

RF TEST REPORT

Applicant Flextronics (Shanghai) Co., Ltd

FCC ID 2AP3PAPOC

Product AT100 series (AT100, AT130) – Wired asset tracker

TT400 series (TT400, TT401) – Wired trailer tracker

FT500 series (FT500) - In-cab telematics tracker

Model AT100-LM0Q-GL, AT130-LM0Q-GL,

TT400-LM0Q-GL,FT500-LM0Q-GL

TT401-LM0Q-GL

Report No. R1908A0461-R6

Issue Date November 22, 2019

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 2 (2018)/ FCC CFR 47 Part 22H (2018). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Peng Tao

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

Report No.: R1908A0461-R6

1.	Tes	t Laboratory	2
	1.1.	Notes of the Test Report	4
		Testing Location	
		eral Description of Equipment under Test	
		Applicant and Manufacturer Information	
		General Information	
3.	App	lied Standards	7
		t Configuration	
5.	Tes	t Case Results	9
	5.1.	Effective Radiated Power	9
	5.2.	Radiates Spurious Emission	12
		n Test Instruments	18

F Test Report Report No.: R1908A0461-R6

Summary of measurement results

No.	No. Test Case Clause in FCC rules Verdict							
1	1 Effective Radiated Power 22.913(a)(5) PASS							
2	2 Radiates Spurious Emission 2.1053 / 22.917 (a) PASS							
Date of Testing: August 26, 2019 ~ October 31, 2019								

Test values partial duplicated from module BG96(Report No.: RXA1706-0199RF05) for AT100-LM0Q-GL, AT130-LM0Q-GL, TT400-LM0Q-GL, FT500-LM0Q-GL, TT401-LM0Q-GL (Report No.: R1908A0461-R6). There is only tested Radiated Spurious Emissions and Effective Radiated Power for variant in this report.

1. Test Laboratory

1.1. Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

2. General Description of Equipment under Test

2.1. Applicant and Manufacturer Information

Applicant	nt Flextronics (Shanghai) Co., Ltd			
Applicant address	4F, Bldg. 10, No. 3000 Longdong Ave., Pudong New District,			
Applicant address	Shanghai, China, 201203			
Manufacturer	Flex Industrial, Ltd.			
Manufacturer address	Level 3, Alexander House, 35 Cybercity, Ebene, Mauritius			

Report No.: R1908A0461-R6

2.2. General Information

EUT Description						
Model	AT100-LM0Q-GL, AT130-LM0Q-GL, TT400-LM0Q-GL,					
iviodei	FT500-LM0Q-GL, TT401-LM0Q-GL					
IMEI	866425038986982					
Hardware Version	P2.1					
Software Version	2.1.29					
Power Supply	Battery					
Antenna Type	Internal Antenna					
Antenna Gain	0dBi					
Test Mode(s)	NB-IOT Band 5/26;					
Test Modulation	BPSK, QPSK					
Category	NB1					
Deployment	stand-alone					
Sub-carrier spacing	3.75KHz, 15KHz					
Ntones	single, multi-tone					
Maximum E.R.P.	NB-IOT Band 5		20.58dBm			
Waxiiiidiii E.N.F.	NB-IOT Band 26 21.01dBm					
Rated Power Supply Voltage	12V					
Extreme Voltage	Minimum: 6V Maximum: 48V					
Extreme Temperature	Lowest: -40°C Highe	est: +85	°C			
	Band	Tx	(MHz)	Rx (MHz)		
Operating Frequency Range(s)	NB-IOT Band 5	824 ~ 849		869 ~ 894		
	NB-IOT Band 26	824 ~ 849		869 ~ 894		
EUT Accessory						
Battery 1 (AT100-LM0Q-GL, FT500-LM0Q-GL)	Manufacturer: Hangzhou Future Power Technology Co., Ltd Model: FT553561P					
Battery2 (AT130-LM0Q-GL,	Manufacturer: INVENTUS POWER, INC. – DESIGN CENTER Model: 57484-001					

TA Technology (Shanghai) Co., Ltd.

TA-MB-05-001R

Page 5 of 18

RF Test Report Report Report No.: R1908A0461-R6

TT400-LM0Q-GL,
TT401-I M0Q-GI)

Note: 1. The information of the EUT is declared by the manufacturer.

2. There are more than one Battery, each one should be applied throughout the compliance test respectively, however, only the worst case (Battery1) will be recorded in this report.

The difference between AT100-LM0Q-GL, AT130-LM0Q-GL, TT400-LM0Q-GL, FT500-LM0Q-GL, TT401-LM0Q-GL please refer to *APOC Difference Information*.

However, only the worst model FT500-LM0Q-GL will be recorded in this report.

F Test Report Report No.: R1908A0461-R6

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR 47 Part 22H (2018)

ANSI C63.26 (2015)

Reference standard:

FCC CFR47 Part 2 (2018)

KDB 971168 D01 Power Meas License Digital Systems v03r01

Report No.: R1908A0461-R6

4. Test Configuration

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (Z axis, horizontal polarization) and the worst case was recorded.

All modes as Subcarrier Spacing, modulations, Channel were investigated.

Subsequently, only the worst case emissions are reported.

The following testing in NB-IOT is set based on the maximum RF Output Power.

The following testing in different mode is set to detail in the following table:

Test modes are chosen as the worst case configuration below for NB-IOT Band 5/26

Test items	Modes	Deployment mode	Subc Spa (kl	cing	Modu	lation	Test	t Chai	nnel
		Stand-alone	3.75	15	BPSK	QPSK	L	M	Н
Effective Radiated	NB-IOT B5	0	0	0	0	0	0	0	0
Power	NB-IOT B26	0	0	0	0	0	0	0	0
Radiates Spurious	NB-IOT B5	0	•	0	•	0	0	0	0
Emission	NB-IOT B26	0		0	-	0	0	0	0

Note

- 1. The mark "O" means that this configuration is chosen for testing.
- 2. The mark "-" means that this configuration is not testing.

5. Test Case Results

5.1. Effective Radiated Power

Ambient condition

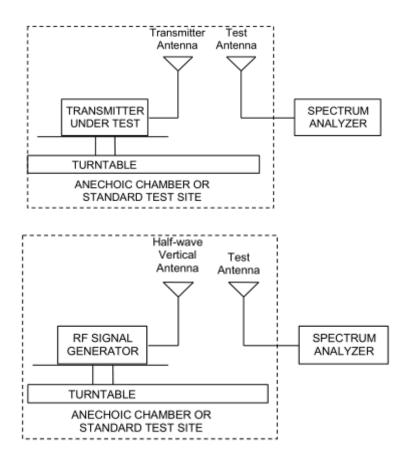
Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

The testing follows FCC KDB 971168 v03r01 Section 5.8 and ANSI C63.26 (2015).

- a) Connect the equipment as illustrated. Mount the equipment with the manufacturer specified antenna in a vertical orientation on a manufacturer specified mounting surface located on a non-conducting rotating platform of a RF anechoic chamber (preferred) or a standard radiation site.
- b) Key the transmitter, then rotate the EUT 360° azimuthally and record spectrum analyzer power level (LVL) measurements at angular increments that are sufficiently small to permit resolution of all peaks. If a standard radiation test site is used, raise and lower the test antenna to obtain a maximum reading at each angular increment. (Note: several batteries may be needed to offset the effect of battery voltage droop, which should not exceed 5% of the manufactured specified battery voltage during transmission).
- c) Replace the transmitter under test with a vertically polarized half-wave dipole (or an antenna whose gain is known relative to an ideal half-wave dipole). The center of the antenna should be at the same location as the center of the antenna under test.
- d) Connect the antenna to a signal generator with a known output power and record the path loss (in dB) as LOSS. If a standard radiation test site is used, raise and lower the test antenna to obtain a maximum reading.LOSS = Generator Output Power (dBm) Analyzer reading (dBm)
- e) Determine the effective radiated output power at each angular position from the readings in steps b) and d) using the following equation:ERP (dBm) = LVL (dBm) + LOSS (dB)
- f) The maximum ERP is the maximum value determined in the preceding step.
- g) When calculating ERP, in addition to knowing the antenna radiation and matching characteristics, it is necessary to know the loss values of all elements (e.g.transmission line attenuation, mismatches, filters, combiners) interposed between the point where transmitter output power is measured, and the point where power is applied to the antenna. ERP can then be calculated as follows:

EIRP (dBm) = Output Power (dBm) - Losses (dB) + Antenna Gain (dBi) where:dBd refers to gain relative to an ideal dipole.


EIRP (dBm) = ERP (dBm) + 2.15 (dB.)

The RB allocation refers to section 5.1, using the maximum output power configuration.

Report No.: R1908A0461-R6

Test setup

Limits

Rule Part 22.913(a)(5) specifies that "Mobile/portable stations are limited to 7 watts ERP".

Limit ≤ 7 W (38.45 dBm)

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U= 1.19 dB

Test Results:

The measurement is performed for both of horizontal and vertical antenna Polarization, and only the data of worst mode is recorded in this report.

Mada	Modulation	Sub-carrier	Ntonoo	Conducted Power (dBm) for low/mid/high channel			ERP(dBm)			
Mode	Modulation	spacing	Ntones	20401/	20525/	20649/	20401	20525/	20649/	
		(KHz)		824.1	836.5	848.9	/824.1	836.5	848.9	
		3.75	1@0	22.05	22.19	22.38	19.90	20.04	20.23	
	BPSK		1@47	21.94	22.18	22.35	19.79	20.03	20.20	
			1@0	22.24	22.31	22.41	20.09	20.16	20.26	
Dond F		15	1@11	22.26	22.37	22.73	20.11	20.22	20.58	
Band 5 Standalone	QPSK	3.75	1@0	22.02	22.09	22.31	19.87	19.94	20.16	
Standalone			1@47	21.91	22.13	22.34	19.76	19.98	20.19	
		QPSK	1@0	22.28	22.36	22.43	20.13	20.21	20.28	
		15	1@11	22.25	22.40	22.72	20.10	20.25	20.57	
			15	12@0	22.59	22.65	22.67	20.44	20.50	20.52

Mada	Mandadatian	Sub-carrier	Nitarras	Conducted Power (dBm) for low/mid/high channel			ERP(dBm)		
Mode	Modulation	spacing	Ntones	26691/	26740	26789/	26691/	26740/	26789/
		(KHz)		814.1	/819	823.9	814.1	819	823.9
	BPSK QPSK	2.75	1@0	23.09	23.14	23.10	20.94	20.99	20.95
		3.75	1@47	23.08	23.15	23.09	20.93	21.00	20.94
		15	1@0	21.90	22.06	22.47	19.75	19.91	20.32
Dond 26			1@11	21.89	22.11	22.49	19.74	19.96	20.34
Band 26 Standalone		3.75	1@0	23.06	23.16	23.10	20.91	21.01	20.95
Standalone			1@47	23.08	23.14	23.11	20.93	20.99	20.96
		QPSK 15	1@0	21.95	22.03	22.47	19.80	19.88	20.32
		15	1@11	21.94	22.31	22.50	19.79	20.16	20.35
		15	12@0	22.24	22.53	22.75	20.09	20.38	20.60

5.2. Radiates Spurious Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

- 1. The testing follows FCC KDB 971168 v03r01 Section 5.8 and ANSI C63.26 (2015).
- 2. Below 1GHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). Above 1GHz: (Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).
- 3. A loop antenna, A log-periodic antenna or horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

4. The EUT is then put into continuously transmitting mode at its maximum power level during the test.

- Set Test Receiver or Spectrum RBW=200Hz,VBW=600Hz for 9kHz150kHz, RBW=10kHz, VBW=30kHz 150kHz-30MHz, RBW=100kHz,VBW=300kHz for 30MHz to 1GHz and RBW=1MHz, VBW=3MHz for above 1GHz, And the maximum value of the receiver should be recorded as (Pr). 5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of
- 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.

the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

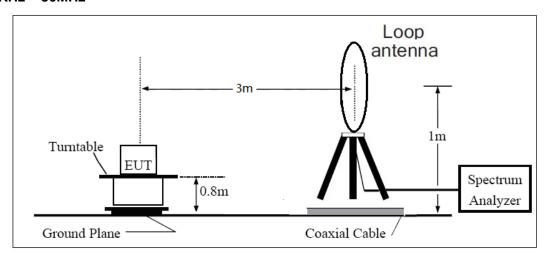
7. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl + Ga

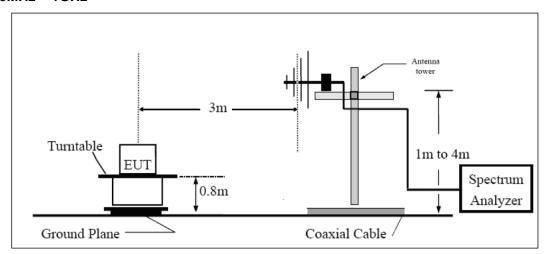
The measurement results are amend as described below:

Power(EIRP)=PMea- Pcl + Ga

8. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi)

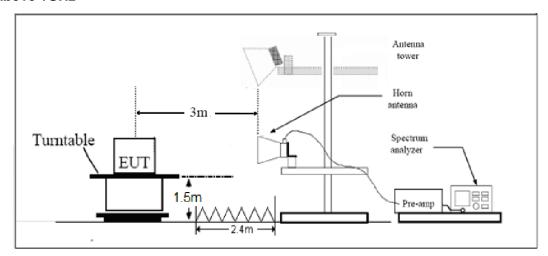


and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.


The modulation mode and RB allocation refer to section 5.1, using the maximum output power configuration.

Test setup

9KHz ~ 30MHz



30MHz ~ 1GHz

FTest Report Report No.: R1908A0461-R6

Above 1GHz

Note: Area side:2.4mX3.6m

Limits

Rule Part 22.917(a) specifies that "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB."

Limit	-13 dBm
-------	---------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 3.55 dB.

Test Result

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the emissions below the noise floor will not be recorded in the report.

NB-IOT Band 5 15KHz+QPSK CH-Low

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1649.4	-67.20	2.00	10.75	Horizontal	-60.60	-13.00	47.60	135
3	2474.1	-64.28	2.51	11.05	Horizontal	-57.89	-13.00	44.89	225
4	3298.8	-60.95	4.20	11.15	Horizontal	-56.15	-13.00	43.15	135
5	4123.5	-58.79	5.20	11.15	Horizontal	-54.99	-13.00	41.99	315
6	4948.2	-58.78	5.50	11.95	Horizontal	-54.48	-13.00	41.48	225
7	5772.9	-59.24	5.70	13.55	Horizontal	-53.54	-13.00	40.54	180
8	6597.6	-57.85	6.30	13.75	Horizontal	-52.55	-13.00	39.55	45
9	7422.3	-54.71	6.80	13.85	Horizontal	-49.81	-13.00	36.81	0
10	8247.0	-52.74	6.90	14.25	Horizontal	-47.54	-13.00	34.54	270

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

NB-IOT Band 5 15KHz+QPSK_CH-Middle

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1673.0	-66.46	2.00	10.75	Horizontal	-59.86	-13.00	46.86	315
3	2509.5	-59.32	2.51	11.05	Horizontal	-52.93	-13.00	39.93	90
4	3346.0	-63.73	4.20	11.15	Horizontal	-58.93	-13.00	45.93	180
5	4182.5	-60.86	5.20	11.15	Horizontal	-57.06	-13.00	44.06	45
6	5019.0	-58.57	5.50	11.95	Horizontal	-54.27	-13.00	41.27	0
7	5855.5	-60.23	5.70	13.55	Horizontal	-54.53	-13.00	41.53	270
8	6692.0	-57.89	6.30	13.75	Horizontal	-52.59	-13.00	39.59	315
9	7528.5	-55.86	6.80	13.85	Horizontal	-50.96	-13.00	37.96	180
10	8365.0	-55.33	6.90	14.25	Horizontal	-50.13	-13.00	37.13	45

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is Horizontal position.

TA Technology (Shanghai) Co., Ltd.

^{2.} The worst emission was found in the antenna is Horizontal position.

NB-IOT Band 5 15KHz+QPSK CH-High

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1696.6	-67.44	2.00	10.75	Horizontal	-60.84	-13.00	47.84	225
3	2544.9	-64.21	2.51	11.05	Horizontal	-57.82	-13.00	44.82	270
4	3393.2	-63.20	4.20	11.15	Horizontal	-58.40	-13.00	45.40	90
5	4241.5	-59.40	5.20	11.15	Horizontal	-55.60	-13.00	42.60	135
6	5089.8	-57.60	5.50	11.95	Horizontal	-53.30	-13.00	40.30	225
7	5938.1	-58.30	5.70	13.55	Horizontal	-52.60	-13.00	39.60	45
8	6786.4	-57.20	6.30	13.75	Horizontal	-51.90	-13.00	38.90	180
9	7634.7	-54.30	6.80	13.85	Horizontal	-49.40	-13.00	36.40	135
10	8483.0	-55.30	6.90	14.25	Horizontal	-50.10	-13.00	37.10	315

Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is Horizontal position.

NB-IOT Band 26 15KHz+QPSK CH-Low

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1629.40	-67.38	2.00	10.75	Horizontal	-60.78	-13.00	47.78	45
3	2444.10	-64.38	2.51	11.05	Horizontal	-57.99	-13.00	44.99	0
4	3258.80	-62.02	4.20	11.15	Horizontal	-57.22	-13.00	44.22	135
5	4073.50	-59.56	5.20	11.15	Horizontal	-55.76	-13.00	42.76	0
6	4888.20	-59.59	5.50	11.95	Horizontal	-55.29	-13.00	42.29	225
7	5702.90	-61.99	5.70	13.55	Horizontal	-56.29	-13.00	43.29	90
8	6517.60	-58.07	6.30	13.75	Horizontal	-52.77	-13.00	39.77	315
9	7332.30	-54.81	6.80	13.85	Horizontal	-49.91	-13.00	36.91	180
10	8147.00	-53.34	6.90	14.25	Horizontal	-48.14	-13.00	35.14	45

Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is Horizontal position.

NB-IOT Band 26 15KHz+QPSK CH-Middle

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1673.00	-67.76	2.00	10.75	Horizontal	-61.16	-13.00	48.16	270
3	2509.50	-63.59	2.51	11.05	Horizontal	-57.20	-13.00	44.20	315
4	3326.00	-62.65	4.20	11.15	Horizontal	-57.85	-13.00	44.85	180
5	4157.50	-59.49	5.20	11.15	Horizontal	-55.69	-13.00	42.69	45
6	4989.00	-59.63	5.50	11.95	Horizontal	-55.33	-13.00	42.33	315
7	5820.50	-60.23	5.70	13.55	Horizontal	-54.53	-13.00	41.53	180
8	6652.00	-58.74	6.30	13.75	Horizontal	-53.44	-13.00	40.44	45
9	7483.50	-55.15	6.80	13.85	Horizontal	-50.25	-13.00	37.25	135
10	8315.00	-53.35	6.90	14.25	Horizontal	-48.15	-13.00	35.15	0

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is Horizontal position.

NB-IOT Band 26 15KHz+QPSK CH-High

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1696.60	-66.90	2.00	10.75	Horizontal	-60.30	-13.00	47.30	180
3	2544.90	-64.30	2.51	11.05	Horizontal	-57.91	-13.00	44.91	45
4	3393.20	-61.92	4.20	11.15	Horizontal	-57.12	-13.00	44.12	225
5	4241.50	-60.18	5.20	11.15	Horizontal	-56.38	-13.00	43.38	90
6	5089.80	-59.15	5.50	11.95	Horizontal	-54.85	-13.00	41.85	90
7	5938.10	-60.03	5.70	13.55	Horizontal	-54.33	-13.00	41.33	135
8	6786.40	-57.95	6.30	13.75	Horizontal	-52.65	-13.00	39.65	225
9	7634.70	-54.88	6.80	13.85	Horizontal	-49.98	-13.00	36.98	90
10	8483.00	-54.42	6.90	14.25	Horizontal	-49.22	-13.00	36.22	315

Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is Horizontal position.

TA Technology (Shanghai) Co., Ltd.

TA-MB-05-001R

Report No.: R1908A0461-R6

6. Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date
Base Station Simulator	R&S	CMW500	113824	2019-05-19	2020-05-18
Power Splitter	Hua Xiang	SHX-GF2-2-13	10120101	/	/
Spectrum Analyzer	Key sight	N9010A	MY50210259	2019-05-19	2020-05-18
Universal Radio Communication Tester	Key sight	E5515C	MY48367192	2019-05-19	2020-05-18
Signal Analyzer	R&S	FSV30	100815	2018-12-16	2019-12-15
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2017-09-26	2020-09-25
Trilog Antenna	SCHWARZBECK	VUBL 9163	9163-201	2017-11-18	2019-11-17
Horn Antenna	R&S	HF907	100126	2018-07-07	2020-07-06
Horn Antenna	ETS-Lindgren	3160-09	00102643	2018-06-20	2020-06-19
Signal generator	R&S	SMB 100A	102594	2019-05-19	2020-05-18
Climatic Chamber	ESPEC	SU-242	93000506	2017-12-17	2020-12-16
Preampflier	R&S	SCU18	102327	2019-05-19	2020-05-18
MOB COMMS DC SUPPLY	Keysight	66319D	MY43004105	2019-05-20	2020-05-21
RF Cable	Agilent	SMA 15cm	0001	2019-06-14	2019-12-13
Software	R&S	EMC32	9.26.0	/	/
Wireless Test Set	StarPoint	SP8315	SP8315-1202	2019-05-19	2020-05-18
Wireless Test Set	StarPoint	SP8315	SP8315-1203	2019-05-19	2020-05-18

*****END OF REPORT *****