
4. To change the default message directory on the device, select the checkbox next to rsuMessa-
gesPath and enter a new directory.

5. Click on the button for the changes to take effect on the device.

Alternatively, the muci tool can be used as follows:

1. Log into the device using SSH. For more information, refer to section “Connecting to the RSU
over wireless or wired connection” [2].

2. To set a new UDP listening port number, run the following command:

muci set ifm.listenPort <new port number>

3. To set a new message directory on the device, run the following command:

muci set ifm.rsuMessagesPath </new directory>

4. Restart the stack using the command

unplugged-rt-restart.sh

5.3.2. Formatting IFMs

Please note that all IFMs need to be in RSU 4.1 format. The message format needs to
match the regional standard.

The following example shows a US-standard IFM:

Version=0.7
Type=BSM
PSID=20
Priority=0
TxMode=CONT
TxChannel=SCH
TxInterval=0
DeliveryStart=
DeliveryStop=
Signature=False
Encryption=False
Payload=0012...

Immediate forwarding

Page 26 of 60 Copyright © 2024 Commsignia Ltd.

The following example shows an IFM adapted for ETSI standard messages:

Version=0.7
Proto=GNP
GnMethod=GBC
DestinationAreaType=circle
DestinationAreaLatitude=456612674
DestinationAreaLongitude=81757023
DestinationAreaDistanceA=1000
DestinationAreaDistanceB=0
DestinationAreaAngle=0
Type=DENM
PSID=25
Priority=1
TxMode=CONT
TxChannel=180
TxInterval=0
DeliveryStart=
DeliveryStop=
Signature=False
Encryption=False
Payload=0201...

As can be seen in both examples, the transmission interval (TxInterval) needs to be set to 0, while
the DeliveryStart and DeliveryStop fields needs to be left empty.

Please ensure that the signing of the messages are compatible with the security settings of the
device:

• If the system is enrolled and the security is turned on, use Signature=True to transfer signed
IFMs. Setting the signature to False is typically not recommended on an enrolled device.

• If the system is not enrolled or security is turned off, use Signature=False to trasmit unsigned
IFMs. Do not set the signature to True on such devices, as the messages cannot be signed, and fail
to be transmitted.

5.4. Deploying and transmitting SRMs/IFMs
To deploy a message on the RSU and start the transmission of the messages, proceed as follows:

1. Copy an SRM or IFM in the appropriate format described above to the messages folder on the
RSU using SCP as follows:

scp <msg_file> root@<IP address of>:/rwdata/etc/rsu_msgs/<msg_file>

Alternatively, WinSCP can be used on Windows computers.

If the scp command returns with the error message ash: /usr/libex-
ec/sftp-server: not found and fails, the -O switch needs to be used after
the command.

To use the ASN1.X tool to generate the message payload, refer to the section “Converting data
formats” [23]. Messages can be modified over SNMP as well.

2. Log into the device using SSH. For more information, refer to section “Connecting to the RSU
over wireless or wired connection” [2].

Deploying and transmitting SRMs/IFMs

Copyright © 2024 Commsignia Ltd. Page 27 of 60

3. Use the following command to restart the SRM-IFM tool:

/etc/init.d/srm-ifm-tool restart

Upon restarting the tool, the software stack on the device reads the message files in the
rsu_msgs folder and transmit them. If the message was modified over SNMP, then the software
stack does not need to be restarted.

The transmission of messages can be verified under the V2X Status → Status menu by expanding
the srmStatictics option. If the values of the counters are not increasing, please refer to the section
“Troubleshooting V2X communication” [59].

5.5. Transmitting Signal Phase and Timing (SPaT) messages on RSUs
Signal Phase and Timing messages are used to relay traffic light information in an intersection. The
message contains identifiers of the traffic lights, traffic light groups, intersection lanes, and other
information related to traffic control. Before enabling SPaT message transmission, please make sure
that the RSU is integrated to the TLC.

1. Log into the device using SSH. For more information, refer to section “Connecting to the RSU
over wireless or wired connection” [2].

2. To enable the transmission of SPaT content from the connected TLC, open the V2X Tools → TLC
menu, check the box near Enable tool, and set it to true, as shown in Figure 32.

Figure 32. TLC configuration page

3. Configure the appropriate protocol by expanding the tlc option.

a. For the TrafficWare proprietary UDP bit stream, check the box near protocol and select
TrafficwareV2 or TrafficwareV3 as applicable, as shown in Figure 33.

Figure 33. TrafficWare protocol settings

b. For the Battelle format, check the box near protocol and select Battelle, as shown in
Figure 34.

Transmitting Signal Phase and Timing (SPaT) messages on RSUs

Page 28 of 60 Copyright © 2024 Commsignia Ltd.

Figure 34. Battelle protocol settings

The port for both protocols can be specified as well. Please make sure that the port is not
blocked in the Firewall settings (see Firewall settings for further information).

4. An intersection ID for the TLC can be defined and signal groups can be managed by expanding
the TLC to V2X mapping option.

5. Click on the button for the changes to take effect on the device.

The transmission of SPaT messages can be verified under the V2X Status → Status menu by expand-
ing the tlcStatictics option and expanding counters receivedPackets and sentPackets. If the values
of the counters are not increasing, please refer to the section “Troubleshooting V2X communica-
tion” [59].

Transmitting Signal Phase and Timing (SPaT) messages on RSUs

Copyright © 2024 Commsignia Ltd. Page 29 of 60

6. Additional features

6.1. Datalogger tool
The Datalogger is a tool provided by Commsignia as part of the software stack running on the device.
It collects and processes data, from the V2X device, such as V2X messages or navigation data, based
on a pre-defined set of filters for data analysis, such as troubleshooting, central data collection,
real-time data processing.

6.1.1. Description of the Datalogger tool
The Datalogger tool processes all JSON configuration files in the /rwdata/v2x_configs/da-
ta_logger_ftw directory, where the required data sources, filters, and destination options can
be defined by the user. The tool gathers information from all defined data sources, automatically
organize these inputs in a queue, and then applies the user-defined filters and outputs the results to
the chosen destination type; the process is shown in Figure 35.

JSON C

JSON B

Source Filtering Destination

& &
...

&
(Filter A)

& &
...

&

& &
...

&

1 (Filter A)2 (Filter A)n

(Filter B)1 (Filter B)2 n(Filter B)

(Filter C)1 (Filter C)2 (Filter C)n

OUT A

OUT B

OUT C

JSON ANAV WSMP

FAC

GNP

NAV

WSMP

WSMP

Figure 35. Schematic of the Datalogger operation

6.1.1.1. Source
The following type of sources can be defined in the configuration file as strings: "Gnp" (GeoNetwork-
ing), "Nav" (Navigation), "Wsmp" (Wave Short Message Protocol), or "Fac" (Facility). Multiple sources
can be defined in the configuration file.

6.1.1.2. Filtering
Several filtering options can be set in the configuration file; filters are applied sequentially and every
filter can obtain a different data packet from the data sources available in the queue. Invalid filter
configurations do not cause the Datalogger to halt but may result in warning messages in the data
output. Table 1 shows the configurable filtering options available for different inputs.

Table 1. Filtering options for the Datalogger tool

Filter name Type Description Note

"btpPost" Integer Geonet BTP destina-
tion port

Only Geonet packets can be filtered
out

"direction" String
enum

Packet direction (NAV
packets are forwar-
ded)

Values: "In,"

"Out," and "Both"

"interval" Integer Save only every Nth
packet

Value must be greater or equal to 1

"psid" Integer WSMP PSID Only WSMP packets are filtered out

Additional features

Page 30 of 60 Copyright © 2024 Commsignia Ltd.

Filter name Type Description Note

"radioIn-
terface-
Name"

String Interface name "Non-radio packets are forwarded
(preferred over "radioInterface')

"radioIn-
terface"

Integer Interface ID Non-radio packets are forwarded

"facMessa-
geType"

String
enum

Facility message types
to forward

Non facility messages are forwar-
ded

"rssi" Integer Save only packets
where RSSI exceeds
this number in [dBm]

Only incoming radio packets can be
filtered out. In case of C-V2X com-
munication, the value of RSSI is al-
ways 0.

"start" Integer Save only after this
Unix timestamp (in
[ms])

Value must be greater or equal
to 1072915200000

"stop" Integer Save only after this
Unix timestamp (in
[ms])

Value must be greater or equal
to 1072915200000

6.1.1.3. Destination

6.1.1.3.1. Output types
The user definable output types are "socket" and "file." Table 2 summarizes the available options for
different output types.

Table 2. Options for different output types

Output
type

Option Values
(Type)

Note

socket protocol udp (string)

tcp (string)

Communication protocol can be TCP or UDP

destHost (string) IPv6 or IPv4 address of the destination

detPort (integer) Value must be greater than or equal to 0 and less
than or equal to 65535

file fileName (string) File name with full path; the path must exists. If
name contains %d, it will be replaced with the
current date

maxAge (integer) Maximum age of the file in [s]. If fileName con-
tains %d, then the file will be rotated, otherwise
the capture stops. Value must be greater than or
equal to 1

maxSIze (integer) Maximum file size in kB. Value must be greater
than or equal to 1

6.1.1.3.2. Output formats
The "format" object in the JSON schema describes the output format of the gathered data, which can
be either "raw" or "prefixed."

Raw data is the unmodified filtered data collected from the specified data sources. The message
content will be the same as the original content, for example NAV data will result in a raw NAV data
output.

Datalogger tool

Copyright © 2024 Commsignia Ltd. Page 31 of 60

Prefixed or encapsulated format will result in a header and a metadata footer attached to the data
output. The files saved in the prefixed output format consist of a header, content, and metadata. The
header contains the size of the content payload and everything after that is the metadata of the
output. Metadata contains the Packet ID which is equal to the PSID or BTP port of the original V2X
message content. This can be used to differentiate messages sent to the same recipient because raw
data will not contain this information. This can also be used to differentiate between different types of
V2X messages as well.

The Datalogger tool uses the following UPER encoded data formats:

• MSG_FRAME for WAVE radio data

• CAM/DENM/etc for ETSI radio data

Navigation data
Navigation data has the following directly serialized C++ struct format, as it can be found in the
include/cms_v2x/nav.h header file in the Remote C SDK:

typedef struct cms_nav_fix_t {

 /** Flag to indicate whether the NAV fix is valid.
 @note If this flag is true, all other fields will be valid, recent and
 consistent. If the flag is false, either all fields will be N/A, or they
 will contain the most recent consistent data, but it can be very old. */
 bool is_valid;

 cms_utc_timestamp_ms_t timestamp; /
**< UTC milliseconds since Unix epoch */
 uint64_t leap_seconds; /
**< Leap seconds, i.e the difference between UTC and TAI in [s] */
 cms_latitude_t latitude; /**< Latitude angle */
 cms_longitude_t longitude; /**< Longitude angle */
 cms_altitude_t altitude; /**< Altitude */
 cms_altitude_t altitude_confidence; /**< Confidence of altitude */
 cms_length_t pce_semi_major; /
**< Position Confidence Ellipse: half of major axis length */
 cms_length_t pce_semi_minor; /
**< Position Confidence Ellipse: half of minor axis length */
 cms_heading_t pce_orientation; /
**< Position Confidence Ellipse: direction of the major axis */
 cms_heading_t heading; /**< Heading of the motion */
 cms_heading_confidence_t heading_confidence; /**< Confidence of heading */
 cms_speed_t speed; /**< Speed of the motion */
 cms_speed_t speed_confidence; /**< Confidence of speed */
 cms_nav_drive_direction_t drive_direction; /**< Drive direction */
 uint8_t number_of_used_satellites; /
**< Satellites used to determine position */
} CMS_PACKED cms_nav_fix_t;

The types are defined in the include/cms_v2x/common_types.h header in Unplugged_RT.

6.1.2. Configuring the Datalogger
If the Datalogger tool finds at least valid JSON configuration file in the /rwdata/v2x_configs/da-
ta_logger_ftw directory of the device, then it starts and runs according to the configuration.

If there is no JSON file in the directory, the Datalogger prints the following message into the system-
log and stops:

data-logger-ftw: No configuration file at /etc/data_logger_ftw/

Datalogger tool

Page 32 of 60 Copyright © 2024 Commsignia Ltd.

In case of an invalid JSON file, such as syntax or sequence error, the Datalogger prints the following
message into the systemlog:

data-logger-ftw[13439]: INFO: Skipping invalid/
disabled configuration file: dsrcfwd_02.json

If all JSON files are invalid, , the Datalogger prints the following message into the systemlog and quits:

data-logger-ftw[13439]: ERROR: No valid & enabled configuration files found!

In the following example, WSMP packets are filtered and sent to an UDP port.

{
 "enabled": true,
 "source": ["Wsmp"],
 "filters": [
 { "start": 1686838229000 },
 { "stop": 1786838229000 },
 { "psid": 32 },
 { "rssi": -90 },
 { "interval": 3 }
],
 "out": {
 "format": "Prefixed",
 "socket":{
 "protocol":"udp",
 "destHost": "192.168.9.192",
 "destPort": 42000
 }
 },
 "version": 6
}

To create a configuration file proceed as follows:

1. Enable the tool as:

"enabled": true,

2. Set the source according to the description given in section “Source” [30]. Several sources can
be given in the schema such as:

"source": [
 "Wsmp",
 "Gnp",
 "Nav"
],

3. Configure filters according to the description given in section “Filtering” [30]. In the example
above only the necessary options are shown.

Please note that the sequence of filters is important. For example, always set the
PSID first and than the interval.

a. The "start" and "stop" fields give the starting and stopping times of the logging in Unix
time in [ms]. For example, to convert Sunday, July 2, 2023, 11:45:00 local time to a Unix
timestamp, the following command can be used:

Datalogger tool

Copyright © 2024 Commsignia Ltd. Page 33 of 60

date -d "2023-07-02 11:45:00" +%s

This results in a timestamp 1688291100, which needs to be extended with three digits
representing milliseconds.

b. To filter the required message type, specify the decimal value of the required PSID in the
"psid" field. The most commonly used PSID are summarized in Tables 3 and 4.

Table 3. PSIDs and message IDs of various messages (US)

Message PSID (dec) PSID (hex) PSID (p-encoded) Message ID

BSM 32 0x20 0p20 20

MISBEHAV 38 0x26 0p26

PSM 39 0x27 0p27 32

RTCM 128 0x80 0p80-00 28

SPaT 130 0x82 0p80-02 19

TIM 131 0x83 0p80-03 31

PVD 132 0x84 0p80-04 26

WSA 135 0x87 0p80-07

SDSM 144 0x90 0p80-10

SSM 2113685 0x20-40-95 0pE0-00-00-15 30

SRM 2113686 0x20-40-96 0pE0-00-00-16 29

MAP 2113687 0x20-40-97 0pE0-00-00-17 18

RWA 2113689 0x20-40-99 0pE0-00-00-19

Table 4. ITS-AID and message IDs of various messages (EU)

Message ITS-AID
(dec)

ITS-AID
(hex)

ITS-AID (p-
encoded)

Message
ID

BTP
dest
port

CAM 36 0x24 0p24 2 2001

DENM 37 0x25 0p25 1 2002

TLM 137 0x89 0p80-09

SPATEM 137 0x89 0p80-09 4 2004

RLT 138 0x8A 0p80-0A

MAPEM 138 0x8A 0p80-0a 5 2003

IVIM 139 0x8B 0p80-0b 6 2006

SREM 140 0x8C 0p80-0c 9 2007

GNMGMT 141 0x8D 0p80-0D

SSEM 637 0x02-7D 0p81-FD 10 2008

CPM 639 0x02-7F 0p81-FF

c. Set the "rssi" field to log only signals with a given strength. The value needs to be in [dBm],
and signals with strength greater than or equal to this value are logged.

d. To log every Nth packet, set the "interval" field to N.

4. The destination parameters can be set under "out" according to section “Destination” [31]. In
the example above a prefixed data format and an UDP sockets are used. To save the data in a file
in raw format, the following example can be used:

Datalogger tool

Page 34 of 60 Copyright © 2024 Commsignia Ltd.

 "out": {
 "format": "Raw",
 "file":{
 "fileName": "/var/log/iflog/if_0_in_%d.pcap",
 "maxAge": 40,
 "maxSize": 50
 }

Further configuration options are described in section “Description of the Datalogger tool” [30].

6.2. Integrating object detections from smart sensors into the Cooperative Fil-
tering and Fusion framework

6.2.1. Overview
To insert object detections from an external smart sensor, such as a camera, into the Cooperative
Filtering and Fusion (CFF) framework, a convenient interface based on a User Datagram Protocol
(UDP) adapter is provided. Through this adapter, objects encoded in an appropriate form can be fed
into the CFF, as shown in Figure 36. The encoded messages are expected on a preconfigured port
encapsulated in UDP messages. The adaptation of a new smart sensor requires the development
of an application that transforms the sensor measurements into a format compatible with the UDP
adapter, the specification of the appropriate configuration of the message transmit in the configura-
tion of the safety applications (saf.json), and the provision of certain sensor parameters in the CFF
configuration (cff.json) if the detections are intended to be broadcast in such message types (e.g. as
Collective Perception Messages (CPMs)). If required, the appropriate message transmission modules
also need to be enabled in the stack, for example when the user intends to broadcast CPMs.

Figure 36. Schematics of smart sensor integration into the CFF

6.2.2. Interfacing with the CFF UDP adapter
The UDP adapter is designed to provide a convenient Python/C++ interface for injecting different
entities into the CFF.

The message structure is defined in flatbuffers and communication is carried out via a configurable
UDP port (12321 by default).

Currently, the adapter has limited functionality, only objects and a subset of their properties are
supported. Similar to other CFF application programming interfaces (APIs), the convention is that
angle related values need to be in degrees, timestamps in ms (Coordinated Universal Time (UTC)),
while the rest of the quantities need to be in SI units.

Integrating object detections from smart sensors into the Cooperative Filtering
and Fusion framework

Copyright © 2024 Commsignia Ltd. Page 35 of 60

6.2.3. Data requirements
In order to inject valid objects into the CFF, the object information has to contain valid position,
heading, and speed values and the object needs to have a unique identifier. The adapter provides an
interface to add various other optional parameters as well. If these values are available, the user may
include them in the input data.

The CFF allows practically any values, provided that they are consistent (e.g., if vehicle sizes are
known, then both the length/width parameters need to be added, not only one of them). It is the
responsibility of the user to specify them correctly. However, V2X messages allow values satisfying
certain range constraints. Therefore, if the detections need to be transmitted via CPM, sensor data
sharing message (SDSM), or personal safety message (PSM), the supported value ranges need to be
checked (e.g., in CPM messages, the object length and width need to be in the range of 0.1–102.2 m
and its height in the range of 0.1–6.1 m).

6.2.4. Message composition using Python language
For message composition, helper classes and functions are available from Commsignia on request.
The pattern for creating and sending input to a CFF instance is as follows.

• A builder object has to be created. This will serve as the buffer for the message contents and will
encode the message once its construction is finished.

• The root object of the message to be sent over UDP is of type Input.

• Each object has the following creator function(s), depending on whether they are defined as structs
or tables in flatbuffers:

◦ structs have a creator function Create<StructName>(builder, value1,..., valueN).

◦ tables have a <TableName>Start(builder), a <TableName>End(builder), and specific setter func-
tions for each field and follow the <TableName>Add<FieldName>(builder, value) naming pattern.

• Due to the nature of the builder class, the creation of tables cannot be embedded into each other,
that is, an object needs to be created as a whole before creating another.

• Once the message fields are set, the byte stream can be created by calling the Output() function of
the builder.

In the following, a simple example is provided, which injects an object into the CFF instance running
on the local host.

To feed an object into the UDP adapter, a flatbuffers stream needs to be assembled first. For this, the
flatbuffers package, together with the UDP adapter related packages need to be imported as shown
below:

Integrating object detections from smart sensors into the Cooperative Filtering
and Fusion framework

Page 36 of 60 Copyright © 2024 Commsignia Ltd.

import flatbuffers
import socket
import time

from Cff.Api.UdpInput.AbsolutePosition import *
from Cff.Api.UdpInput.DataElement import *
from Cff.Api.UdpInput.Dimensions import *
from Cff.Api.UdpInput.Electronics import *
from Cff.Api.UdpInput.Input import *
from Cff.Api.UdpInput.Motion import *
from Cff.Api.UdpInput.Object import *
from Cff.Api.UdpInput.ObjectType import *
from Cff.Api.UdpInput.Position import *
from Cff.Api.UdpInput.RelativePosition import *
from Cff.Api.UdpInput.ValueWithConf import *
from Cff.Api.UdpInput.VehicleType import *
from Cff.Api.UdpInput.Version import *

Then, a flatbuffers builder of suitable size needs to be created, which will later be used to encode the
UDP adapter input:

builder = flatbuffers.Builder(1024)

This builder can then be used to assemble the detected object step-by-step, as follows.

Assemble the dimensions as:

DimensionsStart(builder)
DimensionsAddLength(builder, 5.3)
DimensionsAddWidth(builder, 2.1)
DimensionsAddHeight(builder, 1.5)
dim = DimensionsEnd(builder)

Assemble the motion as:

RelativePositionStart(builder) / AbsolutePositionStart(builder)
RelativePositionAddX(builder, 20.0) / AbsolutePositionAddLatitude(builder, \
47.475555)
RelativePositionAddY(builder, 10.0) / AbsolutePositionAddLongitude(builder, \
19.057777)
RelativePositionAddZ(builder, 5.0) / AbsolutePositionAddAltitude(builder, 120.0)
position = RelativePositionEnd(builder) / position = \
AbsolutePositionEnd(builder)

MotionStart(builder)
MotionAddPosition(builder, position)

MotionAddPositionType(builder, Position().RelativePosition) / \
MotionAddPositionType(builder, Position().AbsolutePosition)

MotionAddSpeed(builder, CreateValueWithConf(builder, 2.7, 1.0))
MotionAddAcceleration(builder, CreateValueWithConf(builder, -0.3, 1.0))
MotionAddHeading(builder, CreateValueWithConf(builder, 0.17, 1.0))
MotionAddYawRate(builder, CreateValueWithConf(builder, 2.1, 1.0))
motion = MotionEnd(builder)

Assemble the electronics as:

Integrating object detections from smart sensors into the Cooperative Filtering
and Fusion framework

Copyright © 2024 Commsignia Ltd. Page 37 of 60

addElectronics = 0
if addElectronics:
 ElectronicsStart(builder)
 ElectronicsAddLeftTurnSignal(builder, 1)
 ElectronicsAddRightTurnSignal(builder, 0)
 electr = ElectronicsEnd(builder)

Assemble the object as:

ObjectStart(builder)
ObjectAddId(builder, 22)
ObjectAddObjectType(builder, ObjectType().Vehicle)
ObjectAddVehicleType(builder, VehicleType().Truck)
ObjectAddDimensions(builder, dim)
ObjectAddMotion(builder, motion)
if addElectronics:
 ObjectAddElectronics(builder, electr)
obj = ObjectEnd(builder)

Assemble the UDP input contents as:

InputStart(builder)
InputAddVersion(builder, Version.CurrentVersion)
InputAddSourceId(builder, 111)
InputAddTimestamp(builder, int(round(time.time() * 1000)))
InputAddDataType(builder, DataElement().Object)
InputAddData(builder, obj)
inputData = InputEnd(builder)

The root type is Input. Once it is created, the buffer needs to be finalized and the encoded data can
be accessed as shown below:

builder.Finish(inputData)
data = builder.Output()

Finally, the encoded data can simply be sent via UDP to the appropriate IP address and port as

UDP_IP = "127.0.0.1"
UDP_PORT = 12321
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.sendto(data, (UDP_IP, UDP_PORT))

6.2.5. Message composition using C++ language
Apart from certain differences, the procedure in C++ is similar to that of the Python case presented
in the previous section; here, the procedure of assembling the message and retrieving the encoded
result is shown. It is assumed in the subsequent code parts that the necessary information for
creating a flatbuffers object is included in the variables obj and timestamp.

The main difference is that the input elements do not directly use the builder as a workspace; it is
required only when the data to be encoded is already constructed. To improve the readability of the
code, the following lines can be added:

using namespace Cff::Api::UdpInput;

Then, the object can be assembled as follows.

Assemble an object as:

Integrating object detections from smart sensors into the Cooperative Filtering
and Fusion framework

Page 38 of 60 Copyright © 2024 Commsignia Ltd.

auto dimension = CreateDimensions(builder, 4.5, 2.5, 1.5); / Length, width, \
height

auto position = CreateAbsolutePosition(builder,
 47.475555, / Latitude
 19.057777, / Longitude
 1.0, / Position
 1.0, / ...
 0.0, / confidence
 120.0, / Altitude
 1.0); / Altitude \
confidence

auto motion = CreateMotion(builder,
 Position_AbsolutePosition, / or \
Position_RelativePosition
 position.o,
 ValueWithConf(12.7, 1.0), / Speed
 ValueWithConf(-0.3, 0.0), / Acceleration
 ValueWithConf(180.0, 0.0), / Heading
 ValueWithConf(4.1, 0.0)); / Yawrate

auto object = CreateObject(builder,
 123456, / Id
 ObjectType_Vehicle,
 VehicleType_Truck,
 dimension,
 motion);

The creation of the root object is intentionally not added to the previous code block. For the correct
operation of the flatbuffers builder, it needs to be allocated dynamically as follows:

auto input = CreateInput(builder, Version_CurrentVersion, timestamp, sourceId, \
DataElement_Object, object);

From this point, the builder will manage the life cycle of the root object. After the root object is fully
created, it can be passed to a builder which can be used to create the encoded input as:

flatbuffers::FlatBufferBuilder builder;

FinishInputBuffer(builder, input->Finish());

Finally, the encoded byte array can be retrieved as follows:

auto encodedData = std::vector<uint8_t> {builder.GetBufferPointer(), \
builder.GetBufferPointer() + builder.GetSize()};

This array can be sent to the UDP adapter.

6.2.6. Configuring the UDP adapter and message generation on the RSU
Sensor specific configuration parameters are collected in the "sensorAdapters" section in the
file cff.json and in the "sensorSharing" section in the file saf.json. The CFF configuration
(cff.json) contains all sensor specific settings, while the message types that encapsulate detected
object information can be specified in the safety application configuration (saf.json).

6.2.6.1. Configuring the UDP adapter
To configure the UDP adapter on the RSU, proceed as follows:

Integrating object detections from smart sensors into the Cooperative Filtering
and Fusion framework

Copyright © 2024 Commsignia Ltd. Page 39 of 60

1. Log into the device using SSH. For more information, refer to section “Connecting to the RSU
over wireless or wired connection” [2].

2. Locate the cff.json CFF configuration file on the device; on Commsignia devices, the file can
be found in the /rwdata/v2x_configs/ directory. If the file is not available or on other devices
use the following command to locate the file:

find / | grep cff.json

3. Copy and edit the following "sensorAdapters" section example into the cff.json file as follows:

Integrating object detections from smart sensors into the Cooperative Filtering
and Fusion framework

Page 40 of 60 Copyright © 2024 Commsignia Ltd.

{
...
"sensorAdapters": {
 "udpAdapter": {
 "enable": true,
 "port": 12321
 },
 "externalSensors": [
 {
 "id": 111,
 "type": "Lidar",
 "referenceType": "Fixed",
 "position": {
 "latitude": 47.47555,
 "longitude": 19.057777,
 "altitude": 120
 },
 "direction": 90
 },
 {
 "id": 112,
 "type": "Ultrasonic",
 "referenceType": "CurrentPosition",
 "positionOffset": {
 "x": 3,
 "y": 6
 },
 "direction": 135,
 "fieldOfView": {
 "vertices": [
 {
 "x": 1.1,
 "y": 2.2
 },
 {
 "x": 4.4,
 "y": 5.5
 }
]
 },
 "detectionAreas": [
 {
 "vertices": [
 {
 "x": 1.1,
 "y": 2.2
 },
 {
 "x": 3.3,
 "y": 4.4
 }
]
 }
]
 }
]
}

Integrating object detections from smart sensors into the Cooperative Filtering
and Fusion framework

Copyright © 2024 Commsignia Ltd. Page 41 of 60

...
}

Here, parameters and parameter groups are defined as follows:

• udpAdapter: the settings of the UDP adapater are collected in this group. The adapter can be
enabled/disabled and the UDP port it listens to can be specified.

• externalSensors:

◦ list of sensors that are connected to the RSU, for each sensor you can specify the following
parameters:

- id: The ID of the sensor. The corresponding measurements fed via the UDP adapter need
to be the same as those set here.

- type: Type of the sensor [camera, lidar. radar, ultrasonic, other].

- referenceType: If "Fixed" is selected, the position and direction of the sensor need to
be specified. Otherwise (CurrentPosition), the ego position and heading is used as a
reference and the direction is interpreted in the ego frame.

- position: Position of the sensor. Required only when the reference is set to "Fixed."

- positionOffset: Sensor position offset relative to the reference. Required only when the
reference is not set to "Fixed."

- direction: The direction in [deg] to which the sensor points. When the reference type is
"Fixed," it is interpreted in the WGS84 frame. Otherwise, in the frame of reference of the
ego object.

- fieldOfView: The field-of-view (FOV) of the sensor can be specified in this parameter.
A valid FOV is a polygon with at least three vertices specified by their x/y relative coordi-
nates.

- detectionAreas: This optional parameter is a vector containing the areas in which valid
detections can be expected from the smart sensor. These areas are polygons similar to
the FOV and need to fulfill the same requirements. The platform is able to restrict objects
to be broadcast in V2X messages only to the specified regions.

6.2.6.2. Configuring message generation
To configure the message generation on the RSU, proceed as follows:

1. Log into the device using SSH. For more information, refer to section “Connecting to the RSU
over wireless or wired connection” [2].

2. Locate the saf.json safety applications configuration file on the device; on Commsignia devi-
ces the file can be found in the /rwdata/v2x_configs/ directory. If the file is not available or
on other devices use the following command to locate the file:

find / | grep saf.json

3. Copy and edit the following "sensorSharing" section example into the saf.json file as follows:

Integrating object detections from smart sensors into the Cooperative Filtering
and Fusion framework

Page 42 of 60 Copyright © 2024 Commsignia Ltd.

{
...
"sensorSharing": {
 "enable": true,
 "mode": "Cpm"
}
...
}

Here, parameters and parameter groups are defined as follows:

• enable: The message generation can be enabled/disabled using "true" of "false," respectively.

• mode: The message types that encapsulate detected object information can be specified
here "Cpm" (CPM-Eu), "Psm" (PSM-US), or "Sdsm" (SDSM-US).

6.2.7. Quick guide for configuration

• Applications (saf.json)

◦ enable sensorSharing [true] under native section

◦ select message generation mode [Cpm/Psm/Sdsm]

• Fusion-filtering (cff.json)

◦ enable udpAdapter [true] under sensorAdapters section

◦ select port number [12321]

◦ set sensor (camera) position (lat, lon) [47.4755, 19.0584]

- in case of CPM: injected objects and the sensor must be closer than 1000 m (CpmBuilder::isIn-
Range())

• Core stack (its.json)

◦ enable transmission module for chosen messagetype [true]

- Cpm → CPM transmission configuration

- Psm → WSMP transmission configuration

- Sdsm → SDSM transmission configuration

• set navigation properties

◦ in case of CPM: sensor position and device position must be closer than 1000 m

◦ for example, use manual navigation latitude and longitude [47.4758, 19.0582]

6.2.8. Restrictions
Please note the following restrictions for the injected objects and message types:

• Incoming objects cannot be EGO.

• For Psm object, the type must be pedestrian, cyclist, or animal.

• In case of Cpm:

◦ The injected objects and the sensor must be closer than 1000 m (CpmBuilder::isInRange()).

Integrating object detections from smart sensors into the Cooperative Filtering
and Fusion framework

Copyright © 2024 Commsignia Ltd. Page 43 of 60

◦ The sensor position and device position must be closer than 1000 m.

• If detection areas are set, then detections must be inside the poligons (areaRestrictor.isRelevant()).

Integrating object detections from smart sensors into the Cooperative Filtering
and Fusion framework

Page 44 of 60 Copyright © 2024 Commsignia Ltd.

7. Advanced configuration of the software stack

7.1. Factory reset
If, for any reason, the device needs to be restored to its factory default, a reset option is available both
on the GUI or the CLI of the device.

7.1.1. Performing factory reset on the GUI
To perform a factory reset on the GUI, proceed as follows:

1. Log into the GUI. For more information, refer to section “Connecting to the RSU over wireless or
wired connection” [2].

2. Open the System → Factory Reset menu as shown in Figure 37.

Figure 37. Factory reset page

3. Select the entities in the drop-down menu that need to be kept on the device after the reset: all
other data will be erased. The available options are as follows:

• Keeping all enrollment data

• Keeping all previously configured network settings

• Keeping all previously defined SSH hostkeys

4. Select the checkbox after the confirmation note.

Warning! There is no further confirmation of the procedure: clicking on the
 button starts the factory reset, which ERASES ALL USER DATA!

Advanced configuration of the software stack

Copyright © 2024 Commsignia Ltd. Page 45 of 60

5. Click on the button to perform the reset; Figure 38 shows the screen indicating the reboot
process.

Figure 38. Rebooting screen

Following the operation, the login screen of the device is returned. If the network setting have
been reset, the device can be accessed at 192.168.0.54. To log into the device use the original
password given in section “Connecting to the RSU over wireless or wired connection” [2].

7.1.2. Performing factory reset on the CLI
To perform a factory reset on the GUI, proceed as follows:

1. Log into the device using SSH. For more information, refer to section “Connecting to the RSU
over wireless or wired connection” [2].

2. Use the command

platform-factory-reset

with the following options:

-d Perform the factory reset

-e Keep the enrollment settings and files

-n Keep the network settings

-s Keep the SSH hostkeys

-h Print out a help screen

Please note that using the command without switches
returns the help screen. Pressing [ENTER] in this screen
list all files to be deleted in a factory reset.

For example, to perform a full factory reset that deletes all previously defined user data, use the
command

platform-factory-reset -d

To perform a factory reset that deletes all previously defined user data except the enrollment
settings and files, use the command

platform-factory-reset -de

3. After using the command with the appropriate switch the following screen is shown:

Factory reset

Page 46 of 60 Copyright © 2024 Commsignia Ltd.

FACTORY RESET STARTED

Your last chance to abort the process with Ctrl+C

To perform the FACTORY RESET, please enter the 'YES, I know, what I am \
doing' string and press [ENTER]

To abort the process, press Ctrl+C.

4. To proceed with the factory reset, enter the confirmation string YES, I know, what I am
doing without quotation marks.

Warning! There is no further confirmation of the procedure: entering the
confirmation string and pressing [ENTER] starts the factory reset which
ERASES ALL USER DATA!

5. Press [ENTER] to start the procedure; the factory reset starts as follows:

PERFORMING FACTORY RESET!!!!
/etc/init.d/unplugged-rt-control stop
Lock Unplugged-RT Restart
Restarting Unplugged-RT
Stop all processes
<< List of all deleted files
...
>>
Generate Factory ITS config.
FACTORY RESET FINISHED

REBOOT

You can access the device on <<IP_ADDRESS>> address.

Following the operation, the device can be reached at its original IP address, or, if the network
setting have been reset, at 192.168.0.54. To log into the device use the original password given
in section “Connecting to the RSU over wireless or wired connection” [2].

7.2. Upgrading the firmware
It is generally recommended to use the latest firmware version on the V2X device. The latest firmware
releases are regularly announced by Commsignia.

7.2.1. Prerequisites
To update the firmware of the device, the following items are required:

• An operational RSU.

• The latest firmware obtained directly from Commsignia.

• Computer with internet connection.

• On Windows computers, SCP and SSH clients.

7.2.1.1. Checking the firmware variant
According to the filesystem and booting of the RSU, there are three firmware variants. These variants
can be identified by the firmware filenames, as shown in Table 5.

Upgrading the firmware

Copyright © 2024 Commsignia Ltd. Page 47 of 60

Table 5. Firmware variants

Filesystem Secureboot Firmware filename

Read-only Enabled rs4-<...>-ro-secureboot-y<...>.tar.sig

Read-write Enable rs4-<...>-rw-secureboot-y<...>.tar.sig

Read-write Disabled rs4-<...>-rw-y<...>.tar.sig

To check the filesystem and booting of the RSU, proceed as follows:

1. Log into the RSU using SSH. For more information, refer to section “Connecting to the RSU over
wireless or wired connection” [2].

2. To print out the device information, use the following command:

commsignia-device-info

The command lists all device information; the filesystem and boot type can be found in the first
section. This can be

Secure boot: secureboot enabled
Root filesystem: read-only

or

Secure boot: secureboot enabled
Root filesystem: read-write

or

Secure boot: secureboot disabled
Root filesystem: read-write

In any other case or if these information cannot be determined, please contact Commsignia
Support before commencing the firmware upgrade.

7.2.2. Upgrade process
If all prerequisites have been satisfied, upgrade the firmware as follows:

1. Obtain a firmware file from Commsignia Support.

2. Copy the firmware file to the /tmp directory of the RSU as follows:

a. On a Linux computer, open a terminal and use the following command:

scp rs4-<...>-{variant}-y<...>.tar.sig root@<IP_address_of_the_RSU>:/tmp/

b. On a Windows computer, use an SCP client, such as WinSCP to copy the file.

If the scp command returns with the error message ash: /usr/libex-
ec/sftp-server: not found and fails, the -O switch needs to be used after
the command.

3. Log into the RSU using SSH. For more information, refer to section “Connecting to the RSU over
wireless or wired connection” [2].
Run the signedUpgrade.sh command as follows:

signedUpgrade.sh /tmp/rs4-<...>-{variant}-y<...>.tar.sig

Upgrading the firmware

Page 48 of 60 Copyright © 2024 Commsignia Ltd.

The script provides the following information about its progress:

Starting signedUpgrade with /tmp/rs4-generic-rw-y20.34.5-
b190705.tar.sig firmware
Verified OK
/dev/updateaux
bin/imx6-glibc/openwrt-v2.2.3-imx6-development-initramfs-signed
CP437: Success
fsck.fat 3.0.28 (2015-05-16)
/dev/bootfs: 6 files, 34498/516216 clusters
VALIDATING RESULT
/dev/bootdir/zImage-signed-b: OK
/dev/bootdir/dtb-signed-b: OK
/dev/bootdir/initramfs-signed-b: OK
bin/imx6-glibc/uboot-imx6-apalis_imx6_it-development//u-boot-SRK_fuse.bin: OK
bin/imx6-glibc/uboot-imx6-apalis_imx6_it-development//u-boot-
SRK_table.bin: OK
bin/imx6-glibc/uboot-imx6-apalis_imx6_it-development//u-boot-signed-
mmc.imx: OK
bin/imx6-glibc/uboot-imx6-apalis_imx6_it-development//u-boot-signed-
usb.imx: OK
bin/imx6-glibc/uboot-imx6-apalis_imx6_it-development//u-boot.imx: OK
Current U-Boot version: 1
New U-Boot version: 1
U-Boot is up to date.

After running, the program confirms the successful firmware upgrade as follows:

ALL OK
Firmware upgrade from "ob4-generic-rw-y20.23.3-b168981" to "rs4-generic-rw-
y20.34.5-b190705": OK

4. Reboot the device with the reboot command as:

reboot

7.3. Enabling security for V2X messages using the GUI
Automatic signing of all outgoing facility messages (such as BSMs and CAMs) using a trusted certifi-
cate pack can be enabled using the GUI. Please note that a verified certification pack, including a
root certificate authority (CA) certificate, is required. Commsignia provides a certification pack for
testing purposes; however, in a live enrollment scenario a certificate pack is required that is acquired
from a verified source. Subscribing to a certificate provider service is not in the scope of this guide.
Test certificate packs provided by Commsignia need to be copied to /rwdata/etc/security_us
or /rwdata/etc/security_eu.

1. Log into the device using SSH. For more information, refer to section “Connecting to the RSU
over wireless or wired connection” [2].

2. Open the V2X Core → Core stack menu and expand and check the box next to the Security
configuration item, as shown in Figure 39.

Enabling security for V2X messages using the GUI

Copyright © 2024 Commsignia Ltd. Page 49 of 60

Figure 39. Security configuration

3. Check the box next to Enable security and set its values as follows:

• if the value is Auto or Yes and valid certificates are present on the device, then the messages
are sent signed and received messages are verified. Messages with invalid signature or without
security header are dropped according to the settings of the Facility receive module.

• if the value is Auto and no certificates are present on the device, then the messages are sent
with unsecured headers and received messages are processed without security verification.

• if the value is Yes and no certificates are present on the device, then the messages are not
sent and received messages are dropped due to verification failure.

• if the value is Auto or Yes and invalid certificates are present on the device, then the messages
are not sent.

• if the value is No then the messages are sent with unsecured header in any case and received
messages are processed without security verification.

If the box next to Check Loaded Certificates is checked and its value is set to true, then
the stack validates the certificates against the trusted root certificates located either at /etc/
security_us or /etc/security_eu. If this value is set to true and a test certificate pack
is used, then the root certificate from the test certificate pack needs to be copied to /etc/
security_us or /etc/security_eu. If this value if set to false than all CA certificates are
considered trusted.

4. Optional security settings for transmitting messages are available by expanding the Facility Rx
configuration item and selecting the checkbox next to it as shown in Figure 40.

Figure 40. Facility receive module configuration

Enabling security for V2X messages using the GUI

Page 50 of 60 Copyright © 2024 Commsignia Ltd.

Select the checkbox next to Allow unsecured messages and set its value as follows:

• If the value is set to Auto, then unsecured messages are allowed through the Facility layer
only if security is disabled (for example if security is also set to Auto and no certificates are
present).

• If the value is set to Yes, then all unsecured messages are allowed through the Facility layer.

• If the value is set to No, then no unsecured messages are allowed through the Facility layer.

Select the checkbox next to Allow messages with failed verification and set its value
as follows:

• If the value is set to Auto, then messages that failed verification in the Security layer are
allowed through the Facility layer only if security is disabled (for example if security is also set
to Auto and no certificates are present).

• If the value is set to Yes, then all messages that failed verification in the Security layer are
allowed through the Facility layer.

• If the value is set to No, then no messages that failed verification in the Security layer are
allowed through the Facility layer.

5. Click on the button for the changes to take effect on the device.

6. To verify that the outgoing V2X messages are automatically signed before they are sent, open
the V2X Core → Core status menu item, as shown in Figure 41, expand statistics, expand security,
and expand 1609.2. To access the counters, expand the appropriate region (eu/us) under this
item. The transmission of secured messages can be verified by the increase of the value of the
txSignedPacket counter.

Figure 41. Statistics for secured messages

7.4. Relicensing the device
In certain cases, such as problems due to a new firmware verson or to enable new features on an
older device, the RSU might require to be relicensed. For these cases Commsignia provides new
license packs.

7.4.1. Prerequisites
To relicense the device, the following items are required:

Relicensing the device

Copyright © 2024 Commsignia Ltd. Page 51 of 60

• An operational RSU with GUI.

• A license pack (*.pack extension) obtained directly from Commsignia.

• Computer with web browser and internet connection.

7.4.2. Relicensing process
If all prerequisites have been satisfied, relicense the device as follows:

1. Obtain a license pack file from Commsignia Support.

2. Log into the device using SSH. For more information, refer to section “Connecting to the RSU
over wireless or wired connection” [2].

3. Open the V2X Core → License menu item and click on the link "Commsignia License Activation
page" as shown in Figure 42. This opens the License Activation page.

Figure 42. Licensing page on the GUI

4. On the License Activation page, drag and drop the license file (*.pack) onto the gray area or click
on the area and select the file in the browser as shown in Figure 43.

Relicensing the device

Page 52 of 60 Copyright © 2024 Commsignia Ltd.

Figure 43. License Activation page

Click on the Activate button.

5. After the validation of the license pack, a new license string will be displayed, as shown in
Figure 44.

Figure 44. Generation of a new license key

Copy this license key, open the V2X Core → License menu and paste this key into the License key
field, overwriting the old key.

Relicensing the device

Copyright © 2024 Commsignia Ltd. Page 53 of 60

6. Click on the button for the changes to take effect on the device.

7.5. Enabling IPv6 tunneling on RSUs
For testing purposes, the RSU can be configured such that it can be accessed over the internet using
the IPv6 protocol and it can provide IPv6 tunneling to nearby OBUs. This feature is only compliant with
the US regional V2X standards and supported for DSRC only.

The RSU needs to be connected to a central router and an IPv6 prefix needs to be pre-assigned
to the it. Every RSU connected to a central router needs to have its own prefix and routing set up
statically. All RSUs need to have their own /64 IPv6 subnet.

IPv6 tunneling enables the communication of compatible V2X devices with each other using the IPv6
protocol. Using this feature, properly configured OBU devices that can successfully communicate
with a compatible RSU using standard V2X messages can also access the Internet.

Figure 45. IPv6 tunneling setup

1. Log into the device using SSH. For more information, refer to section “Connecting to the RSU
over wireless or wired connection” [2].

2. Under the V2X Core → Core stack menu item expand and check the box next to IPv6 module
configuration, as shown in Figure 46.

Figure 46. IPv6 module configuration

3. Check the box next to Enable IPv6 module and set its value to true.

Enabling IPv6 tunneling on RSUs

Page 54 of 60 Copyright © 2024 Commsignia Ltd.

4. WAVE Service Advertisement (WSA) messages contain an IPv6 prefix range assigned to the RSU
and the OBUs allocate an IPv6 address from that range upon receiving a WSA. Minimum /64
prefix is required for the OBUs. This address is a global IPv6 address that can be routed to and
can be accessed from the Internet. WSA messages also contain the DNS address and the default
gateway (this is typically the address of the RSU). The WSA Rx module must be turned off on the
RSU, to avoid receiving another WSA from a nearby RSU. Under the V2X Core → Core stack menu
item expand and check the box next to WSA configuration, as shown in Figure 47.

Figure 47. WSA configuration

5. Check the box next to Enable WSA and set its value to false.

6. Click on the button for the changes to take effect on the device.

7. Set an IPv6 address for the tunnel manually:

a. The uplv6p0 stack interface needs to have an IPv6 address assigned from the prefix range.
Assign [PREFIX]::1

b. You can set the address on the Network → Interfaces tab.

Enabling IPv6 tunneling on RSUs

Copyright © 2024 Commsignia Ltd. Page 55 of 60

Figure 48. Setting the static IPv6 address for the device

8. Set up the WRA message content, which contains the IPv6 prefix of the RSU as well as the
routing address, subnet, and, optionally a DNS address.

a. Use the following template for creating your own WRA message:

<SrvAdvMsg>
 <version>1</version>
 <body>
 <changeCount>
 <saID>0</saID>
 <contentCount>1</contentCount>
 </changeCount>
 <routingAdvertisement>
 <lifetime>10</lifetime>
 <ipPrefix>2001047022AAAAAA000000000000DDDD</ipPrefix>
 <ipPrefixLength>60</ipPrefixLength>
 <defaultGateway>2001047022aaaaaa72b3d5fffef2CCCC</defaultGateway>
 <primaryDns>2001486048600000000000000000AAAA</primaryDns>
 <extensions/>
 </routingAdvertisement>
 </body>
</SrvAdvMsg>

b. Convert the XML template using the ASN1.X tool on the device. For more information, see
the section “Converting data formats” [23] .

c. Copy the created RSU message file to the /rwdata/etc/rsu_msg/ folder of the RSU.

9. Turn on IPv6 forwarding on the RSU.

Enabling IPv6 tunneling on RSUs

Page 56 of 60 Copyright © 2024 Commsignia Ltd.

10. Enable forwarded packets on the RSU firewall and the central routers firewall.

a. To edit the IPv6 zone, open the Network → Firewall menu item, as shown in Figure 49, and

under the Zones section, the line of ipv6_radio: click on .

Figure 49. Firewall settings

b. Under Inter-Zone Forwarding, check the boxes next to wan: at "Allow forward to destination
zones:" and "Allow forward from source zones:," as shown in Figure .50

Enabling IPv6 tunneling on RSUs

Copyright © 2024 Commsignia Ltd. Page 57 of 60

Figure 50. Enabling IPv6 forwarding in the Firewall settings.

c. Click on the button for the changes to take effect on the device.

The RSU is configured to communicate over IPv6 either with the central router or with nearby OBUs.

Enabling IPv6 tunneling on RSUs

Page 58 of 60 Copyright © 2024 Commsignia Ltd.

8. Troubleshooting V2X communication

This chapter details the most common problematic conditions of V2X communications using the
Commsignia software stack and the possible solutions for them.

8.1. General validation steps
Go through these steps first if you experience any problems with your V2X device:

• Make sure that all antennas are properly connected according to the device's hardware description.

• Make sure the device is powered on.

• Make sure that the device and the software stack is licensed with Commsignia.

• Make sure you are connected to the same network as the device.

• Check if your navigation settings are set to "Manual" or if the device has a proper GNSS fix.

8.2. V2X messages are not secured or not transmitted
Go through the general validation steps detailed in this chapter, then check the following:

• SEC module is enabled

• A valid certificate pack (including a CA root certificate) is used on the device

• The same CA root certificate is used on both the transmitting and receiving test devices

8.3. The HMI is not displaying SPaT on the map
Go through the general validation steps detailed in this chapter, then check the following:

• Make sure that the HMI is connected to the Internet or it has offline maps downloaded for the
location you are testing for.

• Make sure that the Intersection ID contains the same location for both the MAP and the SPaT.

8.4. The HMI displays a SPaT that is different from the actual traffic signal
Go through the general validation steps detailed in this chapter, then check the following:

• Make sure that the MAP message contains the correct lane-to-lane connection signal group ID

• Make sure that a compatible data format is used, for example Batelle or UDP

• Make sure that the signal group ID, phase, and overlap values are all correct

8.5. The HMI is not displaying the local vehicle
Go through the general validation steps detailed in this chapter, then check the following:

• Make sure that the vehicle has valid navigation data; either set in "Manual mode" or it has a proper
GNSS fix

• Make sure that the SEC module is enabled in the configuration and there is a valid certificate pack
(including a CA root certificate) on the device

• Make sure that you are connected to the correct station in the HMI.

Troubleshooting V2X communication

Copyright © 2024 Commsignia Ltd. Page 59 of 60

Appendix A. Glossary of terms

ASN.1 Abstract Syntax Notation One

BSM Basic Safety Message

C2P Commsignia Capture Protocol

CA Certificate authority

CAM Cooperative Awareness Message

CLI Command line interface

DNS Domain Name System

DSRC Dedicated Short-Range Communication

GUI Graphical user interface

HMI Human–machine interface

IFM Immediate Forward Message

IP Internet Protocol

JDK Java Development Kit

OBU Onboard unit

PoE Power over Ethernet

RSU Roadside unit

SCP Secure Copy Protocol

SNMP Simple Network Management Protocol

SPaT Signal Phase and Timing

SRM Store-and-Repeat Message

SSH Secure Shell Protocol

SSID Service set identifier

TLC Traffic Light Controller

UDP User Datagram Protocol

UPER Unaligned Packed Encoding Rules

WAVE Wireless Access for Vehicular Environment

WSA WAVE Service Advertisement

WSMP WAVE Short Message Protocol

Glossary of terms

Page 60 of 60 Copyright © 2024 Commsignia Ltd.

	5. Message handling on RSUs
	5.3. Immediate forwarding
	5.3.2. Formatting IFMs

	5.4. Deploying and transmitting SRMs/IFMs
	5.5. Transmitting Signal Phase and Timing (SPaT) messages on RSUs

	6. Additional features
	6.1. Datalogger tool
	6.1.1. Description of the Datalogger tool
	6.1.1.1. Source
	6.1.1.2. Filtering
	6.1.1.3. Destination
	6.1.1.3.1. Output types
	6.1.1.3.2. Output formats
	Navigation data

	6.1.2. Configuring the Datalogger

	6.2. Integrating object detections from smart sensors into the Cooperative Filtering and Fusion framework
	6.2.1. Overview
	6.2.2. Interfacing with the CFF UDP adapter
	6.2.3. Data requirements
	6.2.4. Message composition using Python language
	6.2.5. Message composition using C++ language
	6.2.6. Configuring the UDP adapter and message generation on the RSU
	6.2.6.1. Configuring the UDP adapter
	6.2.6.2. Configuring message generation

	6.2.7. Quick guide for configuration
	6.2.8. Restrictions

	7. Advanced configuration of the software stack
	7.1. Factory reset
	7.1.1. Performing factory reset on the GUI
	7.1.2. Performing factory reset on the CLI

	7.2. Upgrading the firmware
	7.2.1. Prerequisites
	7.2.1.1. Checking the firmware variant

	7.2.2. Upgrade process

	7.3. Enabling security for V2X messages using the GUI
	7.4. Relicensing the device
	7.4.1. Prerequisites
	7.4.2. Relicensing process

	7.5. Enabling IPv6 tunneling on RSUs

	8. Troubleshooting V2X communication
	8.1. General validation steps
	8.2. V2X messages are not secured or not transmitted
	8.3. The HMI is not displaying SPaT on the map
	8.4. The HMI displays a SPaT that is different from the actual traffic signal
	8.5. The HMI is not displaying the local vehicle

	Appendix A. Glossary of terms

