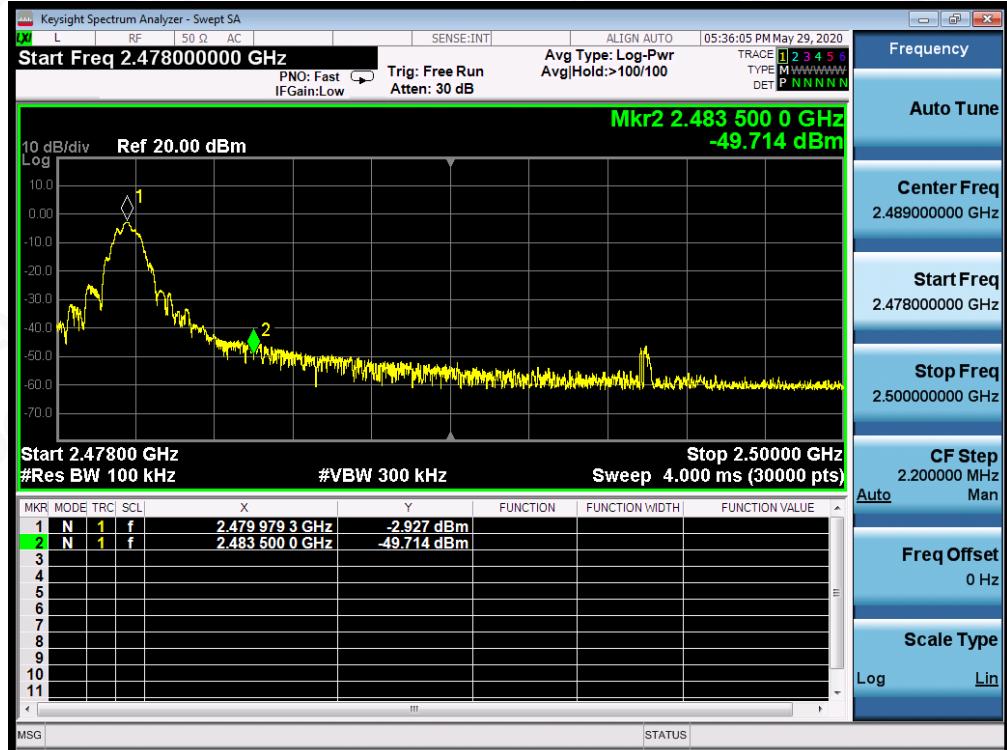
9.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT		
Applicable Limits	Measurement Result	
	Test Data	Criteria
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power.	At least -20dBc than the reference level	PASS

TEST RESULT FOR ENTIRE FREQUENCY RANGE GFSK MODULATION IN LOW CHANNEL

GFSK MODULATION IN MIDDLE CHANNEL

GFSK MODULATION IN HIGH CHANNEL


Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit.

TEST RESULT FOR BAND EDGE GFSK MODULATION IN LOW CHANNEL

GFSK MODULATION IN HIGH CHANNEL

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

10.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of PKPSD in the KDB 558074 item 10.2 was used in this testing.

10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer To Section 7.2.

10.3 MEASUREMENT EQUIPMENT USED

Refer To Section 6.

10.4 LIMITS AND MEASUREMENT RESULT

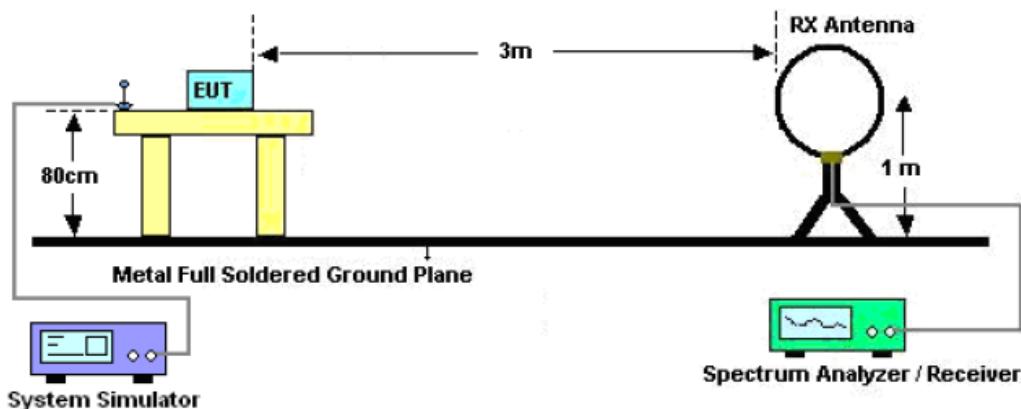
Channel No.	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low Channel	-4.101	8	Pass
Middle Channel	-5.741	8	Pass
High Channel	-4.972	8	Pass


TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

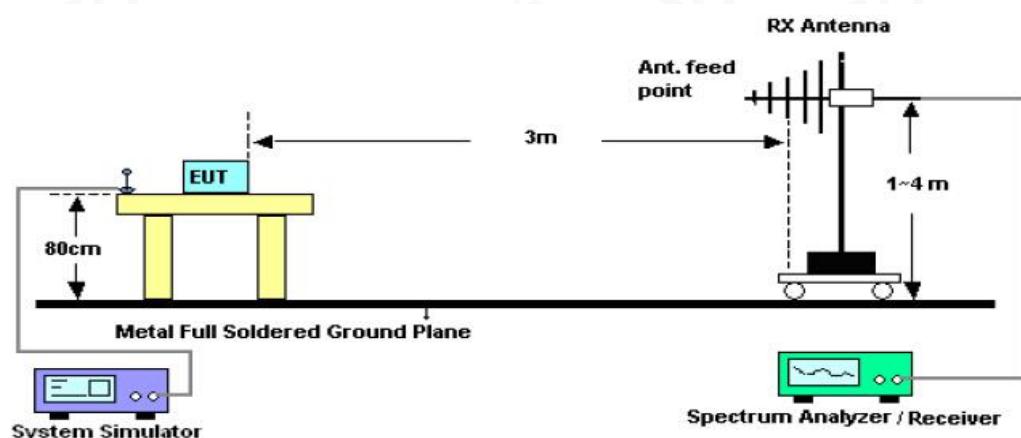
TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

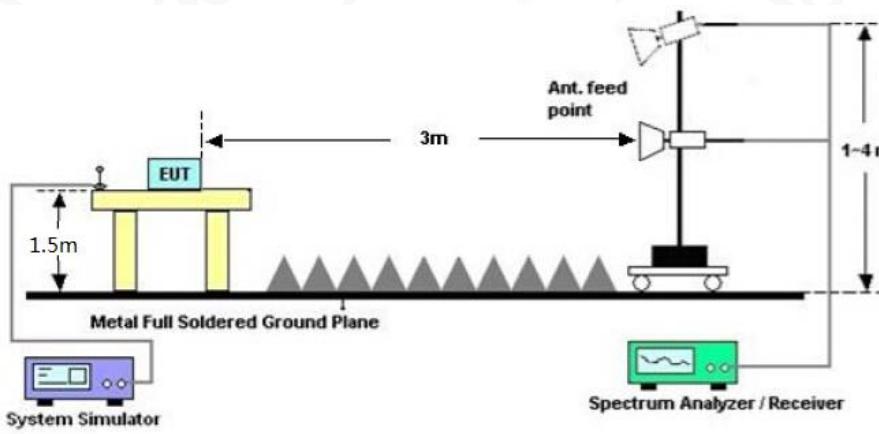
11. RADIATED EMISSION


11.1. MEASUREMENT PROCEDURE

1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.



11.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

