

FCC TEST REPORT

FCC ID: 2AP3A-OPTIMA

On Behalf of
A-Technology Ltd.
POS-terminal
Model No.: Optima

Prepared for : A-Technology Ltd.
Address : Bld 1, Butyrskaya street 67, Moscow, Russian Federation
127015

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.
Address : Building i, No.2, Lixin Road, Fuyong Street, Bao'an
District, 518103, Shenzhen, Guangdong, China

Report Number : T1880563 10
Date of Receipt : April 13, 2018
Date of Test : April 13, 2018-June 22, 2018
Date of Report : June 22, 2018
Version Number : REV0

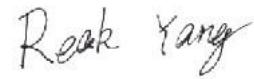
Contents

	Page
1 TEST SUMMARY	5
2 GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 TEST MODE	8
2.3 TEST FACILITY	8
2.4 OTHER INFORMATION REQUESTED BY THE CUSTOMER	8
2.5 DESCRIPTION OF SUPPORT UNITS	8
2.6 ADDITIONAL INSTRUCTIONS	9
3 TEST INSTRUMENTS LIST	10
4 TEST RESULTS AND MEASUREMENT DATA	11
4.1 ANTENNA REQUIREMENT	11
4.2 CONDUCTED EMISSIONS	12
4.3 CONDUCTED PEAK OUTPUT POWER	15
4.4 20dB EMISSION BANDWIDTH	22
4.5 CARRIER FREQUENCIES SEPARATION	26
4.6 HOPPING CHANNEL NUMBER	30
4.7 DWELL TIME	32
4.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	35
4.9 BAND EDGE	36
4.9.1 <i>Conducted Emission Method</i>	36
4.9.2 <i>Radiated Emission Method</i>	40
4.10 SPURIOUS EMISSION	42
4.10.1 <i>Conducted Emission Method</i>	42
4.10.2 <i>Radiated Emission Method</i>	44
5 TEST SETUP PHOTO	51
6 EUT CONSTRUCTIONAL DETAILS	53

TEST REPORT DECLARATION

Applicant : A-Technology Ltd.
Address : Bld 1, Butyrskaya street 67, Moscow, Russian Federation 127015
Manufacturer : A-Technology Ltd.
Address : Bld 1, Butyrskaya street 67, Moscow, Russian Federation 127015
EUT Description : POS-terminal
 (A) Model No. : Optima
 (B) Trademark : N/A

Measurement Standard Used:


**FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2016,
ANSI C63.10-2013**

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature).....: Reak Yang
Project Engineer

Approved by (name + signature).....: Simple Guan
Project Manager

Date of issue.....: June 22, 2018

Revision History

Revision	Issue Date	Revisions	Revised By
00	June 22, 2018	Initial released Issue	Simple Guan

1 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

2 General Information

2.1 General Description of EUT

Product Name:	POS-terminal
Model No.:	Optima
Test Model No:	Optima
<i>Remark: All above models are identical in the same PCB layout, interior structure and electrical circuits. The differences are color and model name for commercial purpose.</i>	
Quantity of tested samples	1
Serial No.:	N/A
Tested Sample(s) ID:	N/A
Hardware Version:	V1.1
Software Version:	V1.0
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version	Bluetooth V4.0 (This Report for BT 3.0)
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, Pi/4 QPSK, 8DPSK
Antenna Type:	PIFA Antenna
Antenna gain:	2.0dBi
Power supply:	12V...3.0A (Powered by an approved adaptor)

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

2.2 Test mode

Transmitting mode	Turn off the WiFi and keep the Bluetooth in continuously transmitting mode
<i>Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.</i>	

2.3 Test Facility

Shenzhen Alpha Product Testing Co., Ltd

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

Registration Number: 293961

July 25, 2017 Certificated by IC

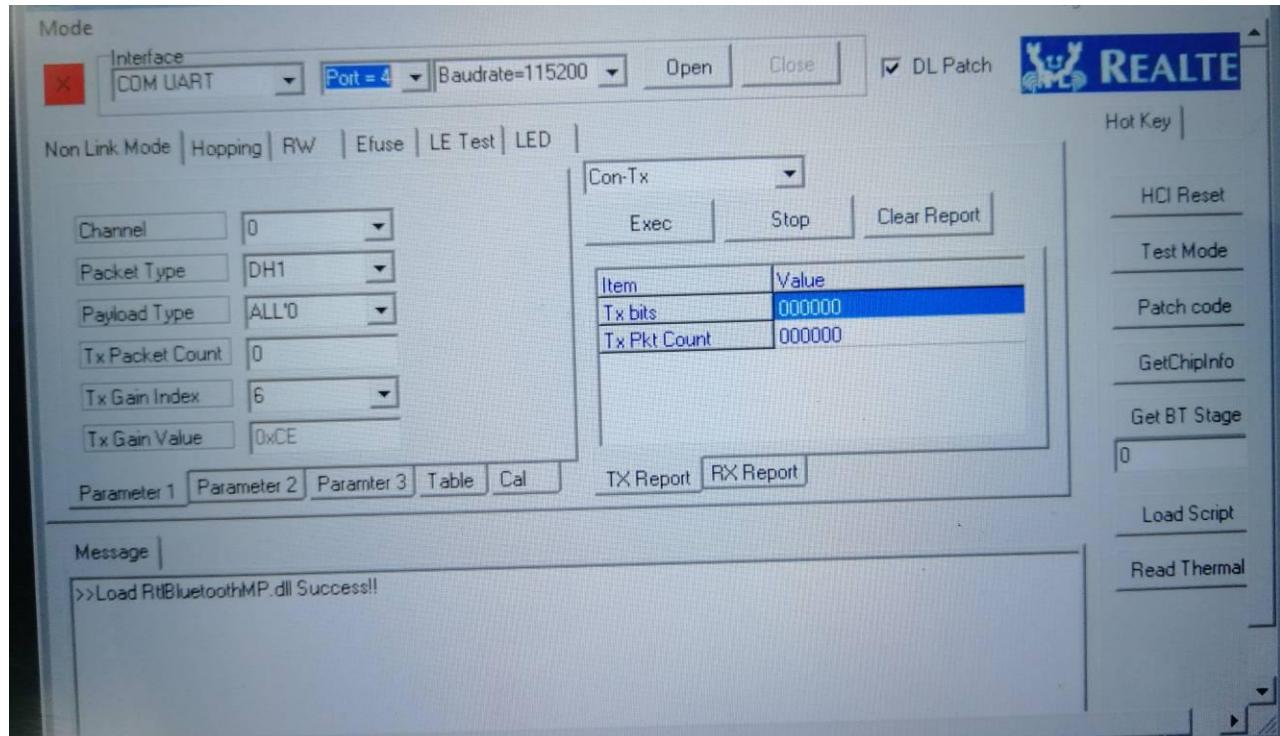
Registration Number: 12135A

2.4 Other Information Requested by the Customer

None.

2.5 Description of Support Units

Accessories1	:	AC/DC ADAPTER
Manufacturer	:	SHAN SHUNDE GUANYUDA POWER SUPPLY CO., LTD
Model	:	GM42-120300-D
Power supply	:	Input: AC 100-240V, 50/60Hz, 1.5A Output: 12V⎓, 3.0A

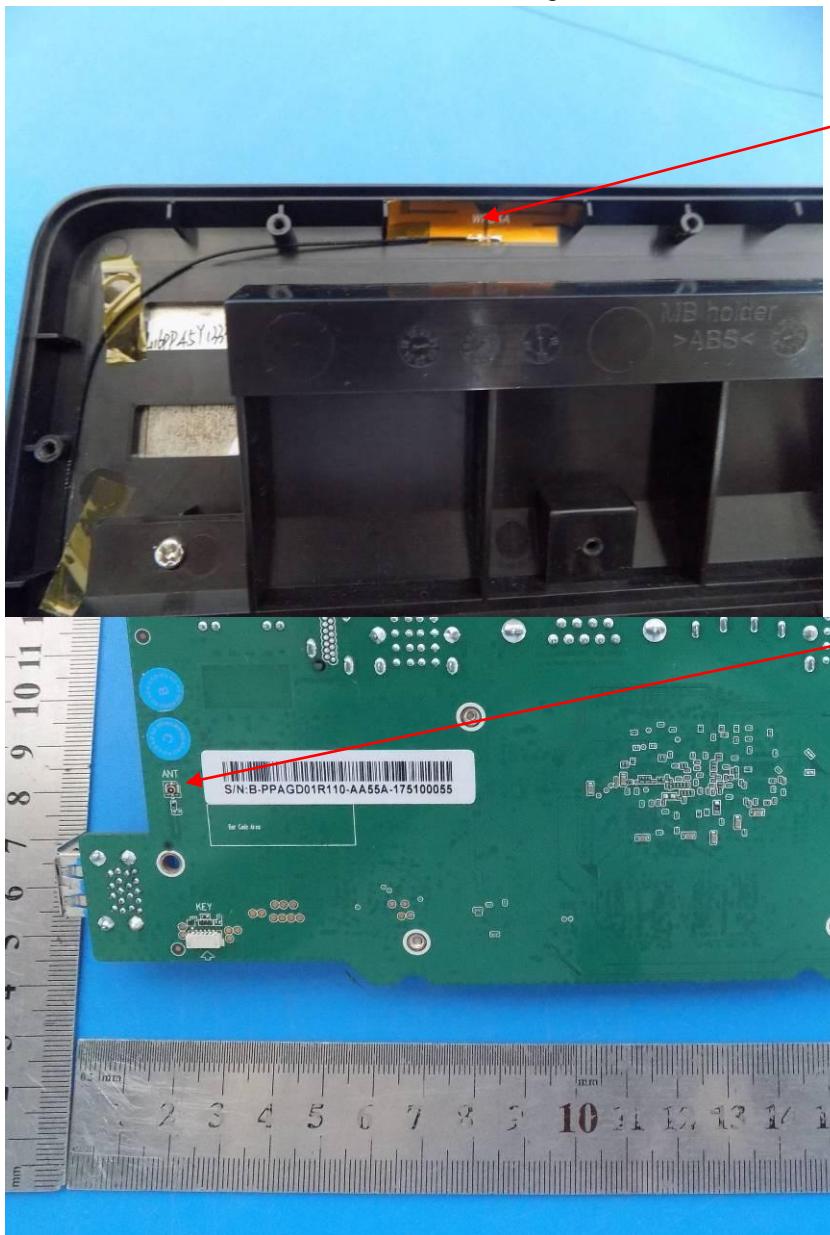

2.6 Additional instructions

Software (Used for test) from client

Mode	Special software is used. The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.		
------	--	--	--

Power level setup in software			
Test Software Name	MP_Kit_RTL11n		
Test Software Version	v0.04		
Support Units (Software installation media)	Description	Manufacturer	Model
	Laptop	Apple	A1278
Mode	Channel	Frequency (MHz)	Soft Set
GFSK, Pi/4 QPSK, 8DPSK	CH1	2402	TX LEVEL is built-in set parameters and cannot be changed and selected.
	CH40	2441	
	CH79	2480	

Run Software



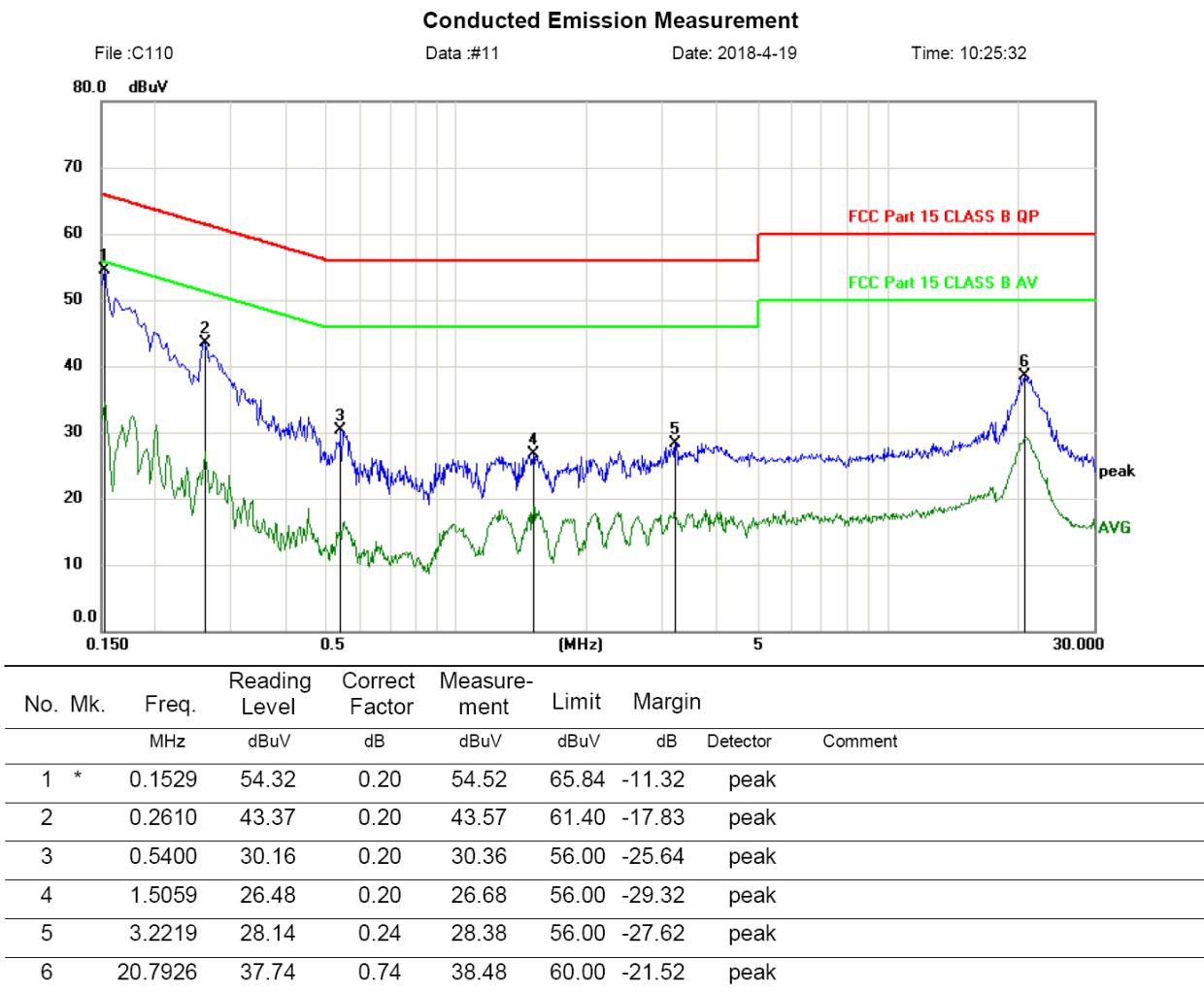
3 Test Instruments list

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	2017.09.22	1Year
Spectrum analyzer	Agilent	E4407B	MY46185649	2017.09.22	1Year
Receiver	R&S	ESCI	1166.5950K03-1011	2017.09.22	1Year
Receiver	R&S	ESCI	101202	2017.09.22	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	VULB9168-438	2016.09.30	2Year
Horn Antenna	EMCO	3115	640201028-06	2016.09.30	2Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	2016.09.30	2Year
Cable	Resenberger	N/A	No.1	2017.09.22	1Year
Cable	SCHWARZB ECK	N/A	No.2	2017.09.22	1Year
Cable	SCHWARZB ECK	N/A	No.3	2017.09.22	1Year
Pre-amplifier	Schwarzbeck	BBV9743	9743-019	2017.09.22	1Year
Pre-amplifier	R&S	AFS33-18002650-30-8P-44	SEL0080	2017.09.22	1Year
Temperature controller	Terchy	MHQ	120	2017.09.22	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2017.09.22	1Year
L.I.S.N.#2	ROHDE&SC HWARZ	ENV216	101043	2017.09.22	1 Year
20db Attenuator	ICPROBING	IATS1	82347	2017.09.22	1 Year
18-40 Horn Antenna	18-40G antenna	Sas-574	571	2018-3-15	3 Year

4 Test results and Measurement Data

4.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
15.203 requirement:	
<p>An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.</p>	
15.247(c) (1)(i) requirement:	
<p>(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.</p>	
E.U.T Antenna: <i>The antenna is PIFA antenna, the best case gain of the antenna is 2.0dBi</i>	
<p>The photograph shows the internal components of the device. A red line points from a callout box labeled "BT Antenna" to a small, thin antenna element mounted on the top edge of the main PCB. Another red line points from a callout box labeled "Antenna connector" to a circular component on the PCB, which is connected to a blue ribbon cable. A ruler is visible at the bottom for scale.</p>	


4.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207																
Test Method:	ANSI C63.10:2013																
Test Frequency Range:	150KHz to 30MHz																
Class / Severity:	Class B																
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto																
Limit:	<table border="1"> <thead> <tr> <th rowspan="2">Frequency range (MHz)</th> <th colspan="2">Limit (dBuV)</th> </tr> <tr> <th>Quasi-peak</th> <th>Average</th> </tr> </thead> <tbody> <tr> <td>0.15-0.5</td> <td>66 to 56*</td> <td>56 to 46*</td> </tr> <tr> <td>0.5-5</td> <td>56</td> <td>46</td> </tr> <tr> <td>5-30</td> <td>60</td> <td>50</td> </tr> </tbody> </table>			Frequency range (MHz)	Limit (dBuV)		Quasi-peak	Average	0.15-0.5	66 to 56*	56 to 46*	0.5-5	56	46	5-30	60	50
Frequency range (MHz)	Limit (dBuV)																
	Quasi-peak	Average															
0.15-0.5	66 to 56*	56 to 46*															
0.5-5	56	46															
5-30	60	50															
	<p>* Decreases with the logarithm of the frequency.</p>																
Test setup:	<p>Remark: E.U.T: Equipment Under Test LISN: Line Impedance Stabilization Network Test table height=0.8m</p>																
Test procedure:	<ol style="list-style-type: none"> 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 																
Test Instruments:	Refer to section 6.0 for details																
Test mode:	Refer to section 5.2 for details																
Test results:	Pass																

Measurement data:

Test result for BT3.0 (GFSK: 2441MHz), AC 120V/ 60Hz

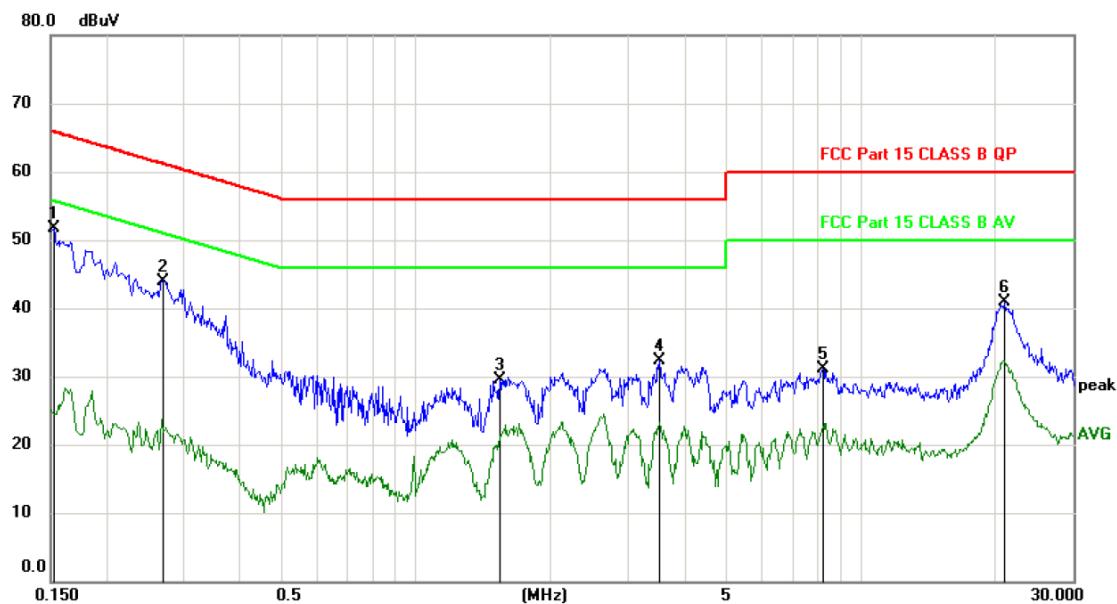
Line:

*:Maximum data x:Over limit !:over margin

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

Test result for BT3.0 (GFSK: 2441MHz), AC 120V/ 60Hz

Neutral:


Conducted Emission Measurement

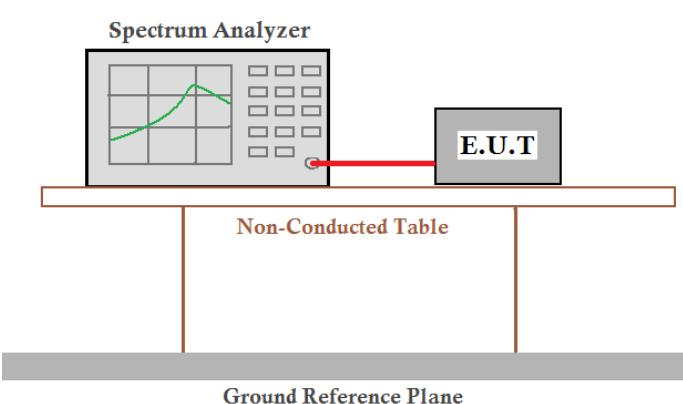
File :C110

Data :#12

Date: 2018-4-19

Time: 10:26:09

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1529	51.50	0.20	51.70	65.84	-14.14	peak	
2		0.2700	43.76	0.20	43.96	61.12	-17.16	peak	
3		1.5382	29.31	0.20	29.51	56.00	-26.49	peak	
4		3.5249	32.09	0.24	32.33	56.00	-23.67	peak	
5		8.2050	30.80	0.34	31.14	60.00	-28.86	peak	
6		21.0654	40.24	0.74	40.98	60.00	-19.02	peak	


*:Maximum data x:Over limit !:over margin

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
3. Final Level =Receiver Read level + LISN Factor + Cable Loss
4. Pre-scan all modes and recorded the worst case results in this report

4.3 Conducted Peak Output Power

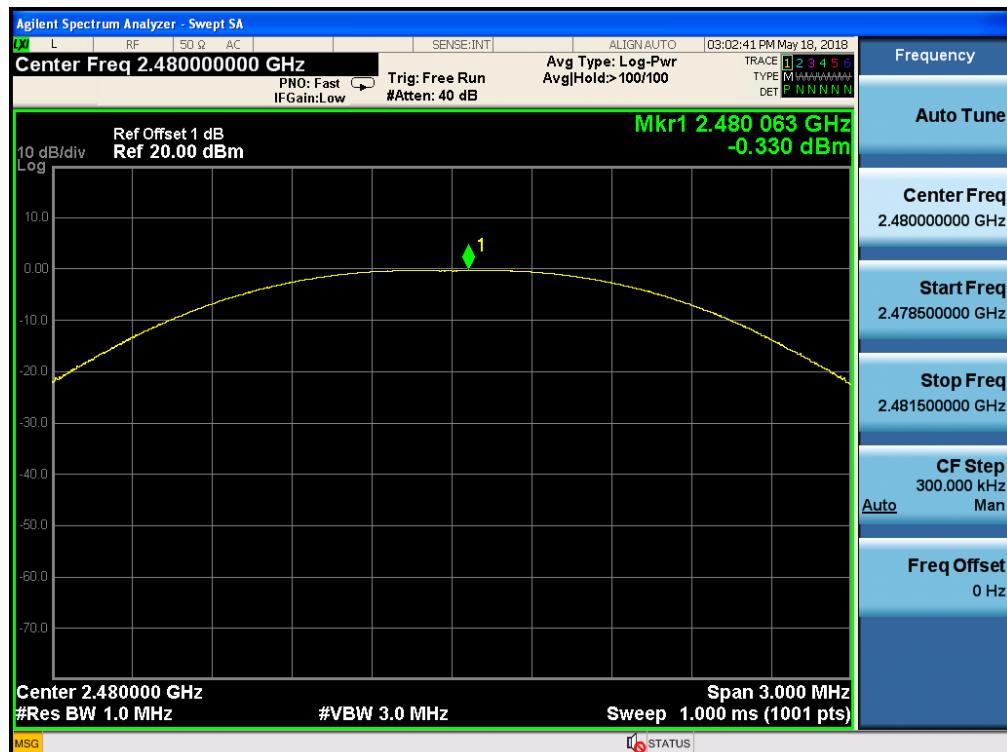
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013
Limit:	30dBm(for GFSK),20.97dBm(for EDR)
Test setup:	
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

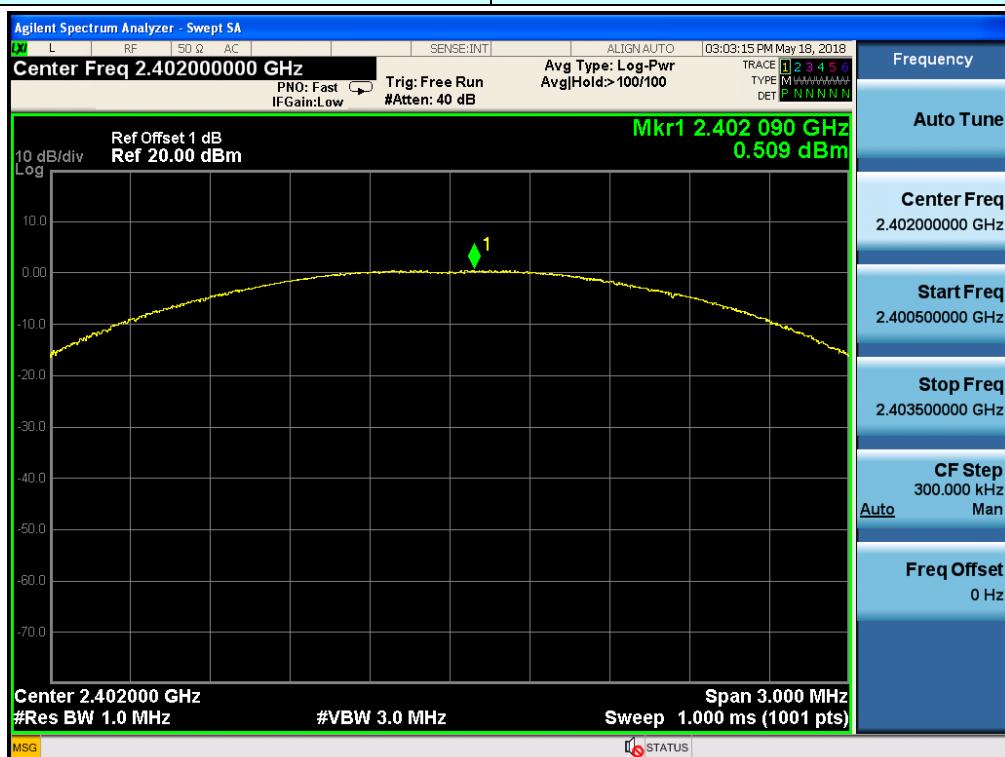
Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
GFSK	Lowest	0.814	30.00	Pass
	Middle	1.395		
	Highest	-0.330		
Pi/4QPSK	Lowest	0.509	20.97	Pass
	Middle	1.069		
	Highest	-0.589		
8DPSK	Lowest	0.700	20.97	Pass
	Middle	1.324		
	Highest	-0.416		

Test plot as follows:

Test mode:


GFSK mode

Lowest channel

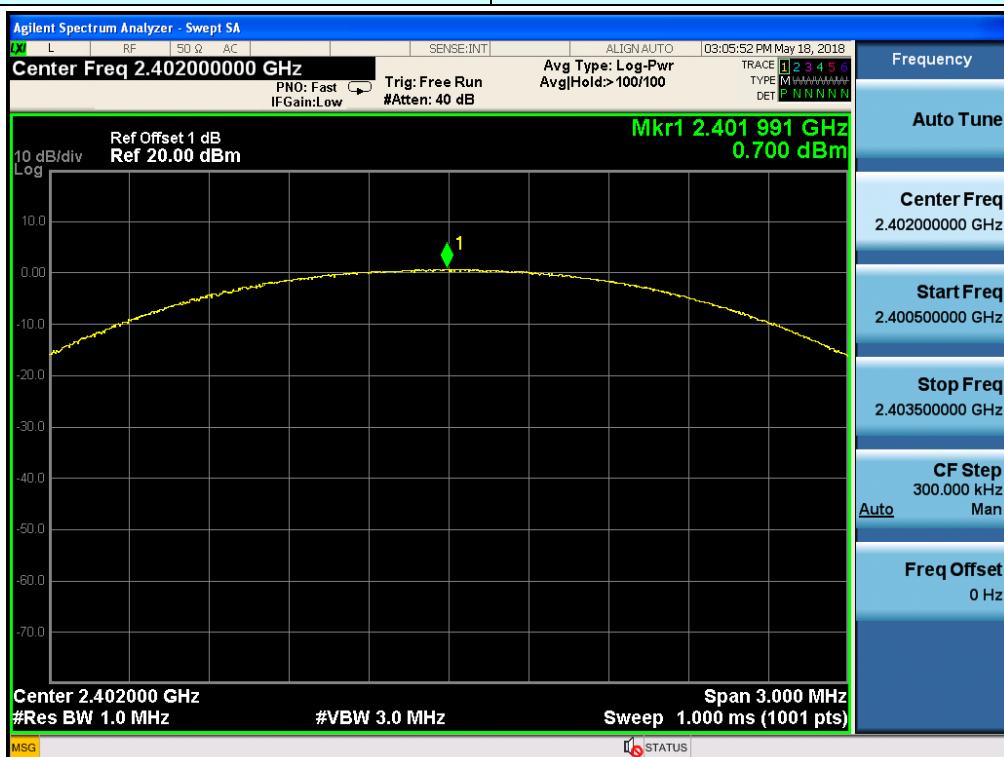


Middle channel

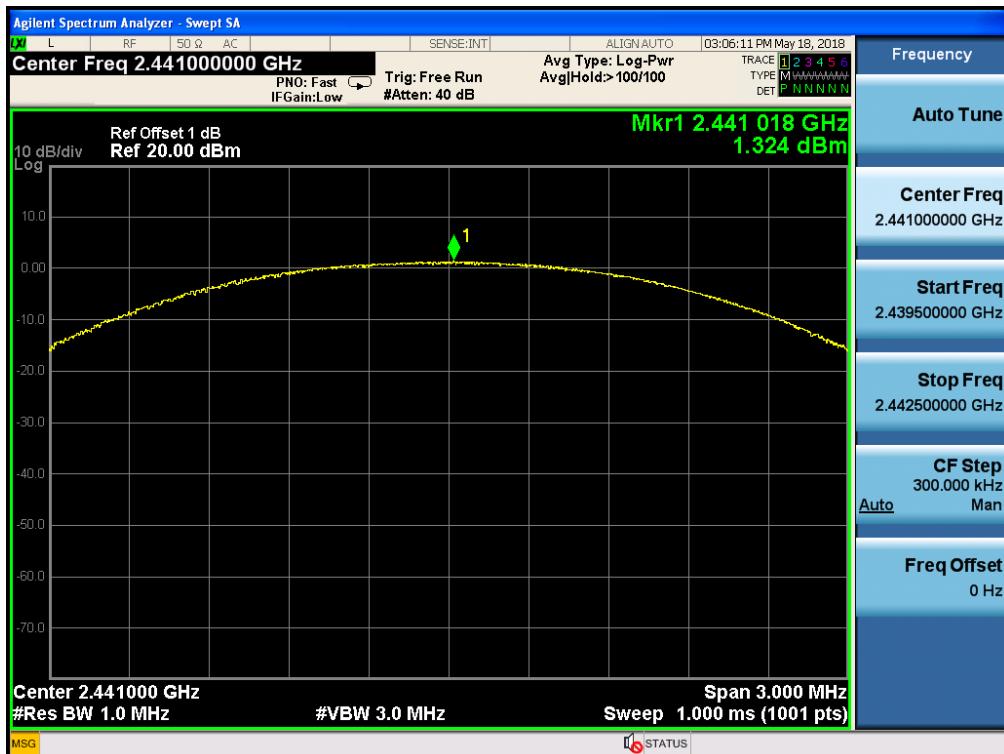
Test mode:

Pi/4QPSK mode

Lowest channel

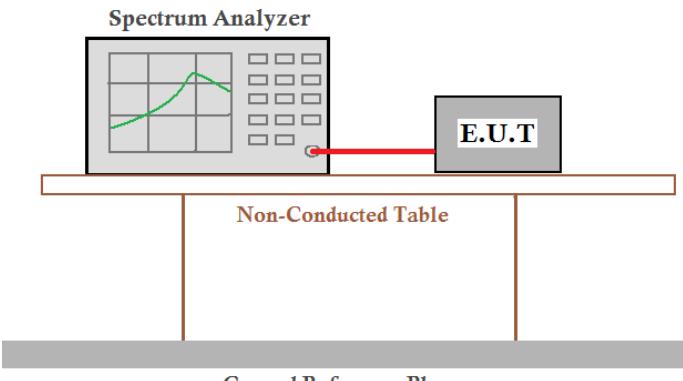


Middle channel



Test mode:

8DPSK mode


Lowest channel

Middle channel

4.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013
Limit:	N/A
Test setup:	<p style="text-align: center;">Spectrum Analyzer</p> <p style="text-align: center;">Non-Conducted Table</p> <p style="text-align: center;">Ground Reference Plane</p>
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
GFSK	Lowest	0.9310	Pass
	Middle	0.9324	
	Highest	0.9313	
Pi/4QPSK	Lowest	1.261	Pass
	Middle	1.262	
	Highest	1.262	
8DPSK	Lowest	1.226	Pass
	Middle	1.226	
	Highest	1.224	

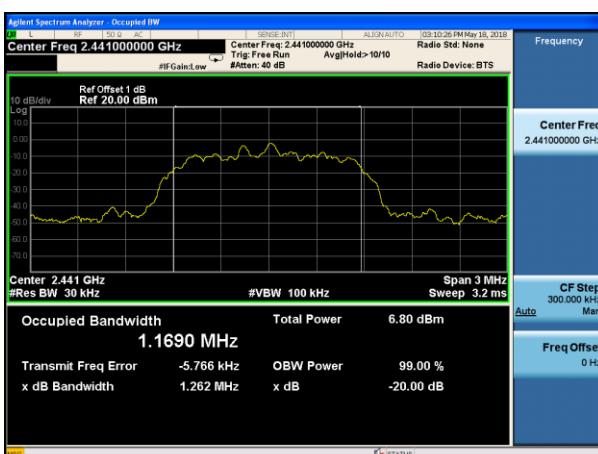
Test plot as follows:

Test mode:

GFSK mode

Lowest channel

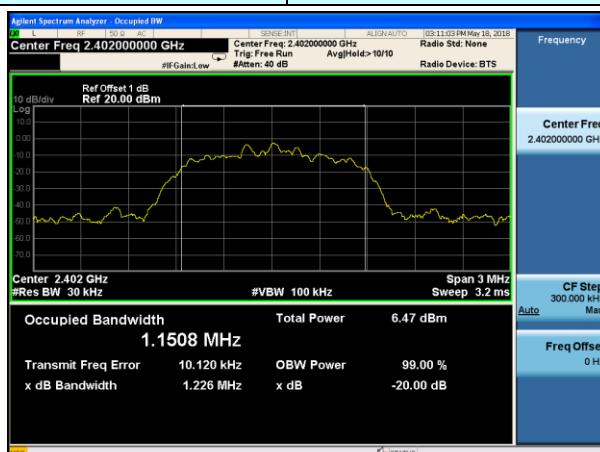

Middle channel


Highest channel

Test mode:

Pi/4QPSK mode

Lowest channel

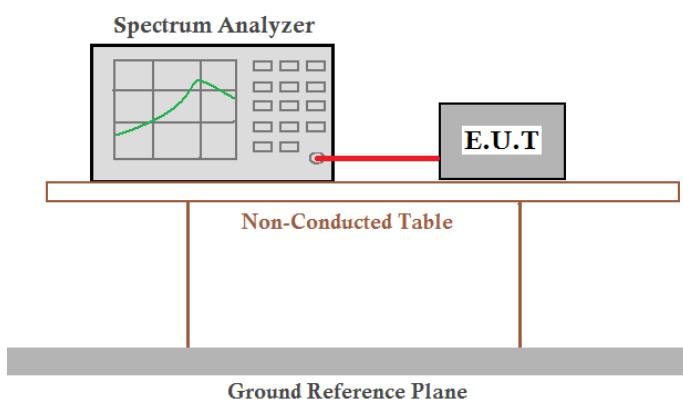

Middle channel

Highest channel

Test mode:

8DPSK mode

Lowest channel



Middle channel

Highest channel

4.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=20KHz, VBW=62KHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:			
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
GFSK	Lowest	996	622	Pass
	Middle	997	622	Pass
	Highest	1000	622	Pass
Pi/4QPSK	Lowest	993	841	Pass
	Middle	995	841	Pass
	Highest	993	841	Pass
8DSK	Lowest	992	817	Pass
	Middle	999	817	Pass
	Highest	999	817	Pass

Note: According to section 7.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	932.4	622
Pi/4QPSK	1262.00	841
8DSK	1226.00	817

Test plot as follows:

Modulation mode:

GFSK

Lowest channel

Middle channel

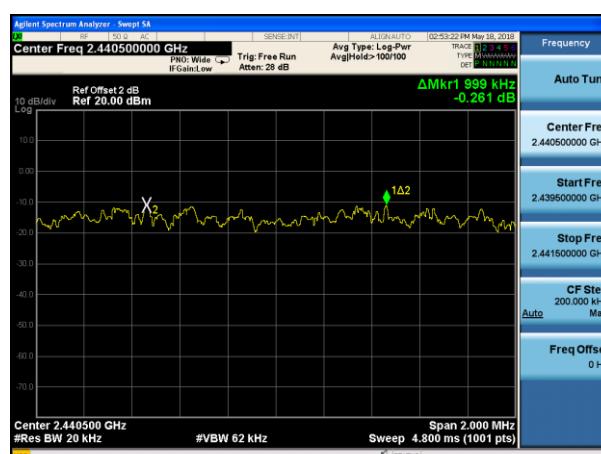
Highest channel

Test mode:

Pi/4QPSK mode

Lowest channel

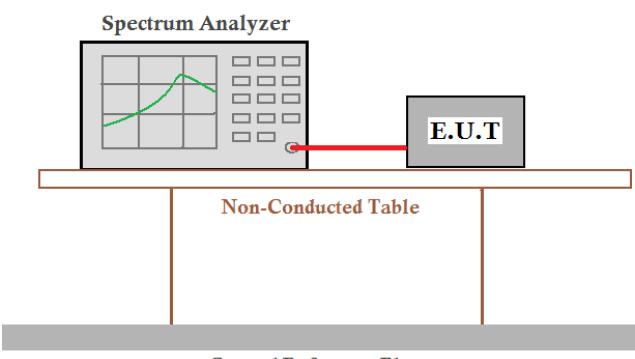
Middle channel


Highest channel

Test mode:

8DPSK mode

Lowest channel

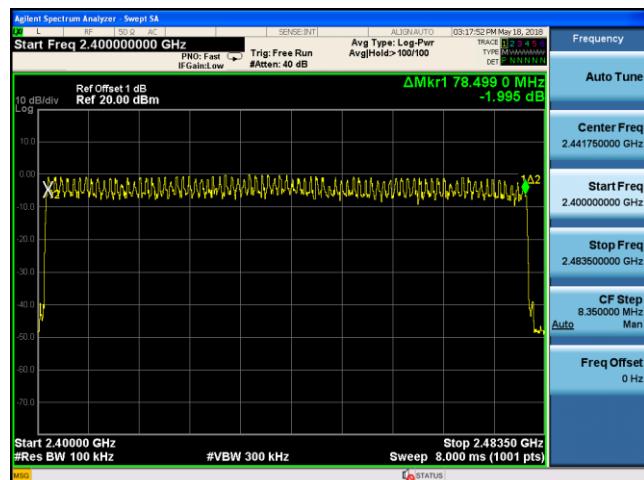


Middle channel

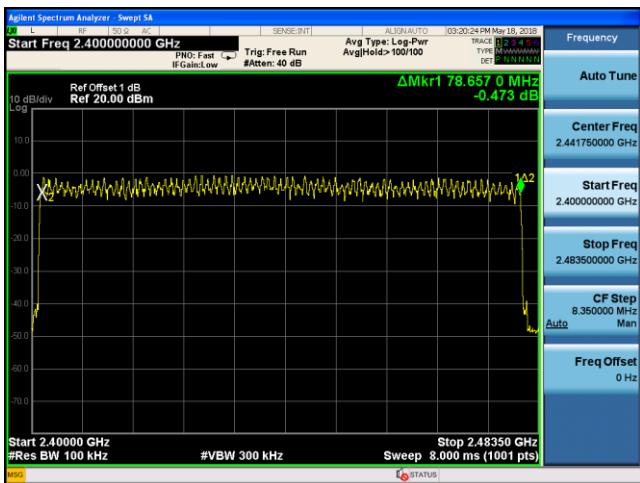
Highest channel

4.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	15	Pass
Pi/4QPSK	79	15	Pass
8DPSK	79	15	Pass


GFSK


Pi/4QPSK

8DPSK

4.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	<p style="text-align: center;">Spectrum Analyzer</p> <p style="text-align: center;">Non-Conducted Table</p> <p style="text-align: center;">Ground Reference Plane</p>
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

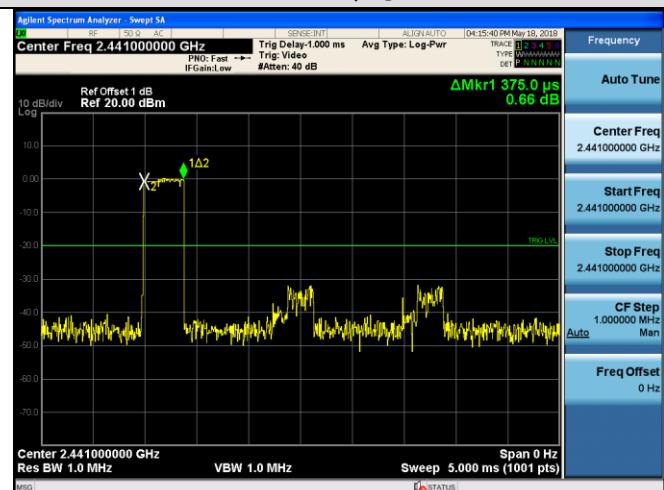
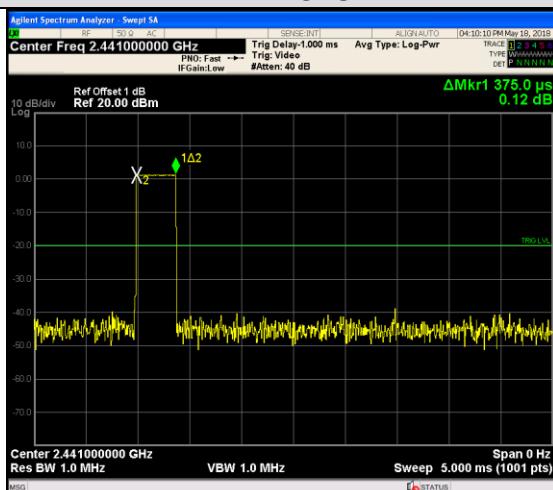
Mode	Frequency (MHz)	Burst Type	Pulse Width (ms)	Dwell Time (ms)	Limit (ms)	Verdict
GFSK	2441	DH1	0.375	120.00	400	PASS
		DH3	1.610	257.60		
		DH5	2.885	307.73		
$\pi/4$ -DQPSK	2441	DH1	0.375	120.00	400	PASS
		DH3	1.620	259.20		
		DH5	2.880	307.20		
8DPSK	2441	DH1	0.370	118.40	400	PASS
		DH3	1.620	259.20		
		DH5	2.875	306.67		

The test period: $T = 0.4 \text{ Second}/\text{Channel} \times 79 \text{ Channel} = 31.6 \text{ s}$

Test channel: 2402MHz/2441MHz/2480MHz as blow

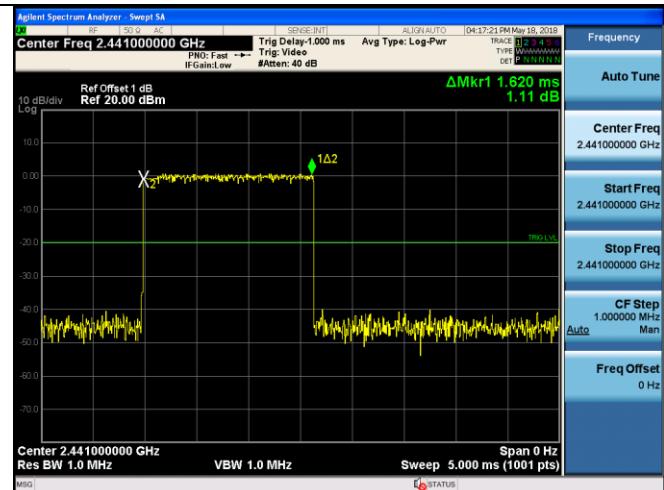
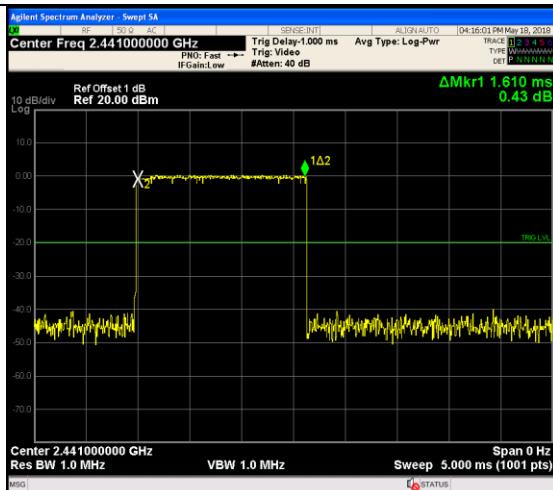
$$\text{DH1 time slot} = \text{Pulse time (ms)} * (1600 / (2 * 79)) * 31.6$$

$$\text{DH3 time slot} = \text{Pulse time (ms)} * (1600 / (4 * 79)) * 31.6$$

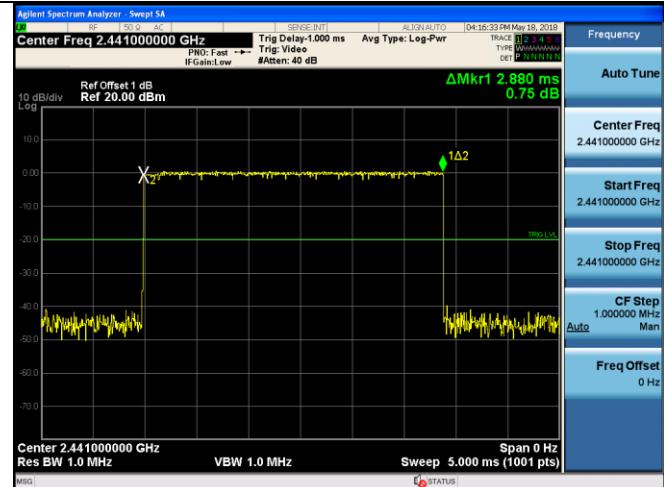
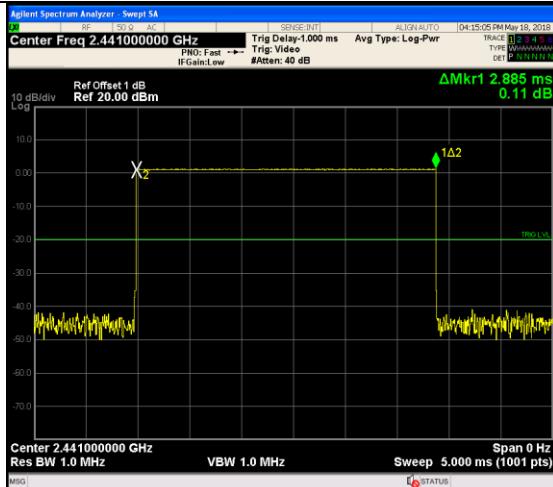


$$\text{DH5 time slot} = \text{Pulse time (ms)} * (1600 / (6 * 79)) * 31.6$$

Test plot as follows:

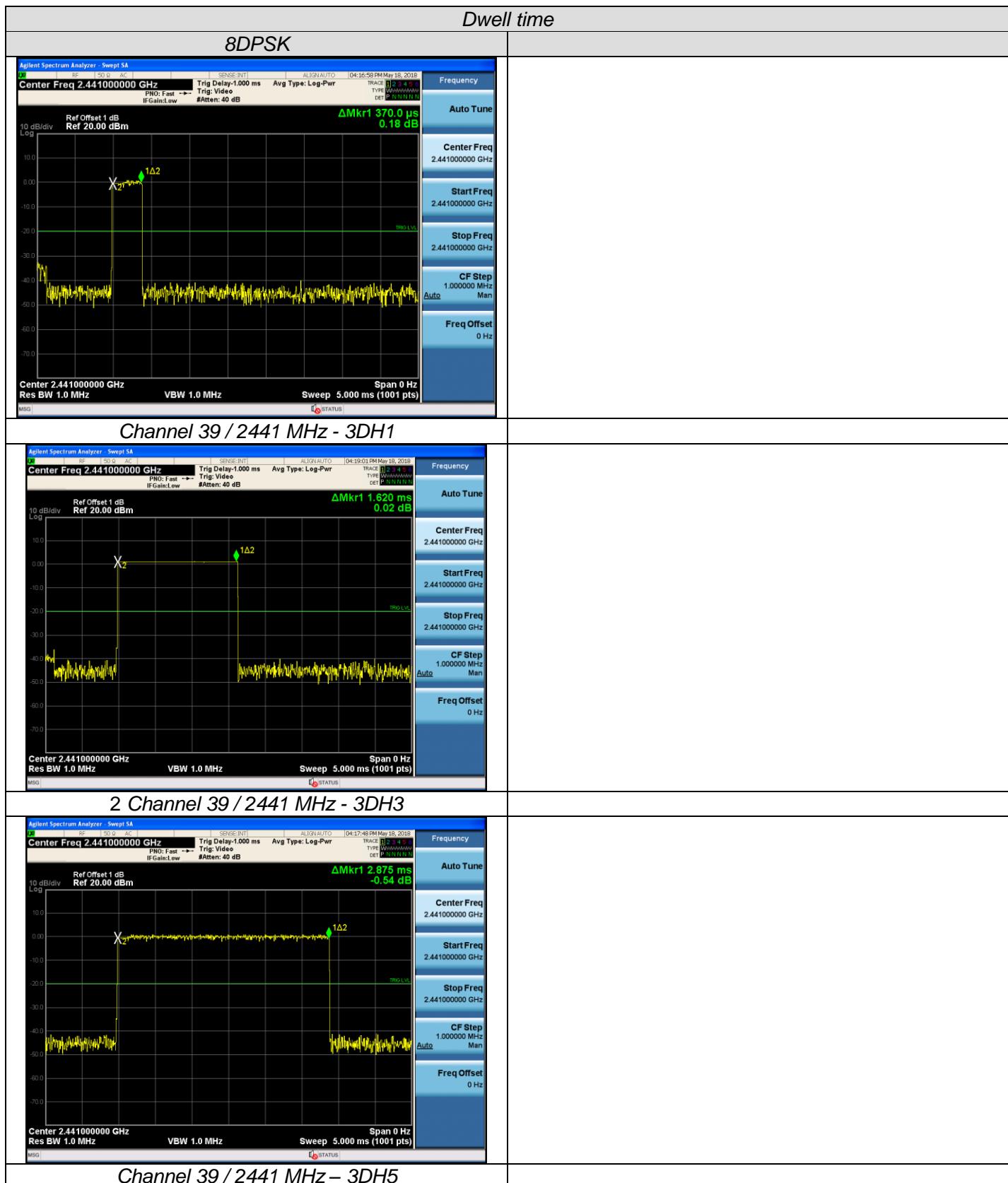
Dwell time



GFSK

$\pi/4$ -DQPSK



Channel 39 / 2441 MHz - DH1

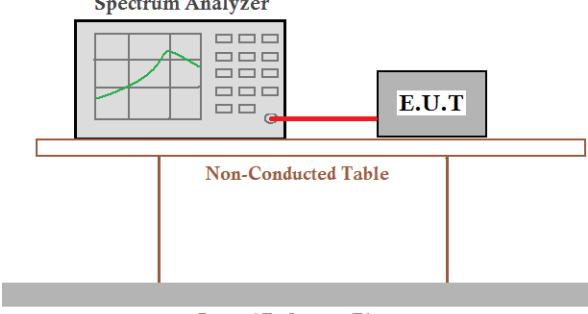
Channel 39 / 2441 MHz - 2DH1


Channel 39 / 2441 MHz - DH3

Channel 39 / 2441 MHz - 2DH3

Channel 39 / 2441 MHz - DH5

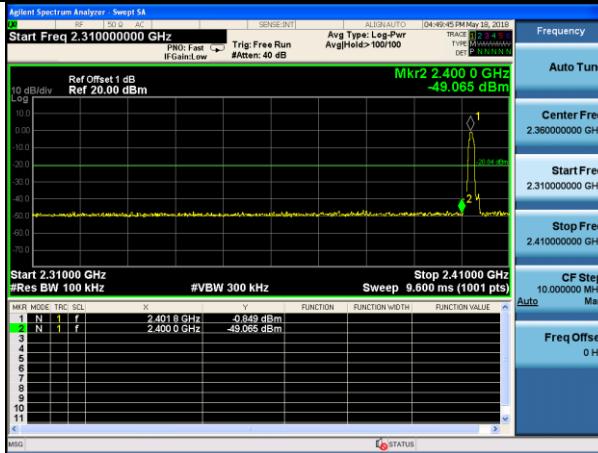
Channel 39 / 2441 MHz - 2DH5



4.8 Pseudorandom Frequency Hopping Sequence

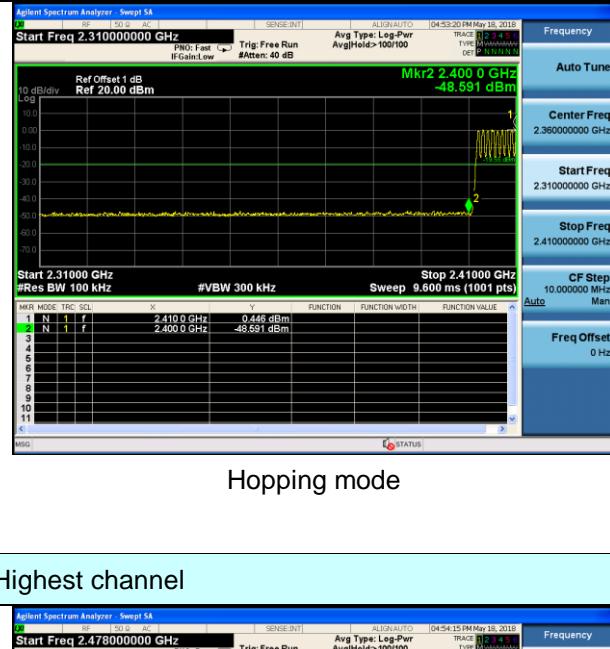
Test Requirement:	FCC Part15 C Section 15.247 (a)(1) requirement:																			
	<p><i>Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.</i></p> <p><i>Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.</i></p>																			
EUT Pseudorandom Frequency Hopping Sequence																				
<p><i>The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.</i></p> <ul style="list-style-type: none"> • Number of shift register stages: 9 • Length of pseudo-random sequence: $2^9 - 1 = 511$ bits • Longest sequence of zeros: 8 (non-inverted signal) <div style="border: 1px solid black; padding: 10px; text-align: center; margin: 10px 0;"> </div> <p style="text-align: center;"><i>Linear Feedback Shift Register for Generation of the PRBS sequence</i></p> <p><i>An example of Pseudorandom Frequency Hopping Sequence as follow:</i></p> <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="text-align: center; padding: 5px;">0 2 4 6</td> <td style="text-align: center; padding: 5px;">62 64</td> <td style="text-align: center; padding: 5px;">78 1</td> <td style="text-align: center; padding: 5px;">73 75 77</td> </tr> <tr> <td style="border: 1px dashed black; padding: 5px; text-align: center;"> <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 25%;"></td> <td style="width: 25%;"></td> <td style="width: 25%;"></td> <td style="width: 25%;"></td> </tr> </table> </td> <td style="border: 1px dashed black; padding: 5px; text-align: center;"> <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;"></td> <td style="width: 50%;"></td> </tr> </table> </td> <td style="border: 1px dashed black; padding: 5px; text-align: center;"> <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;"></td> <td style="width: 50%;"></td> </tr> </table> </td> <td style="border: 1px dashed black; padding: 5px; text-align: center;"> <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33%;"></td> <td style="width: 33%;"></td> <td style="width: 33%;"></td> </tr> </table> </td> </tr> </table> <p style="text-align: center; margin-top: 10px;"><i>Each frequency used equally on the average by each transmitter.</i></p> <p style="text-align: center; margin-top: 5px;"><i>The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.</i></p>		0 2 4 6	62 64	78 1	73 75 77	<table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 25%;"></td> <td style="width: 25%;"></td> <td style="width: 25%;"></td> <td style="width: 25%;"></td> </tr> </table>					<table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;"></td> <td style="width: 50%;"></td> </tr> </table>			<table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;"></td> <td style="width: 50%;"></td> </tr> </table>			<table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33%;"></td> <td style="width: 33%;"></td> <td style="width: 33%;"></td> </tr> </table>			
0 2 4 6	62 64	78 1	73 75 77																	
<table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 25%;"></td> <td style="width: 25%;"></td> <td style="width: 25%;"></td> <td style="width: 25%;"></td> </tr> </table>					<table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;"></td> <td style="width: 50%;"></td> </tr> </table>			<table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;"></td> <td style="width: 50%;"></td> </tr> </table>			<table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33%;"></td> <td style="width: 33%;"></td> <td style="width: 33%;"></td> </tr> </table>									

4.9 Band Edge


4.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	<p style="text-align: center;">Spectrum Analyzer</p> <p style="text-align: center;">Non-Conducted Table</p> <p style="text-align: center;">Ground Reference Plane</p>
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Test plot as follows:


GFSK Mode:

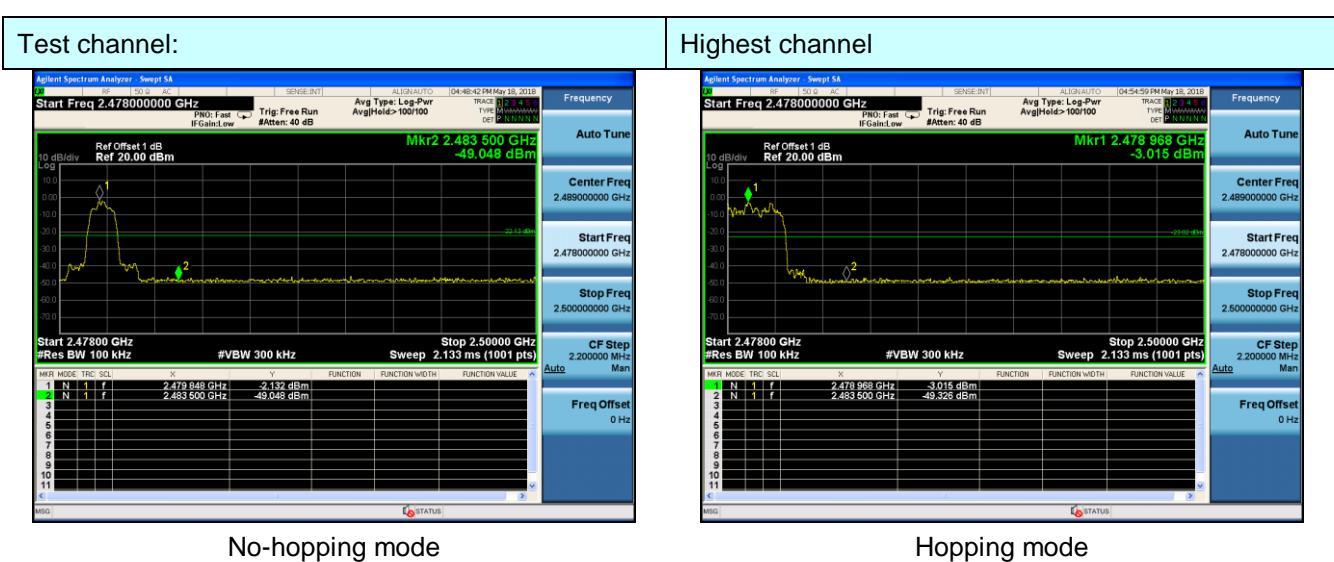
Test channel:

No-hopping mode

Lowest channel

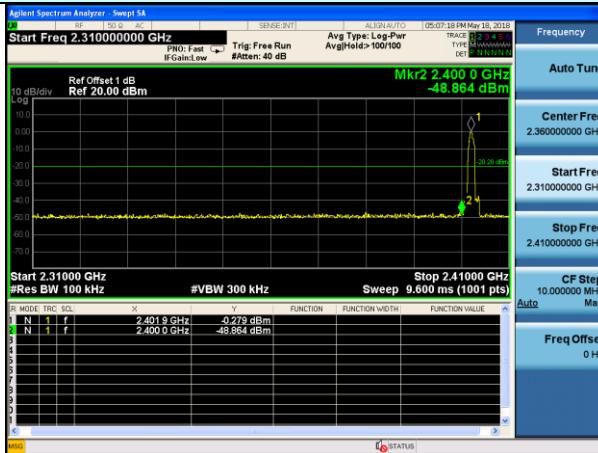
Hopping mode

Test channel:

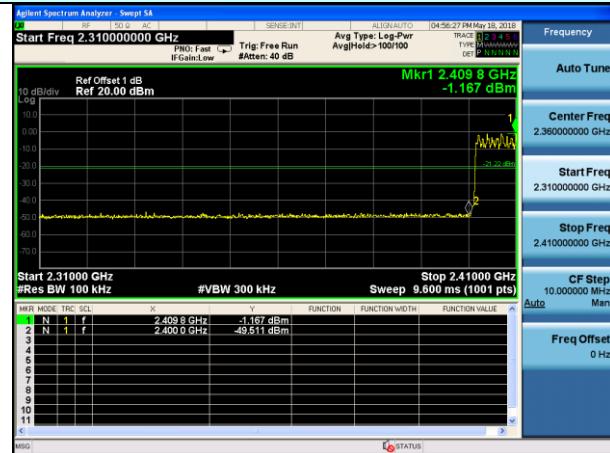



No-hopping mode

Highest channel


Hopping mode

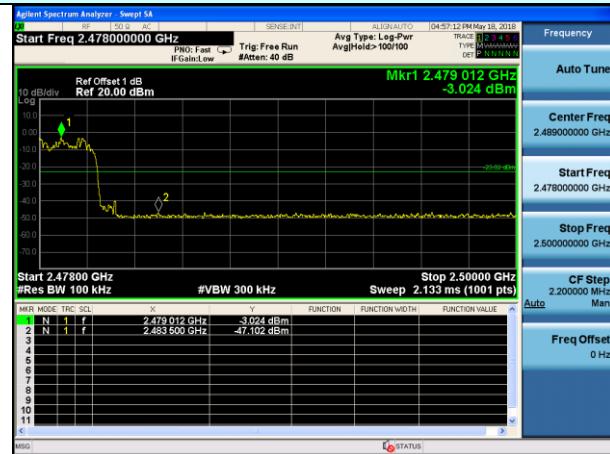
Pi/4QPSK Mode:


8DPSK Mode:

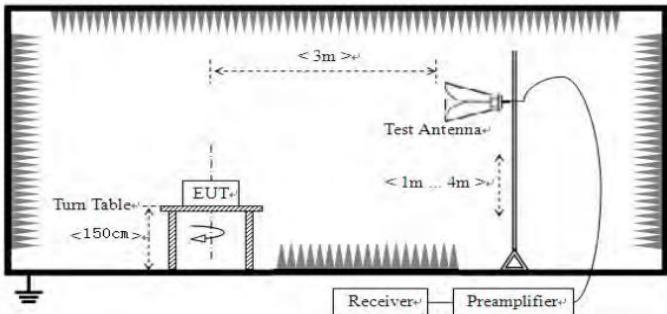
Test channel:

No-hopping mode

Lowest channel


Hopping mode

Test channel:


No-hopping mode

Highest channel

Hopping mode

4.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	All restriction band have been tested, and 2.3GHz to 2.5GHz band is the worse case								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
		Peak	1MHz	10Hz	Average Value				
Limit:	Frequency	Limit (dBuV/m @3m)		Remark					
	Above 1GHz	54.00		Average Value					
		74.00		Peak Value					
Test setup:									
Test Procedure:	<ol style="list-style-type: none"> The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								

Remark:

- During the test, pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

Test channel:	Lowest							
---------------	--------	--	--	--	--	--	--	--

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	46.18	27.59	5.38	30.18	48.97	74.00	-25.03	Horizontal
2400.00	51.47	27.58	5.39	30.18	54.26	74.00	-19.74	Horizontal
2390.00	47.04	27.59	5.38	30.18	49.83	74.00	-24.17	Vertical
2400.00	50.32	27.58	5.39	30.18	53.11	74.00	-20.89	Vertical

Average value:

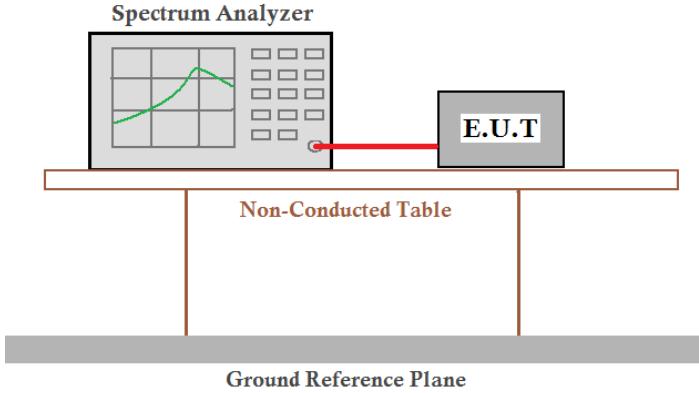
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	35.21	27.59	5.38	30.18	38.00	54.00	-16.00	Horizontal
2400.00	37.00	27.58	5.39	30.18	39.79	54.00	-14.21	Horizontal
2390.00	35.72	27.59	5.38	30.18	38.51	54.00	-15.49	Vertical
2400.00	37.60	27.58	5.39	30.18	40.39	54.00	-13.61	Vertical

Test channel:	Highest							
---------------	---------	--	--	--	--	--	--	--

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	48.06	27.53	5.47	29.93	51.13	74.00	-22.87	Horizontal
2500.00	47.11	27.55	5.49	29.93	50.22	74.00	-23.78	Horizontal
2483.50	49.76	27.53	5.47	29.93	52.83	74.00	-21.17	Vertical
2500.00	47.74	27.55	5.49	29.93	50.85	74.00	-23.15	Vertical

Average value:


Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	38.31	27.53	5.47	29.93	41.38	54.00	-12.62	Horizontal
2500.00	36.20	27.55	5.49	29.93	39.31	54.00	-14.69	Horizontal
2483.50	39.68	27.53	5.47	29.93	42.75	54.00	-11.25	Vertical
2500.00	36.54	27.55	5.49	29.93	39.65	54.00	-14.35	Vertical

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
2. The emission levels of other frequencies are very lower than the limit and not show in test report.

4.10 Spurious Emission

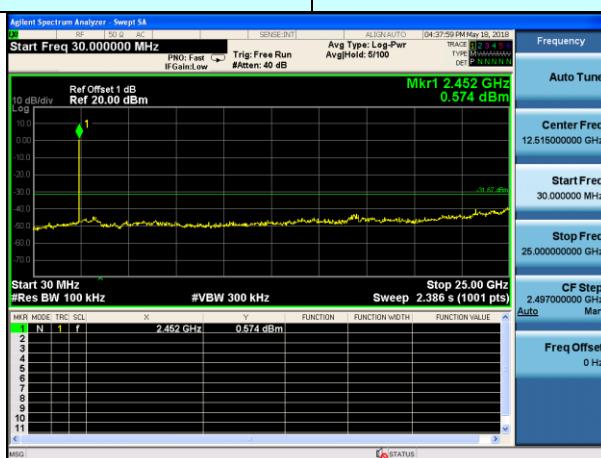
4.10.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 Meas Guidance V04
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remark:

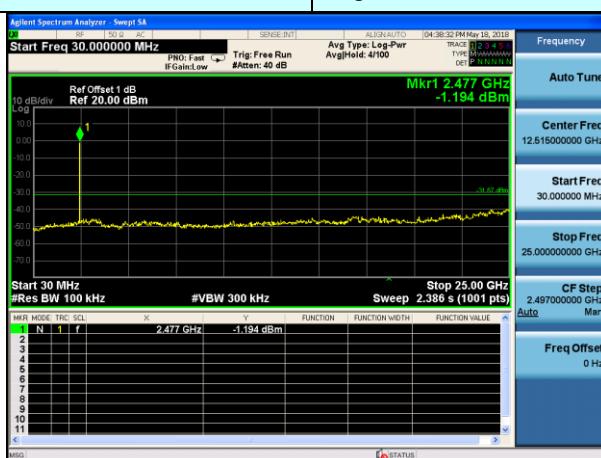
During the test, pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which is worse case.

Test channel:

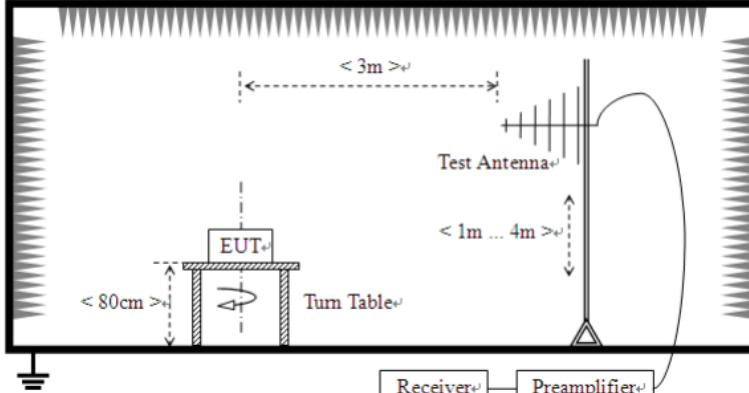
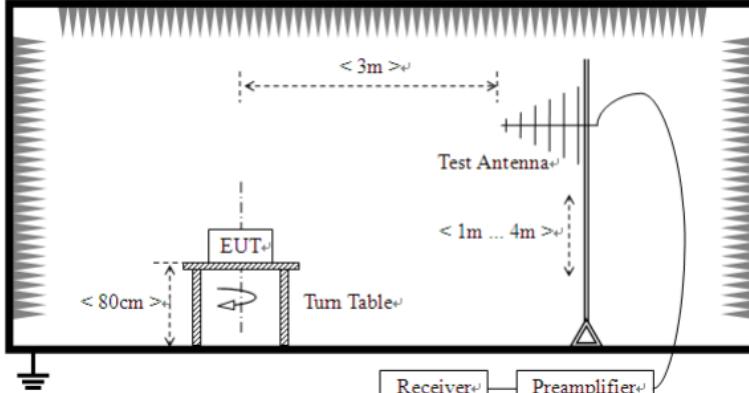

Lowest channel

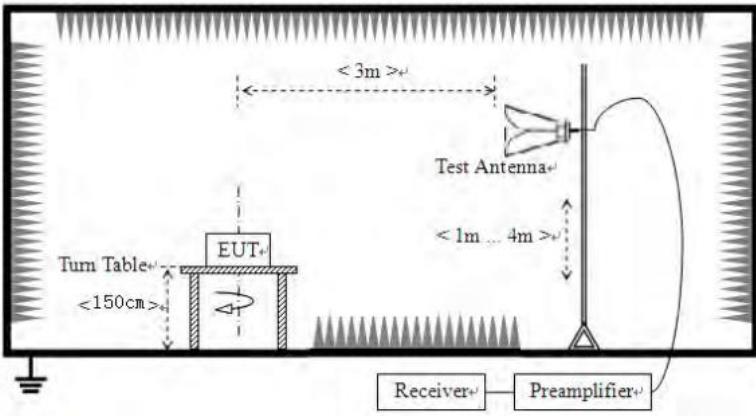
30MHz~25GHz

Test channel:


Middle channel

30MHz~25GHz



Test channel:


Highest channel

30MHz~25GHz

4.10.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	30MHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	9kHz-150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value				
	150kHz-30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value				
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
		Peak	1MHz	10Hz	Average Value				
Limit:	Frequency	Limit (dBuV/m @3m)		Remark					
	0.009-0.490MHz	2400/F(KHz)		300					
	0.490-1.705MHz	24000/F(KHz)		30					
	1.705-30MHz	30		30					
	30MHz-88MHz	40.0		Quasi-peak Value					
	88MHz-216MHz	43.5		Quasi-peak Value					
	216MHz-960MHz	46.0		Quasi-peak Value					
	960MHz-1GHz	54.0		Quasi-peak Value					
	Above 1GHz	54.0		Average Value					
		74.0		Peak Value					
Test setup:	Below 1GHz								
	Above 1GHz								

Test Procedure:	<ol style="list-style-type: none"> 1. The EUT was placed on the top of a rotating table (0.8 meters below 1G and 1.5 meters above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remark:

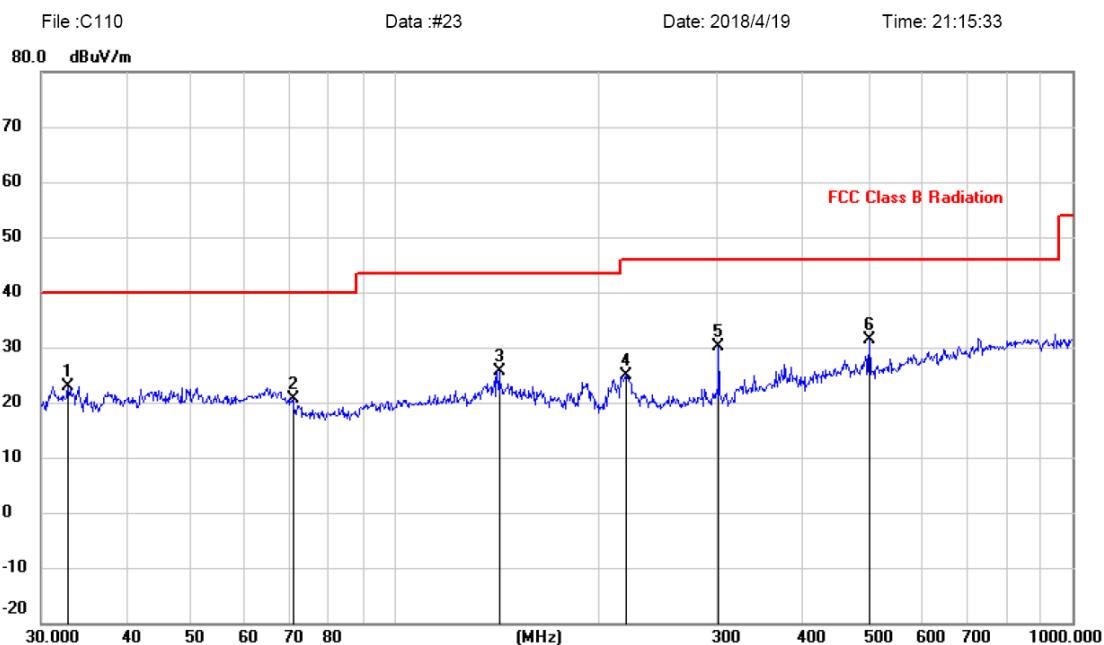
1. During the test, pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.
2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
3. The test data below 30MHz is too lower than the limit, so not show in this report.
4. Pre-scan all modes and recorded the worst case results in this report (TX-Middle Channel (1Mbps)).

Measurement data:

Test result for BT3.0 (GFSK: 2441MHz), AC 120V/ 60Hz

Vertical:**Radiated Emission Measurement**

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	Antenna Height	Table	
									cm	degree
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector		Comment
1	*	32.6340	16.56	13.42	29.98	40.00	-10.02	peak		
2		82.6478	19.74	9.56	29.30	40.00	-10.70	peak		
3		112.9196	18.14	11.82	29.96	43.50	-13.54	peak		
4		135.9821	17.07	13.59	30.66	43.50	-12.84	peak		
5		301.4223	17.40	13.51	30.91	46.00	-15.09	peak		
6		501.1788	18.31	17.22	35.53	46.00	-10.47	peak		


Note:1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Test result for BT3.0 (GFSK: 2441MHz), AC 120V/ 60Hz

Horizontal:

Radiated Emission Measurement

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	Table		
								Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree
1		32.8637	9.53	13.43	22.96	40.00	-17.04	peak		
2		70.5836	9.88	10.84	20.72	40.00	-19.28	peak		
3		142.3242	11.71	14.00	25.71	43.50	-17.79	peak		
4		219.0751	13.56	11.26	24.82	46.00	-21.18	peak		
5		301.4223	16.55	13.51	30.06	46.00	-15.94	peak		
6	*	501.1788	14.06	17.22	31.28	46.00	-14.72	peak		

Note:1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

■ Above 1GHz

Test channel:	Lowest
---------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	38.24	31.78	8.6	32.09	46.53	74.00	-27.47	Vertical
7206.00	32.76	36.15	11.65	32	48.56	74.00	-25.44	Vertical
9608.00	31.94	37.95	14.14	31.62	52.41	74.00	-21.59	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	42.09	31.78	8.6	32.09	50.38	74.00	-23.62	Horizontal
7206.00	34.26	36.15	11.65	32	50.06	74.00	-23.94	Horizontal
9608.00	31.54	37.95	14.14	31.62	52.01	74.00	-21.99	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	26.12	31.78	8.6	32.09	34.41	54.00	-19.59	Vertical
7206.00	21.10	36.15	11.65	32	36.90	54.00	-17.10	Vertical
9608.00	20.11	37.95	14.14	31.62	40.58	54.00	-13.42	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	30.68	31.78	8.6	32.09	38.97	54.00	-15.03	Horizontal
7206.00	22.99	36.15	11.65	32	38.79	54.00	-15.21	Horizontal
9608.00	19.18	37.95	14.14	31.62	39.65	54.00	-14.35	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
2. “**”, means this data is the too weak instrument of signal is unable to test.
3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:	Middle
---------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	37.64	31.85	8.67	32.12	46.04	74.00	-27.96	Vertical
7323.00	32.33	36.37	11.72	31.89	48.53	74.00	-25.47	Vertical
9764.00	31.48	38.35	14.25	31.62	52.46	74.00	-21.54	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	42.59	31.85	8.67	32.12	50.99	74.00	-23.01	Horizontal
7323.00	33.76	36.37	11.72	31.89	49.96	74.00	-24.04	Horizontal
9764.00	31.69	38.35	14.25	31.62	52.67	74.00	-21.33	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	26.24	31.85	8.67	32.12	34.64	54.00	-19.36	Vertical
7323.00	21.12	36.37	11.72	31.89	37.32	54.00	-16.68	Vertical
9764.00	19.44	38.35	14.25	31.62	40.42	54.00	-13.58	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	30.44	31.85	8.67	32.12	38.84	54.00	-15.16	Horizontal
7323.00	23.51	36.37	11.72	31.89	39.71	54.00	-14.29	Horizontal
9764.00	19.49	38.35	14.25	31.62	40.47	54.00	-13.53	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Remark:

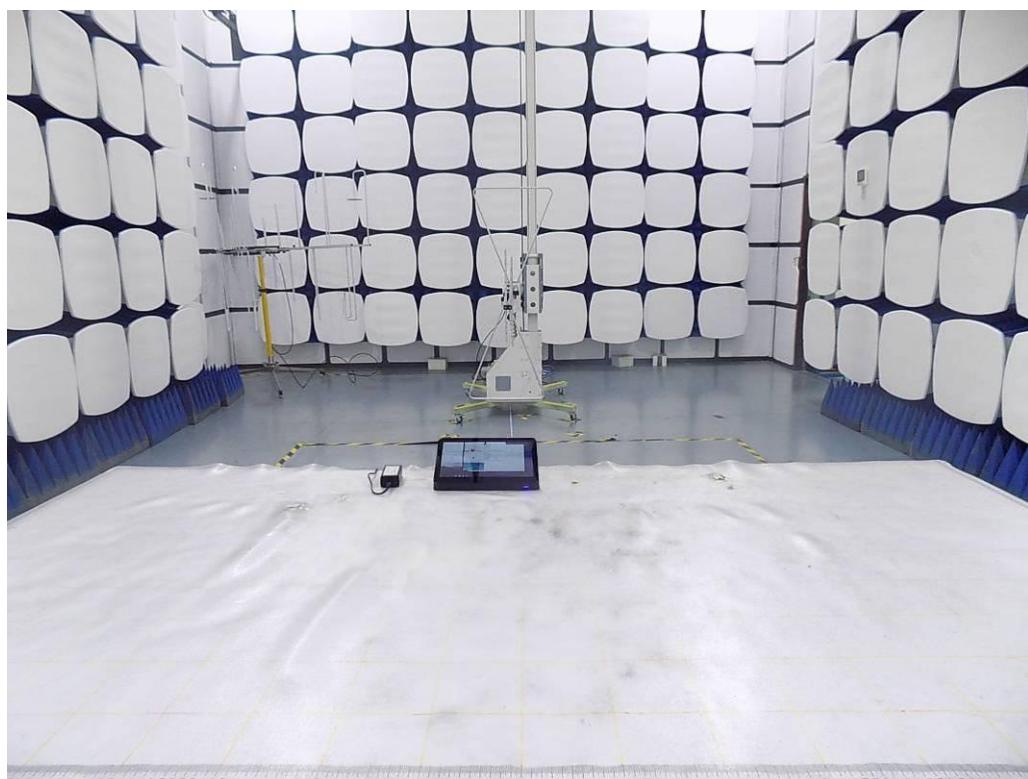
1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
2. “**”, means this data is the too weak instrument of signal is unable to test.
3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:	Highest
---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	37.68	31.93	8.73	32.16	46.18	74.00	-27.82	Vertical
7440.00	32.75	36.59	11.79	31.78	49.35	74.00	-24.65	Vertical
9920.00	31.30	38.81	14.38	31.88	52.61	74.00	-21.39	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	42.75	31.93	8.73	32.16	51.25	74.00	-22.75	Horizontal
7440.00	34.04	36.59	11.79	31.78	50.64	74.00	-23.36	Horizontal
9920.00	31.96	38.81	14.38	31.88	53.27	74.00	-20.73	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal

Average value:


Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	26.48	31.93	8.73	32.16	34.98	54.00	-19.02	Vertical
7440.00	20.93	36.59	11.79	31.78	37.53	54.00	-16.47	Vertical
9920.00	19.68	38.81	14.38	31.88	40.99	54.00	-13.01	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	30.95	31.93	8.73	32.16	39.45	54.00	-14.55	Horizontal
7440.00	23.43	36.59	11.79	31.78	40.03	54.00	-13.97	Horizontal
9920.00	19.74	38.81	14.38	31.88	41.05	54.00	-12.95	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
2. **, means this data is the too weak instrument of signal is unable to test.
3. The emission levels of other frequencies are very lower than the limit and not show in test report.

5 Test Setup Photo

Radiated Emission

Conducted Emission

6 EUT Constructional Details

Please refer to separated files for External Photos & Internal Photos of the EUT.

-----End-----