

According to 447498 D01 General RF Exposure Guidance v05

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances  $\leq$  50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g extremity SAR, where}$

-- $f(\text{GHz})$  is the RF channel transmit frequency in GHz

--Power and distance are rounded to the nearest mW and mm before calculation

--The result is rounded to one decimal place for comparison

$$\text{eirp} = \text{pt} \times \text{gt} = (\text{Exd})^2 / 30$$

where:

$\text{pt}$  = transmitter output power in watts,

$\text{gt}$  = numeric gain of the transmitting antenna (unitless),

$\text{E}$  = electric field strength in V/m, ---  $10^{((\text{dBuV/m})/20)/10^6}$

$\text{d}$  = measurement distance in meters (m) ---3m

So  $\text{pt} = (\text{Exd})^2 / 30 \times \text{gt}$

## For BT mode

Field strength = 96.96 dBuV/m @3m

Ant gain =0.5dBi, so Ant numeric gain=1.12

So  $\text{pt} = \{ [10^{(96.96/20)} / 10^6 \times 3]^2 / 30 \times 1.12 \} \times 1000 \text{ mW} = 1.33 \text{ mW}$

So  $(1.33 \text{ mW} / 5 \text{ mm}) \times \sqrt{2.480} = 0.420 < 3$

## For BLE mode

Field strength =94.34 dBuV/m @3m

Ant gain =0.5dBi, so Ant numeric gain= 1.12

So  $\text{pt} = \{ [10^{(94.34/20)} / 10^6 \times 3]^2 / 30 \times 1.12 \} \times 1000 \text{ mW} = 0.727 \text{ mW}$

So  $(0.727 \text{ mW} / 5 \text{ mm}) \times \sqrt{2.480} = 0.229 < 3$