

FCC IC Test Report

Report No.: FCC_IC_RF_SL20040701-FLU-002A1_Bridge

FCC ID: 2AOX8-F2200

IC: 26125-F2200

Test Model: F2200

Received Date: 04/06/2020

Test Date: 04/08/2020-04/28/2020

Issued Date: 06/01/2020

Applicant: Flume Inc

Address: 75 Higuera St Suite 120, San Luis Obispo, CA-93405

Manufacturer: Flume Inc

Address: 75 Higuera St Suite 120, San Luis Obispo, CA-93405

Issued By: Bureau Veritas Consumer Products Services, Inc.

Lab Address: 775 Montague Expressway, Milpitas, CA 95035

Test Location (1): 775 Montague Expressway, Milpitas, CA 95035

**FCC Registration /
Designation Number:** 540430

ISED# / CAB identifier: 4842D

TESTING CERT # 2742-01

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any government agencies.

Table of Contents

Release Control Record	4
1 Certificate of Conformity.....	5
2 Summary of Test Results	6
2.1 Measurement Uncertainty	6
2.2 Modification Record	6
3 General Information.....	7
3.1 General Description of EUT	7
3.2 Description of Test Modes	8
3.3 Description of Support Units	9
3.3.1 Configuration of System under Test	9
3.4 General Description of Applied Standards	9
4 Test Types and Results	10
4.1 Radiated Emission Measurement	10
4.1.1 Limits of Radiated Emission	10
4.1.2 Test Instruments	11
4.1.3 Test Procedures.....	12
4.1.4 Deviation from Test Standard	13
4.1.5 Test Setup.....	13
4.1.6 EUT Operating Conditions.....	14
4.1.7 Test Results	15
4.2 Conducted Emission Measurement	20
4.2.1 Limits of Conducted Emission Measurement	20
4.2.2 Test Instruments	20
4.2.3 Test Procedures.....	21
4.2.4 Deviation from Test Standard	21
4.2.5 Test Setup.....	21
4.2.6 EUT Operating Conditions.....	21
4.2.7 Test Results	22
4.3 Channel Bandwidth	24
4.3.1 Limits of Channel Bandwidth Measurement.....	24
4.3.2 Test Setup.....	24
4.3.3 Test Instruments	24
4.3.4 Test Procedure	24
4.3.5 Deviation from Test Standard	24
4.3.6 EUT Operating Condition	24
4.3.7 Test Results	25
4.4 Hopping Channel Separation	27
4.4.1 Limits of Hopping Channel Separation Measurement.....	27
4.4.2 Test Setup.....	27
4.4.3 Test Instruments	27
4.4.4 Test Procedure	27
4.4.5 Deviation from Test Standard	27
4.4.6 Test Results	28
4.5 Conducted Output Power Measurement.....	30
4.5.1 Limits of Conducted Output Power Measurement	30
4.5.2 Test Setup.....	30
4.5.3 Test Instruments	30
4.5.4 Test Procedures.....	30
4.5.5 Deviation from Test Standard	30
4.5.6 Test Results	31
4.6 Number of Hopping Frequency Used.....	33
4.6.1 Limits of Hopping Frequency Used Measurement	33

4.6.2	Test Setup.....	33
4.6.3	Test Instruments	33
4.6.4	Test Procedure	33
4.6.5	Deviation from Test Standard	33
4.6.6	Test Results	34
4.7	Dwell Time on Each Channel	35
4.7.1	Limits of Dwell Time on Each Channel Measurement.....	35
4.7.2	Test Setup.....	35
4.7.3	Test Instruments	35
4.7.4	Test Procedures.....	35
4.7.5	Deviation from Test Standard	35
4.7.6	Test Results	36
4.8	Conducted Out of Band Emission Measurement.....	40
4.8.1	Limits of Conducted Out of Band Emission Measurement.....	40
4.8.2	Test Instruments	40
4.8.3	Test Procedure	40
4.8.4	Deviation from Test Standard	40
4.8.5	EUT Operating Condition	40
4.8.6	Test Results	40
4.8.7	Test Results	41
	Appendix – Information on the Testing Laboratories	43

Release Control Record

Issue No.	Description	Date Issued
FCC_IC_RF_SL20040701-FLU-002A1_Bridge	Initial Release	06/01/2020

1 Certificate of Conformity

Product: Flume Bridge

Brand: Flume

Test Model: F2200

Sample Status: Engineering sample

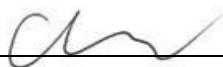
Applicant: Flume Inc

Test Date: 04/08/2020-04/28/2020

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

RSS-247 Issue 2, February 2017

ANSI C63.10: 2013


RSS-Gen Issue 5, March 2019

558074 D01 15.247 Meas Guidance v05r02

The above equipment has been tested by **Bureau Veritas Consumer Products Services, Inc., Milpitas Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : _____, **Date:** 06/01/2020
Deon Dai / Test Engineer

Approved by : _____, **Date:** 06/01/2020
Chen Ge / Engineer Reviewer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)

RSS 247 Issue2, RSS Gen Issue5

FCC Clause	Test Item	Result	Remarks
15.207 RSS Gen 8.8	AC Power Conducted Emission	N/A	Meet the requirement of limit.
15.247(a)(1) (iii) RSS 247 5.1.c	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.
15.247(a)(1) (iii) RSS 247 5.1.c	Dwell Time on Each Channel	PASS	Meet the requirement of limit.
15.247(a)(1) RSS 247 5.1.c	1. Hopping Channel Separation 2. Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	PASS	Meet the requirement of limit.
15.247(b) RSS 247 5.1.b	Maximum Peak Output Power	PASS	Meet the requirement of limit.
15.247(d) RSS 247 5.5	Band Edge Measurement	PASS	Meet the requirement of limit.
15.205 & 209 & 15.247(d) RSS Gen 8.9	Radiated Emissions	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	Antenna type is Inverted F antenna. (The device is professionally installed)

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	3.51dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	3.73dB
Radiated Emissions above 1 GHz	1GHz ~ 6GHz	4.64dB
	6GHz ~ 18GHz	4.82dB
	18GHz ~ 40GHz	4.91dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

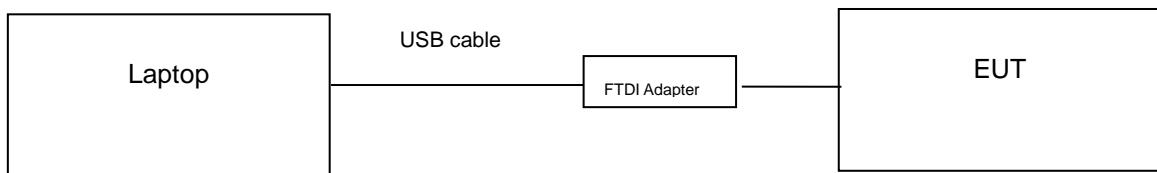
Product	Flume Bridge
Brand	Flume
Test Model	F2200
Identification No. of EUT	N/A
Status of EUT	Engineering sample
Power Supply Rating	I.T.E Power adapter: Input: 100-240V 50/60Hz Output: 5.25 Vdc 2.4A
Modulation Type	ASK
Modulation Technology	FHSS
Operating Frequency	902.5-927 MHz
Number of Channel	50
Output Power	16.153 dBm
Antenna Type	Inverted F antenna
Antenna Gain	0.9 dBi
Antenna Connector	N/A

3.2 Description of Test Modes

50 channels are provided to this EUT:

Channel	Frequency (MHz)
Low	902.5
Mid	915
High	927

3.3 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	FTDI Adapter	LowPower LAB	R3	N/A	N/A	Provide by customer
B.	Laptop	Lenovo Thinkpad	T440	PC00U0PW	N/A	Provide by customer

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB cable	1	0.8	N	0	Provided by Customer

Note: The core(s) is(are) originally attached to the cable(s).

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

47 CFR FCC Part 15, Subpart C (Section 15.247)

RSS 247 Issue2, February 2017

ANSI C63.10: 2013

RSS Gen Issue5, March 2019

558074 D01 15.247 Meas Guidance v05r02

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB_{uV}/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
EMI Test Receiver ROHDE & SCHWARZ	ESIB 40	100179	08/28/2019	08/28/2020
Hybrid Antenna SUNAR	JB6	A111717	03/09/2020	03/09/2021
DRG Horn Antenna ETS LINDGREN	3117	214309	12/20/2019	12/20/2020
Preamplifier RF-LAMBDA	RAMP00M50GA	17032300047	10/19/2019	10/19/2020

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

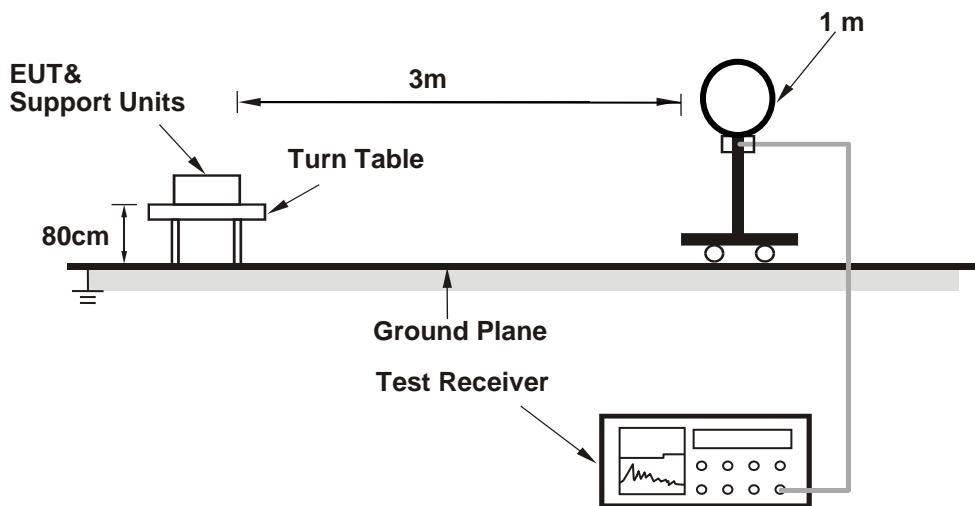
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30MHz.

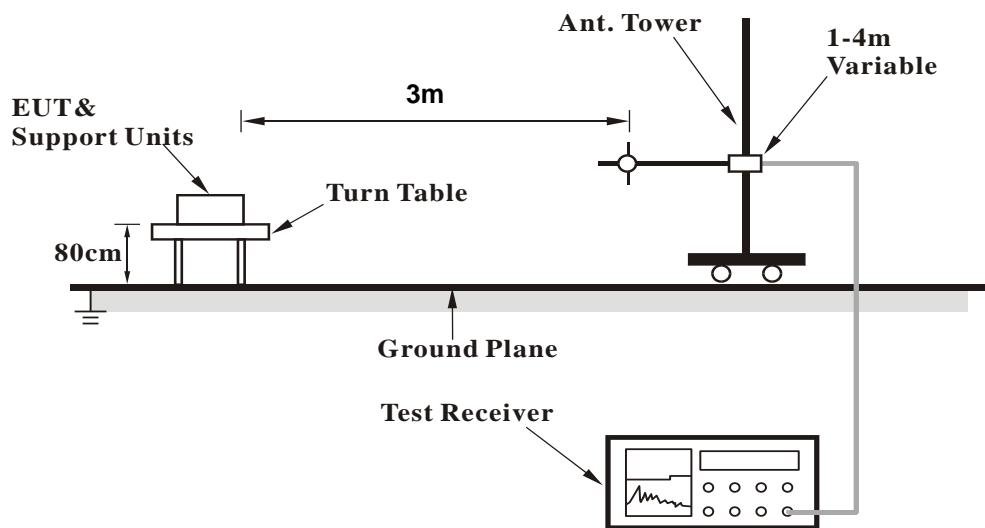
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

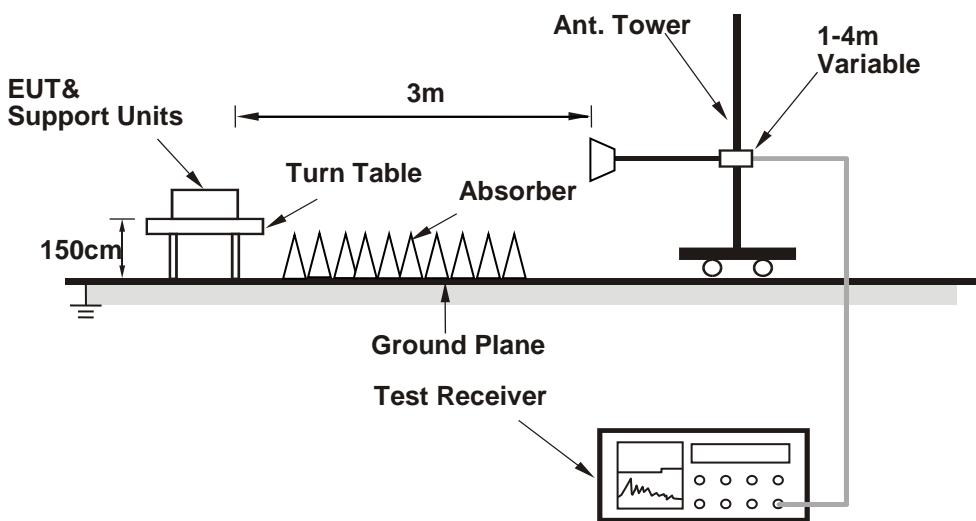
Note:


1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is $\geq 1/T$ (Duty cycle < 98%) or 10Hz (Duty cycle $\geq 98\%$) for Average detection (AV) at frequency above 1GHz.
4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup


For Radiated emission below 30MHz

For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

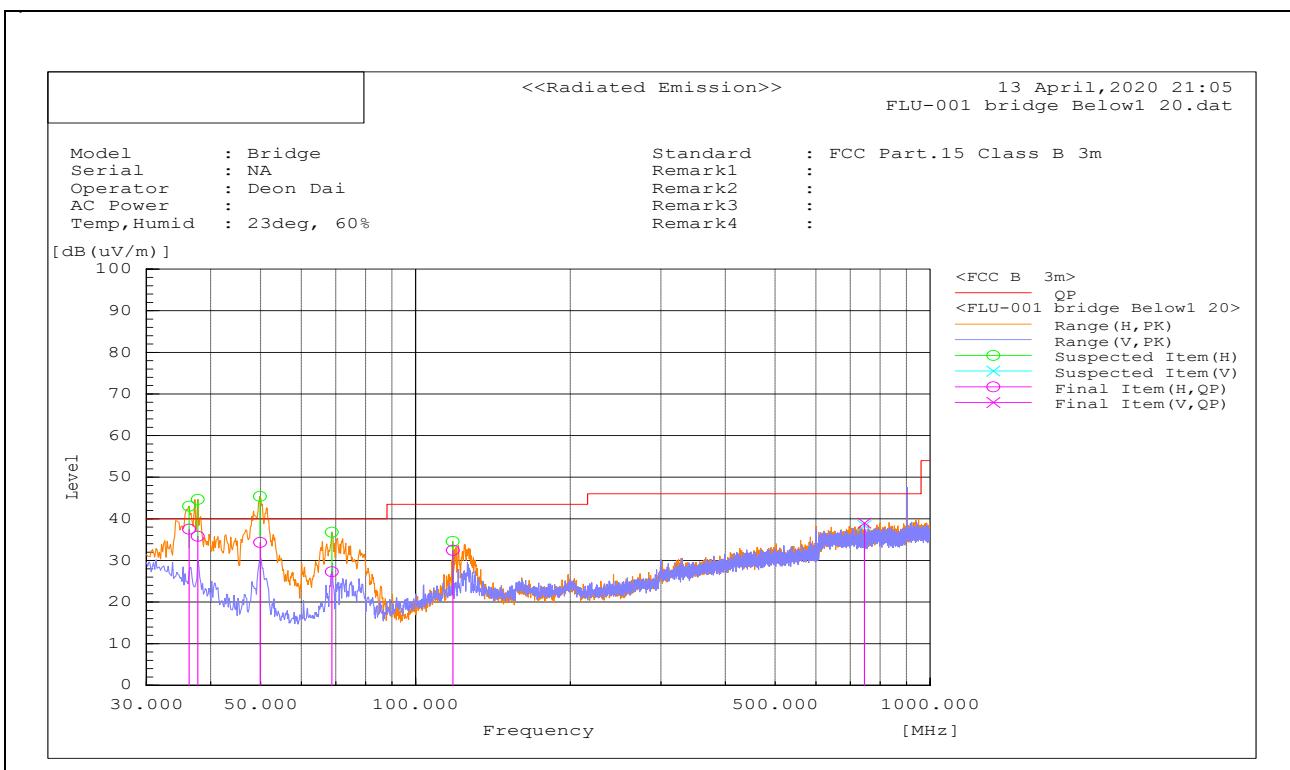
For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- Connected the EUT with the Notebook Computer which is placed on remote site.
- Controlling software has been activated to set the EUT on specific status.

4.1.7 Test Results

BELOW 1GHz WORST-CASE DATA:


CHANNEL	Middle Channel	DETECTOR FUNCTION	Quasi Peak
FREQUENCY RANGE	30MHz – 1GHz		

Antenna Polarity & Test Distance: Vertical and Horizontal at 3m

No.	Frequency (MHz)	Polarization (H/V)	Reading QP [dB(uV)]	Factor [dB(1/m)]	Level QP [dB(uV/m)]	Limit\QP dB(uV/m)	Margin QP [dB]	Height (cm)	Angle (Deg)	Pass/Fail
1	36.3	H	15.5	22	37.5	40	-2.5	100	353	Pass
2	37.76	H	14.9	20.9	35.8	40	-4.2	399	148	Pass
3	49.89	H	20.6	13.7	34.3	40	-5.7	400	28	Pass
4	68.8	H	13.8	13.5	27.3	40	-12.7	158	355	Pass
5	118.2	H	12.8	19.6	32.4	43.5	-11.1	389	122	Pass
6	745.22	V	11.2	27.8	39	46	-7	136	269	Pass

REMARKS:

1. Level (dBuV) = Reading (dBuV) + Factor (dB (1/m)).
2. Factor (dB (1/m)) = Antenna Factor (AF) (dB (1/m)) + Cable Loss (dB)
3. Margin = Level (dBuV/m) - Limit value (dBuV/m)

ABOVE 1GHz TEST DATA:

CHANNEL	Low Channel				DETECTOR FUNCTION				Peak			
FREQUENCY RANGE	1GHz ~ 10GHz											

Antenna Polarity & Test Distance: Vertical and Horizontal at 3m

No.	Frequency (MHz)	Polarization (H/V)	Reading AV [dB(uV)]	Reading PK [dB(uV)]	Factor [dB(1/m)]	Level AV [dB(uV/m)]	Level PK [dB(uV/m)]	Limit AV [dB(uV/m)]	Limit PK [dB(uV/m)]	Margin AV [dB]	Margin PK [dB]	Height (cm)	Angle (Deg)	Pass/Fail
1	2137.784	V	41.1	54.6	-10.5	30.6	44.1	54	74	-23.4	-29.9	251	242.8	Pass
2	3294.521	H	42.3	55.7	-8.1	34.2	47.6	54	74	-19.8	-26.4	100	119.7	Pass
3	4501.908	H	41.2	54.2	-6.8	34.4	47.4	54	74	-19.6	-26.6	337	267.9	Pass

REMARKS:

1. Level (dBuV) = Reading (dBuV) + Factor (dB(1/m)).
2. Factor (dB(1/m)) = Antenna Factor(AF) (dB(1/m)) + Cable Loss (dB) –Preamplifier Gain (dB)
3. Margin = Level (dBuV/m) - Limit value (dBuV/m)

CHANNEL	Mid Channel				DETECTOR FUNCTION				Peak			
FREQUENCY RANGE	1GHz ~ 10GHz											

Antenna Polarity & Test Distance: Vertical and Horizontal at 3m

No.	Frequency (MHz)	Polarization (H/V)	Reading AV [dB(uV)]	Reading PK [dB(uV)]	Factor [dB(1/m)]	Level AV [dB(uV/m)]	Level PK [dB(uV/m)]	Limit AV [dB(uV/m)]	Limit PK [dB(uV/m)]	Margin AV [dB]	Margin PK [dB]	Height (cm)	Angle (Deg)	Pass/Fail
1	2769.1	V	42.2	55.2	-9.1	33.1	46.1	54	74	-20.9	-27.9	251	63.6	Pass
2	4366.098	H	41	54.4	-7.2	33.8	47.2	54	74	-20.2	-26.8	201	246.1	Pass
3	9415.356	H	33.8	47.2	2	35.8	49.2	54	74	-18.2	-24.8	351	0.1	Pass

REMARKS:

1. Level (dBuV) = Reading (dBuV) + Factor (dB(1/m)).
2. Factor (dB(1/m)) = Antenna Factor(AF) (dB(1/m)) + Cable Loss (dB) –Preamplifier Gain (dB)
3. Margin = Level (dBuV/m) - Limit value (dBuV/m)

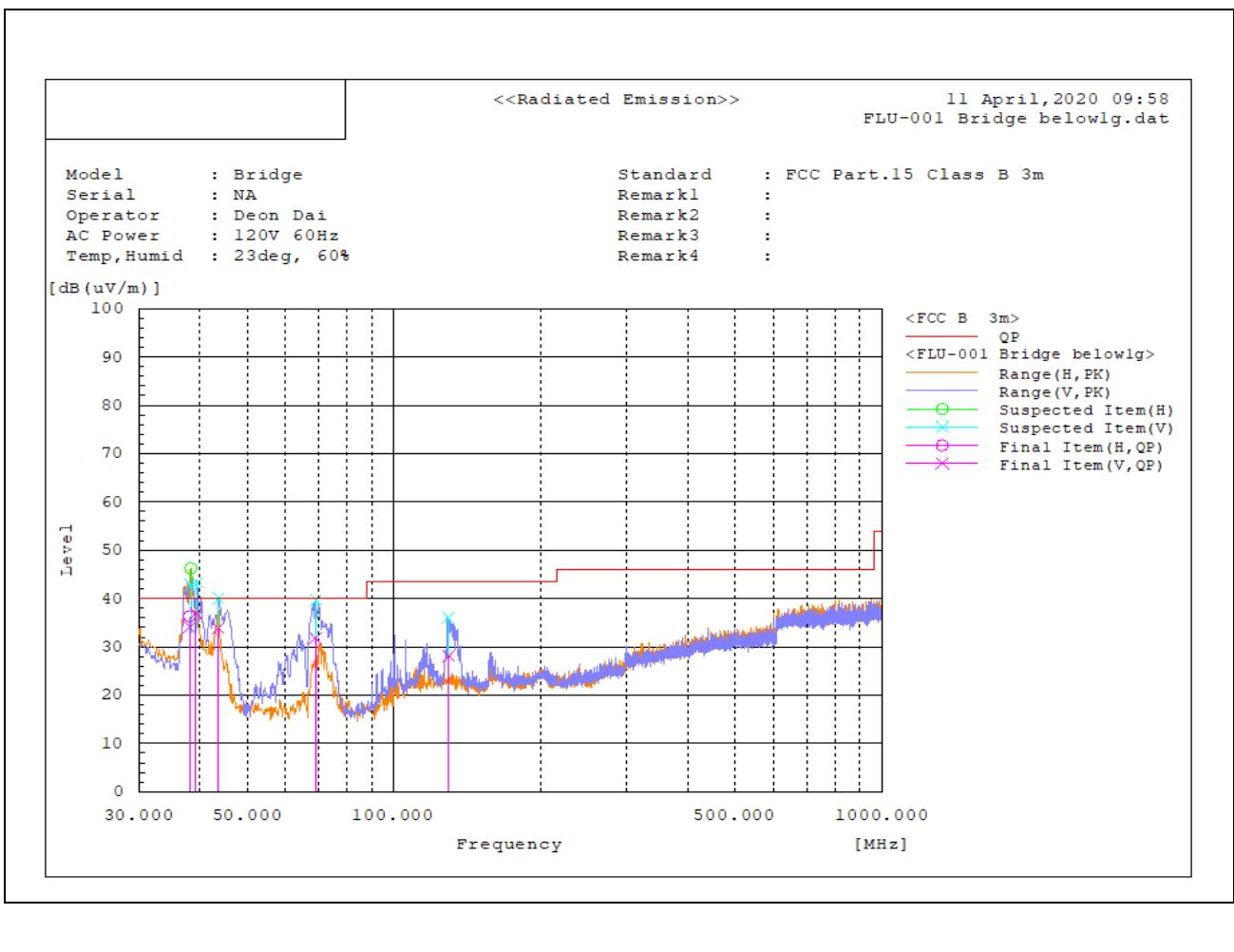
CHANNEL	High Channel	DETECTOR FUNCTION	Peak
FREQUENCY RANGE	1GHz ~ 10GHz		Average

Antenna Polarity & Test Distance: Vertical and Horizontal at 3m

No.	Frequency (MHz)	Polarization (H/V)	Reading AV [dB(uV)]	Reading PK [dB(uV)]	Factor [dB(1/m)]	Level AV [dB(uV/m)]	Level PK [dB(uV/m)]	Limit AV [dB(uV/m)]	Limit PK [dB(uV/m)]	Margin AV [dB]	Margin PK [dB]	Height (cm)	Angle (Deg)	Pass/Fail
1	3057.298	V	42.2	55.6	-9	33.2	46.7	54	74	-20.8	-27.3	294	25.7	Pass
2	3583.252	H	41.9	55.1	-7.9	34	47.2	54	74	-20	-26.8	308	135	Pass
3	3839.968	V	42.1	55.3	-6.9	35.2	48.4	54	74	-18.8	-25.6	122	200.6	Pass

REMARKS:

1. Level (dBuV) = Reading (dBuV) + Factor (dB(1/m)).
2. Factor (dB(1/m)) = Antenna Factor(AF) (dB(1/m)) + Cable Loss (dB) –Preamplifier Gain (dB)
3. Margin = Level (dBuV/m) - Limit value (dBuV/m)


CHANNEL		FHSS and wifi transmit simultaneous		DETECTOR FUNCTION		Quasi Peak		
FREQUENCY RANGE		30MHz – 1GHz						

Antenna Polarity & Test Distance: Vertical and Horizontal at 3m

No.	Frequency (MHz)	Polarization (H/V)	Reading QP [dB(uV)]	Factor [dB(1/m)]	Level QP [dB(uV/m)]	Limit QP [dB(uV/m)]	Margin QP [dB]	Height (cm)	Angle (Deg)	Pass/Fail
1	38.141	H	15.7	20.6	36.3	40	-3.7	400	359.3	Pass
2	38.159	V	14.6	19.5	34.1	40	-5.9	399	356.3	Pass
3	39.298	V	18.2	18.7	36.9	40	-3.1	394	168.7	Pass
4	43.678	V	18.3	15.5	33.8	40	-6.2	221	237.3	Pass
5	69.037	V	18.8	13	31.8	40	-8.2	112	205	Pass
6	129.422	V	7.9	20.2	28.1	43.5	-15.4	120	335.5	Pass

REMARKS:

1. Level (dBuV) = Reading (dBuV) + Factor (dB (1/m)).
2. Factor (dB (1/m)) = Antenna Factor (AF) (dB (1/m)) + Cable Loss (dB)
3. Margin = Level (dBuV/m) - Limit value (dBuV/m)

ABOVE 1GHz TEST DATA:

CHANNEL	FHSS and wifi transmit simultaneous	DETECTOR FUNCTION	Peak
FREQUENCY RANGE	1GHz ~ 10GHz		Average

Antenna Polarity & Test Distance: Vertical and Horizontal at 3m

No.	Frequency (MHz)	Polarization (H/V)	Reading AV [dB(uV)]	Reading PK [dB(uV)]	Factor [dB(1/m)]	Level AV [dB(uV/m)]	Level PK [dB(uV/m)]	Limit AV [dB(uV/m)]	Limit PK [dB(uV/m)]	Margin AV [dB]	Margin PK [dB]	Height (cm)	Angle (Deg)	Pass/Fail
1	1220.505	V	41.9	55.7	-13.9	28	41.8	54	74	-26	-32.2	122	272	Pass
2	4873.088	H	38.7	52.1	-6.1	32.6	46	54	74	-21.4	-28	223	169	Pass
3	3871.236	H	40.6	53.5	-7.1	33.5	46.4	54	74	-20.5	-27.6	350	229	Pass

REMARKS:

1. Level (dBuV) = Reading (dBuV) + Factor (dB(1/m)).
2. Factor (dB(1/m)) = Antenna Factor(AF) (dB(1/m)) + Cable Loss (dB) –Preamplifier Gain (dB)
3. Margin = Level (dBuV/m) - Limit value (dBuV/m)

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

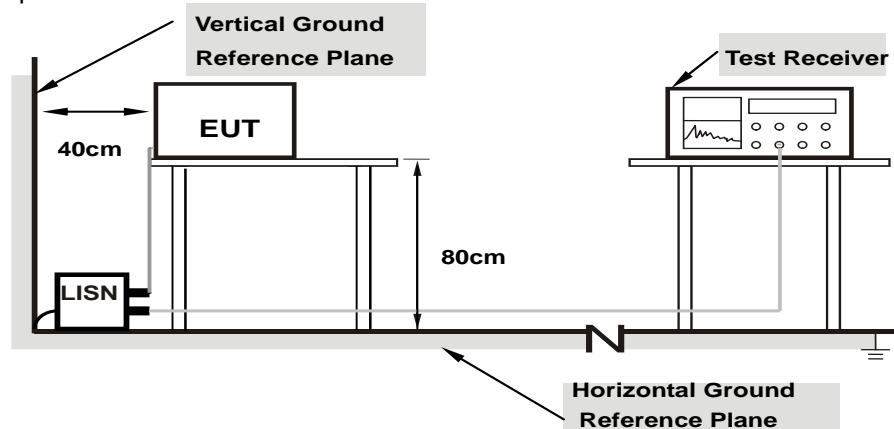
Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
EMI Test Receiver Rohde & Schwarz	ESIB 40	100179	11/01/2019	11/01/2020
Transient Limiter Electro-Metrics	EM-7600-5	106	12/31/2019	12/31/2020
LISN ETS-Lindgren	3816/2NM	214372	03/10/2020	03/10/2021

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30MHz was searched. Emission levels under (Limit - 20dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

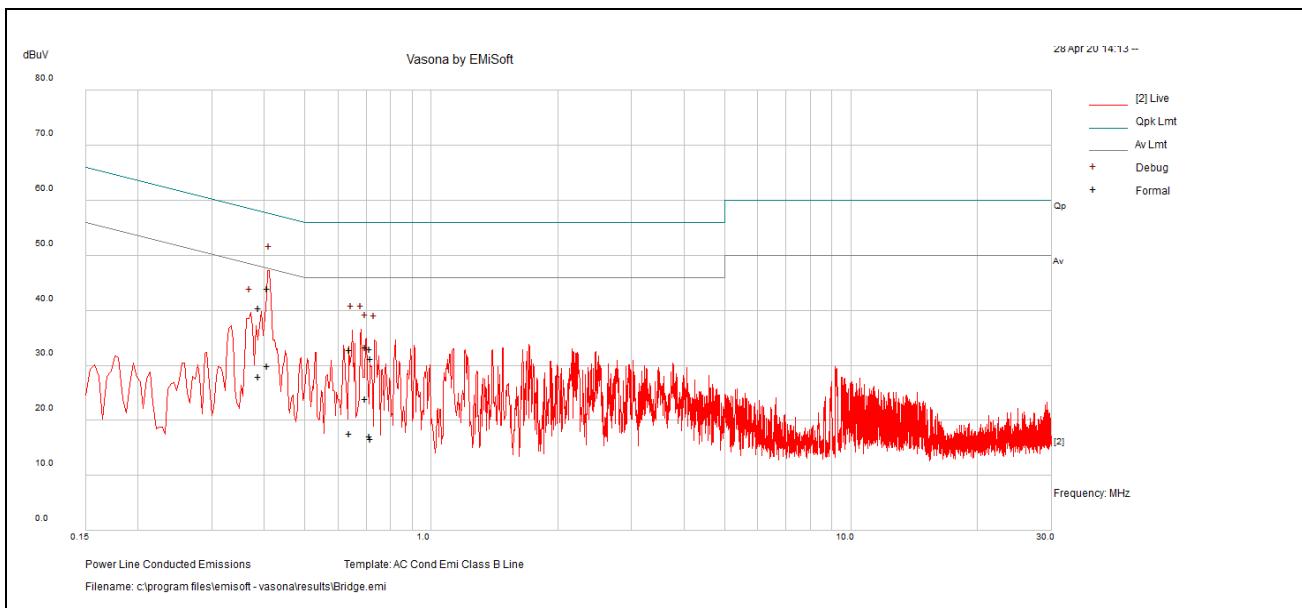
4.2.5 Test Setup

Note: 1. Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

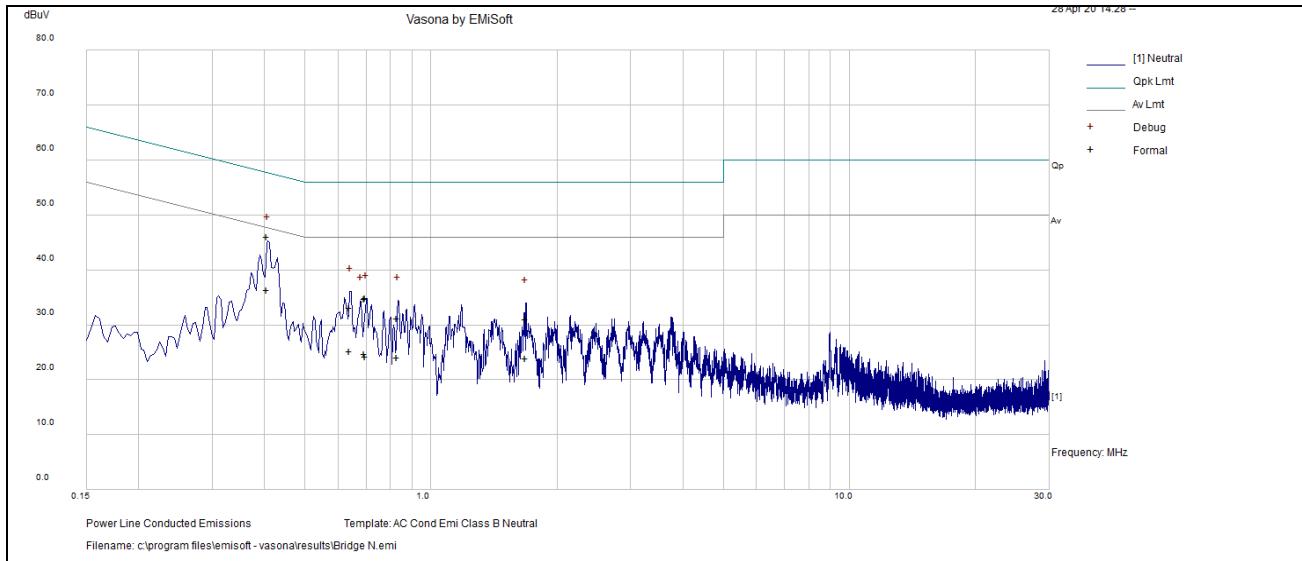

4.2.7 Test Results

Phase			Line (L)			Detector Function		Quasi-Peak / Average		
-------	--	--	----------	--	--	-------------------	--	----------------------	--	--

No	Freq. [MHz]	Raw (dBuV)	Cale Loss (dB)	Factors (dB)	Level (dBuV)	Measurement Type	Line	Limit	Margin	Pass /Fail
								(dBuV)	(dB)	
1	0.41	34.48	9.45	0.04	43.96	Quasi Peak	Live	57.67	-13.71	Pass
2	0.39	30.93	9.44	0.04	40.42	Quasi Peak	Live	58.11	-17.69	Pass
3	0.70	23.8	9.46	0.04	33.3	Quasi Peak	Live	56	-22.7	Pass
4	0.64	23.25	9.46	0.04	32.75	Quasi Peak	Live	56	-23.25	Pass
5	0.72	23.4	9.47	0.04	32.91	Quasi Peak	Live	56	-23.09	Pass
6	0.72	21.63	9.47	0.04	31.13	Quasi Peak	Live	56	-24.87	Pass
7	0.41	20.43	9.45	0.04	29.91	Average	Live	47.67	-17.76	Pass
8	0.39	18.48	9.44	0.04	27.96	Average	Live	48.11	-20.15	Pass
9	0.70	14.43	9.46	0.04	23.93	Average	Live	46	-22.07	Pass
10	0.64	8.06	9.46	0.04	17.56	Average	Live	46	-28.44	Pass
11	0.72	7.68	9.47	0.04	17.19	Average	Live	46	-28.81	Pass
12	0.72	7.1	9.47	0.04	16.6	Average	Live	46	-29.4	Pass

REMARKS:

1. The emission levels of other frequencies were very low against the limit.
2. Margin value = Emission level - Limit value
3. Emission Level = Correction Factor + Raw Value + Factors Value.

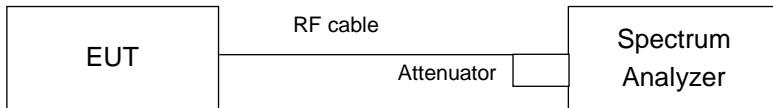


Phase		Neutral (N)			Detector Function		Quasi-Peak / Average		
-------	--	-------------	--	--	-------------------	--	----------------------	--	--

No	Freq.	Raw	Calc Loss	Factors	Level	Measurement Type	Line	Limit	Margin	Pass /Fail
	[MHz]	(dBuV)	(dB)	(dB)	(dBuV)			(dBuV)	(dB)	
1	0.41	36.63	9.44	0.03	46.11	Quasi Peak	Neutral	57.73	-11.63	Pass
2	0.64	23.6	9.46	0.03	33.09	Quasi Peak	Neutral	56	-22.91	Pass
3	0.70	25.32	9.46	0.03	34.82	Quasi Peak	Neutral	56	-21.18	Pass
4	0.83	21.63	9.47	0.03	31.13	Quasi Peak	Neutral	56	-24.87	Pass
5	0.70	25.42	9.46	0.03	34.91	Quasi Peak	Neutral	56	-21.09	Pass
6	1.68	21.46	9.47	0.04	30.98	Quasi Peak	Neutral	56	-25.02	Pass
7	0.41	26.95	9.44	0.03	36.42	Average	Neutral	47.73	-11.31	Pass
8	0.64	15.73	9.46	0.03	25.22	Average	Neutral	46	-20.78	Pass
9	0.70	15.19	9.46	0.03	24.68	Average	Neutral	46	-21.32	Pass
10	0.83	14.52	9.47	0.03	24.02	Average	Neutral	46	-21.98	Pass
11	0.70	14.78	9.46	0.03	24.28	Average	Neutral	46	-21.72	Pass
12	1.68	14.33	9.47	0.04	23.85	Average	Neutral	46	-22.15	Pass

REMARKS:

1. The emission levels of other frequencies were very low against the limit.
2. Margin value = Emission level - Limit value
3. Emission Level = Correction Factor + Raw Value + Factors Value.



4.3 Channel Bandwidth

4.3.1 Limits of Channel Bandwidth Measurement

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

4.3.2 Test Setup

4.3.3 Test Instruments

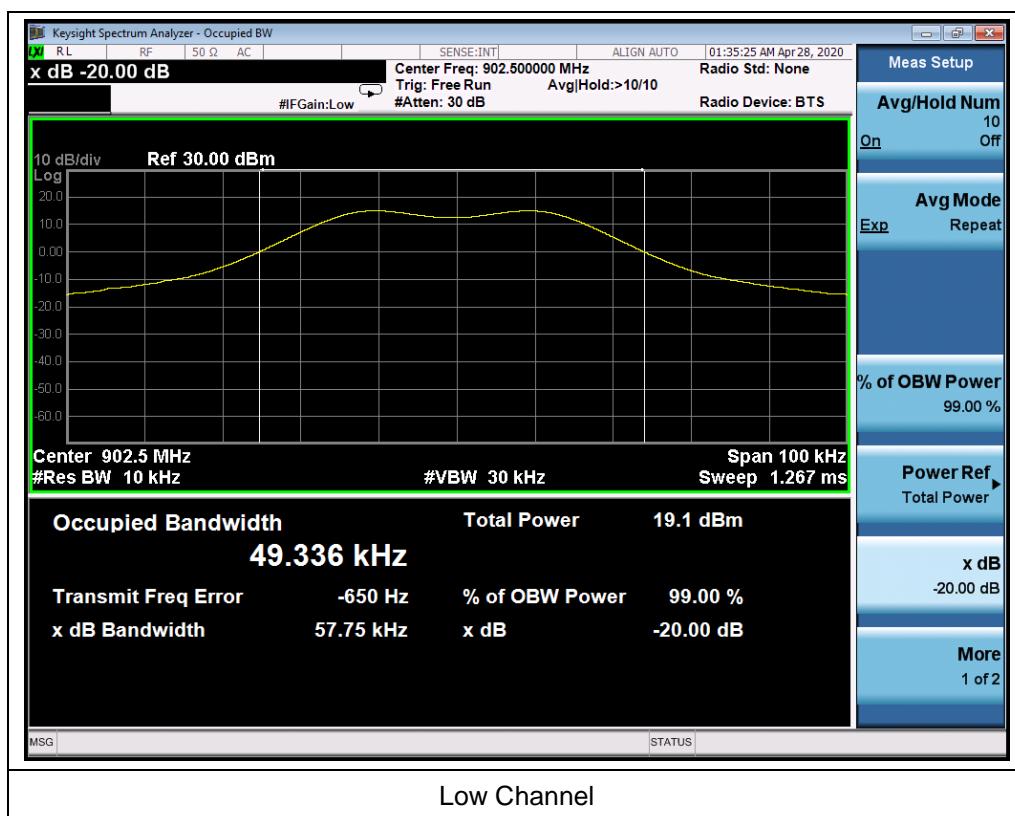
Refer to section 4.1.2 to get information of above instrument.

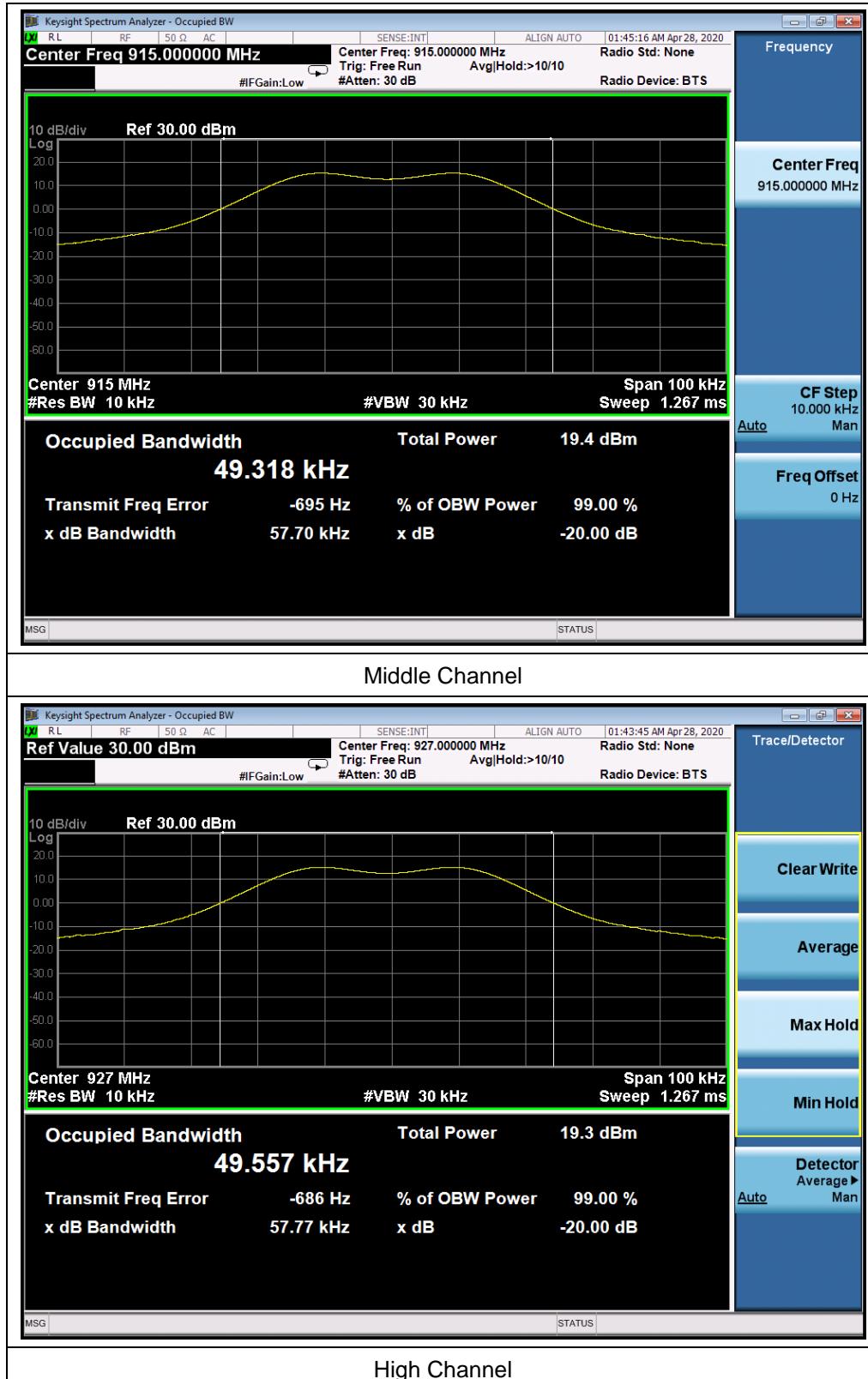
4.3.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.3.5 Deviation from Test Standard

No deviation.

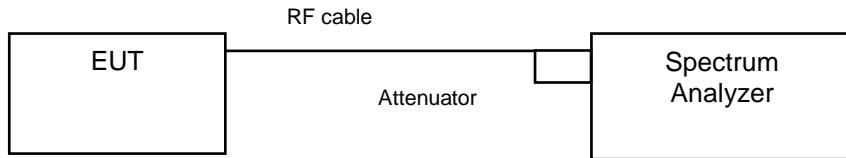

4.3.6 EUT Operating Condition


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (kHz)	99% Bandwidth (kHz)	20dB Bandwidth Limit (kHz)
Low	902.5	57.75	49.34	500
Mid	915	57.70	49.32	500
High	927	57.77	49.56	500

Test Plots:



4.4 Hopping Channel Separation

4.4.1 Limits of Hopping Channel Separation Measurement

At least 25 kHz or 20dB hopping channel bandwidth (whichever is greater).

4.4.2 Test Setup

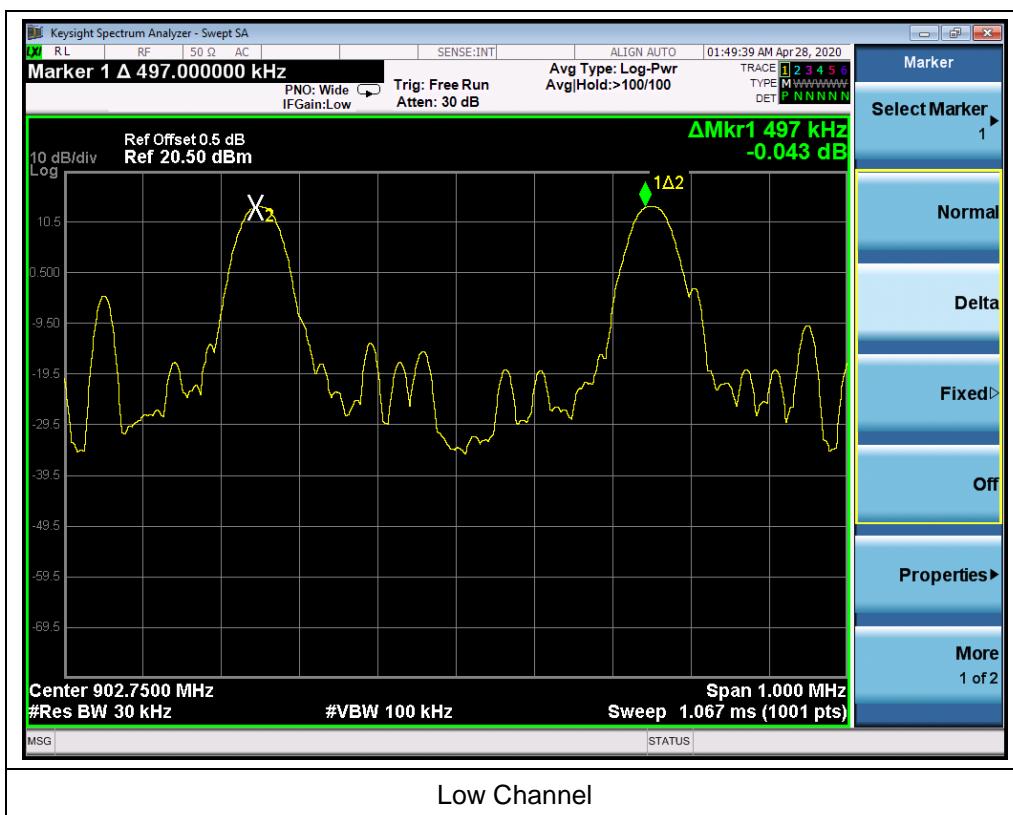
4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

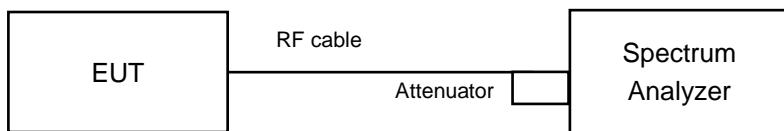

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 Test Results

Channel	Frequency (MHz)	Adjacent Channel Separation (kHz)	Maximum Limit (kHz)	Pass / Fail
Low	902.5	497	57.75	Pass
Mid	915	504	57.70	Pass
High	927	503	57.77	Pass

Test Plots:



4.5 Conducted Output Power Measurement

4.5.1 Limits of Conducted Output Power Measurement

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels.

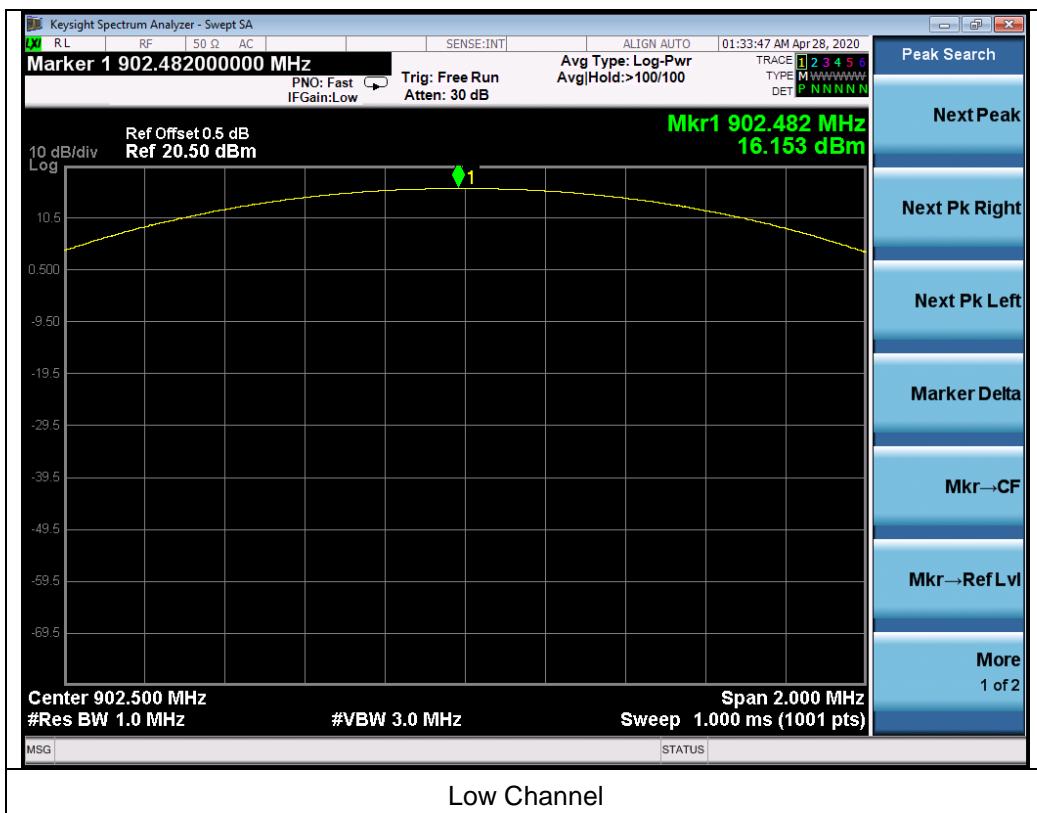
4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedures

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.


4.5.5 Deviation from Test Standard


No deviation.

4.5.6 Test Results

Channel	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Pass/Fail
Low	902.5	16.153	30	Pass
Mid	915	16.147	30	Pass
High	927	16.026	30	Pass

Test Plots:

4.6 Number of Hopping Frequency Used

4.6.1 Limits of Hopping Frequency Used Measurement

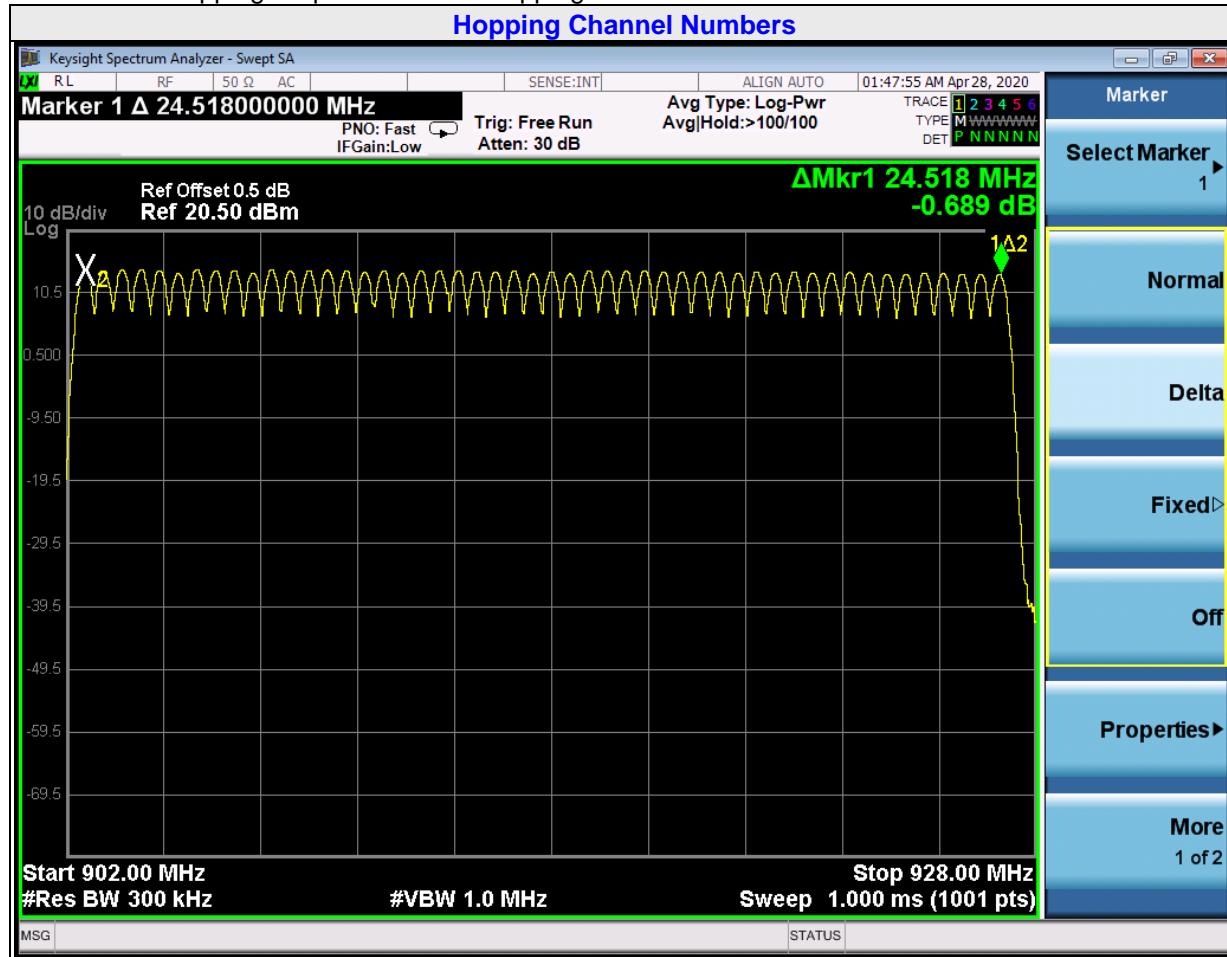
For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

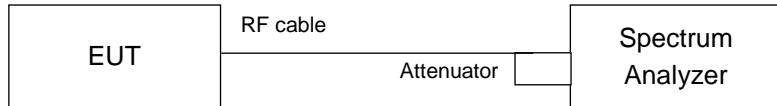

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.6.5 Deviation from Test Standard

No deviation.

4.6.6 Test Results

There are 50 hopping frequencies in the hopping mode.



4.7 Dwell Time on Each Channel

4.7.1 Limits of Dwell Time on Each Channel Measurement

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period

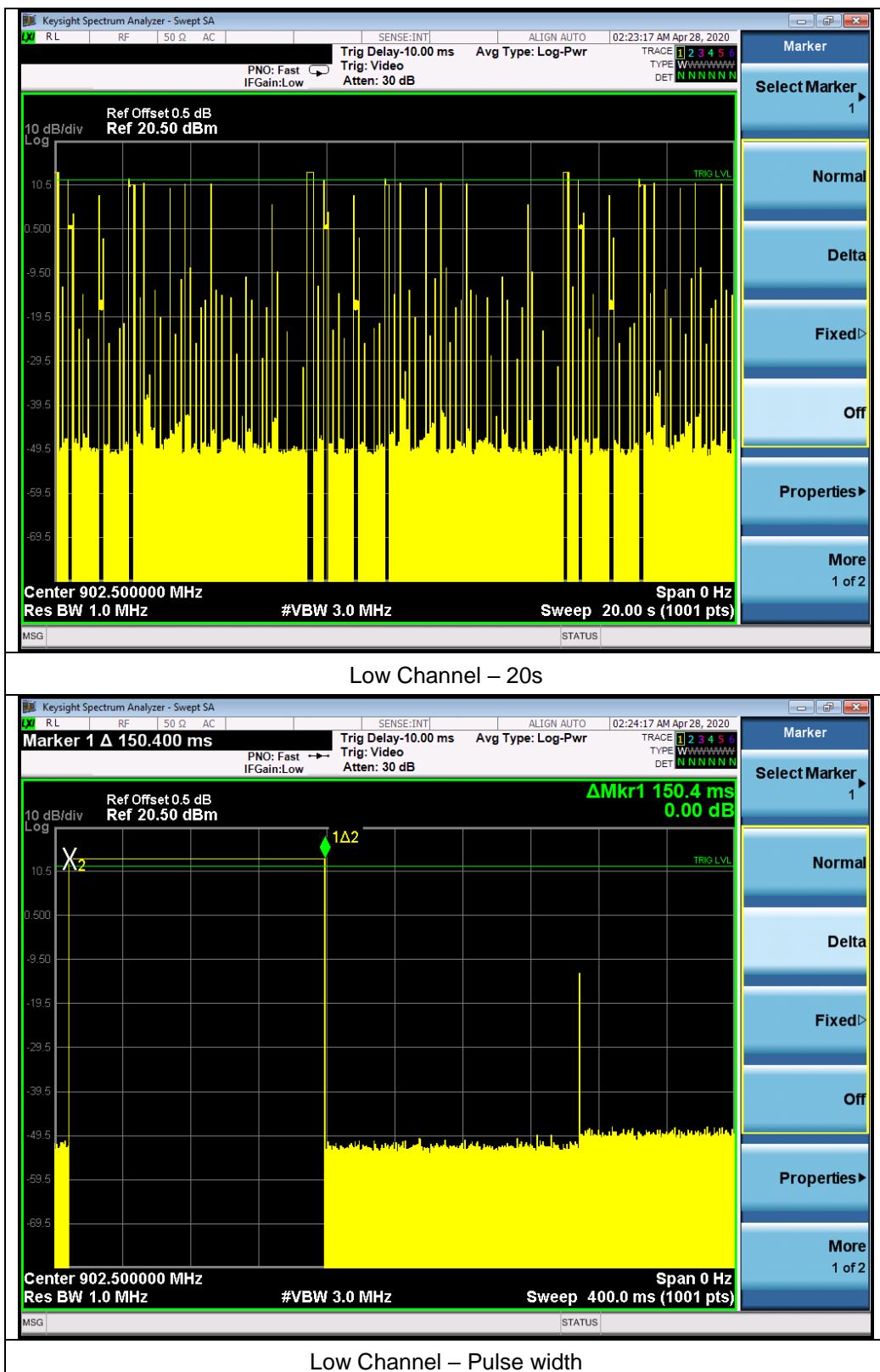
4.7.2 Test Setup

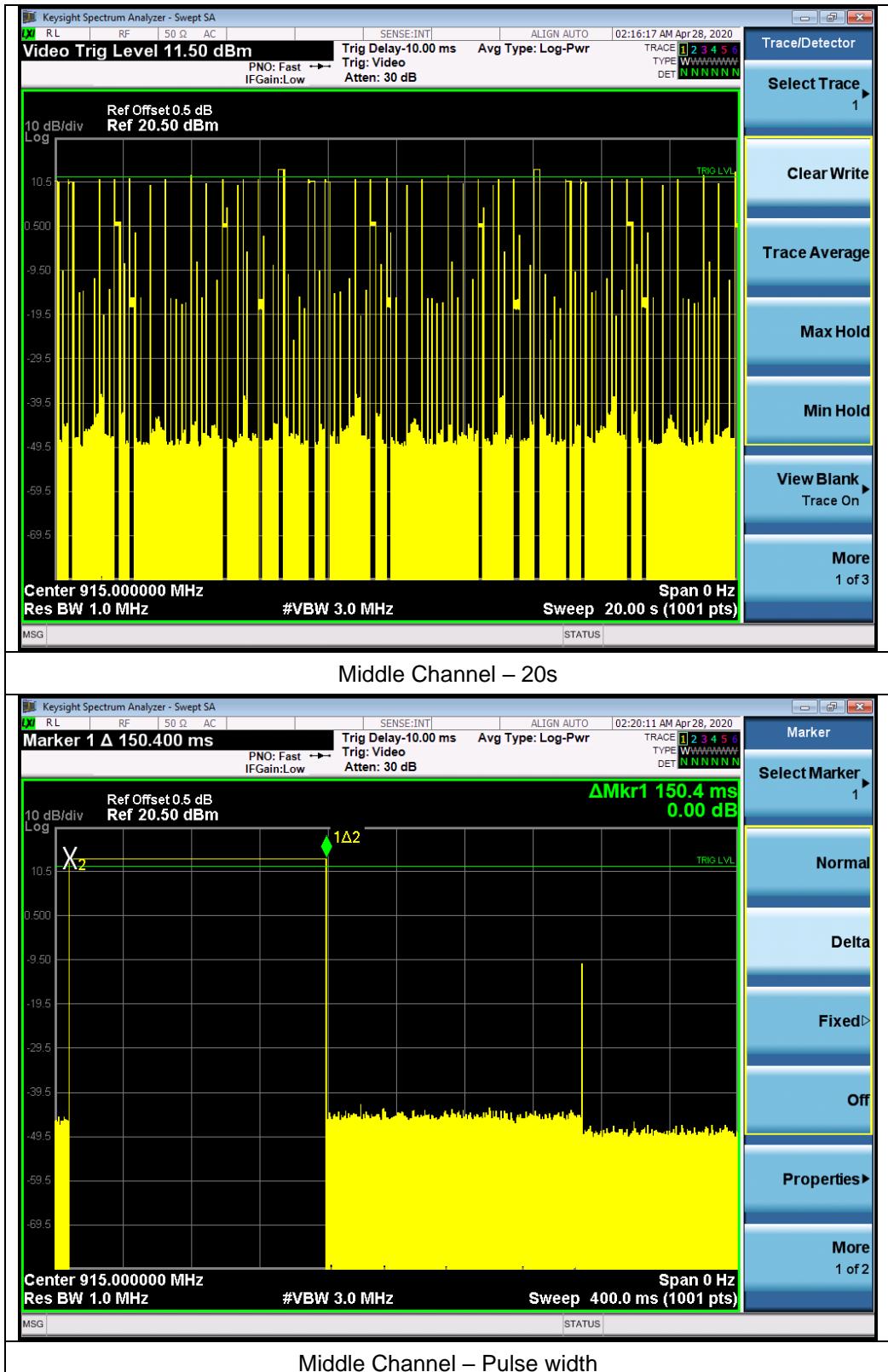
4.7.3 Test Instruments

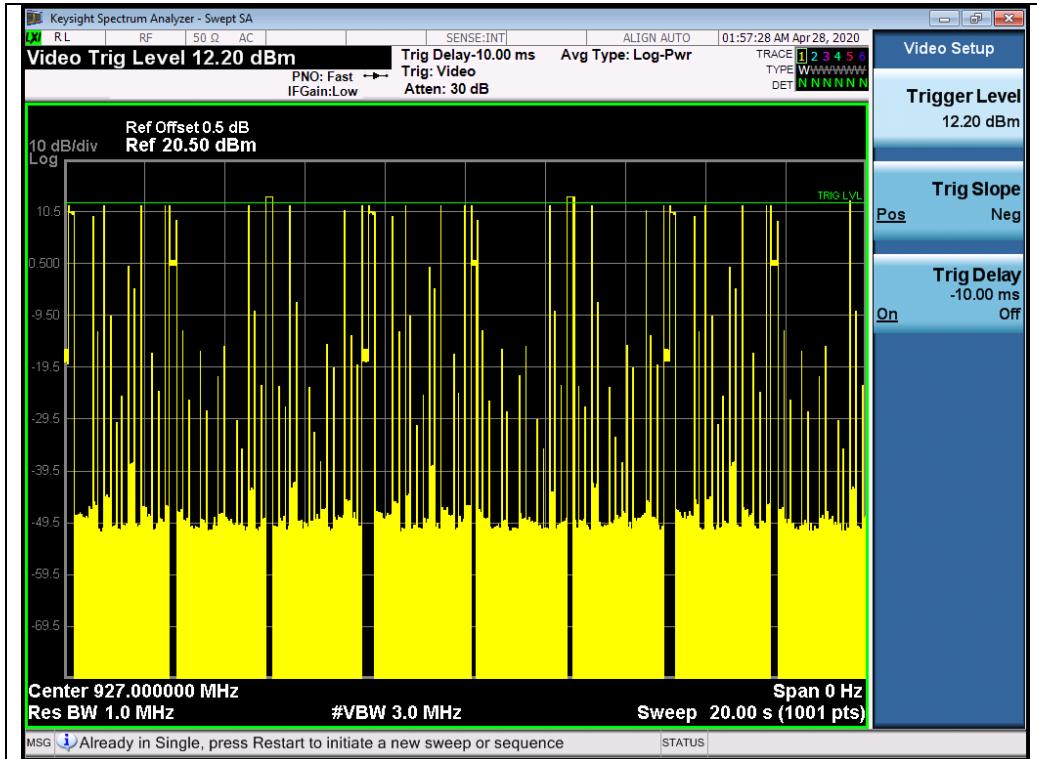
Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedures

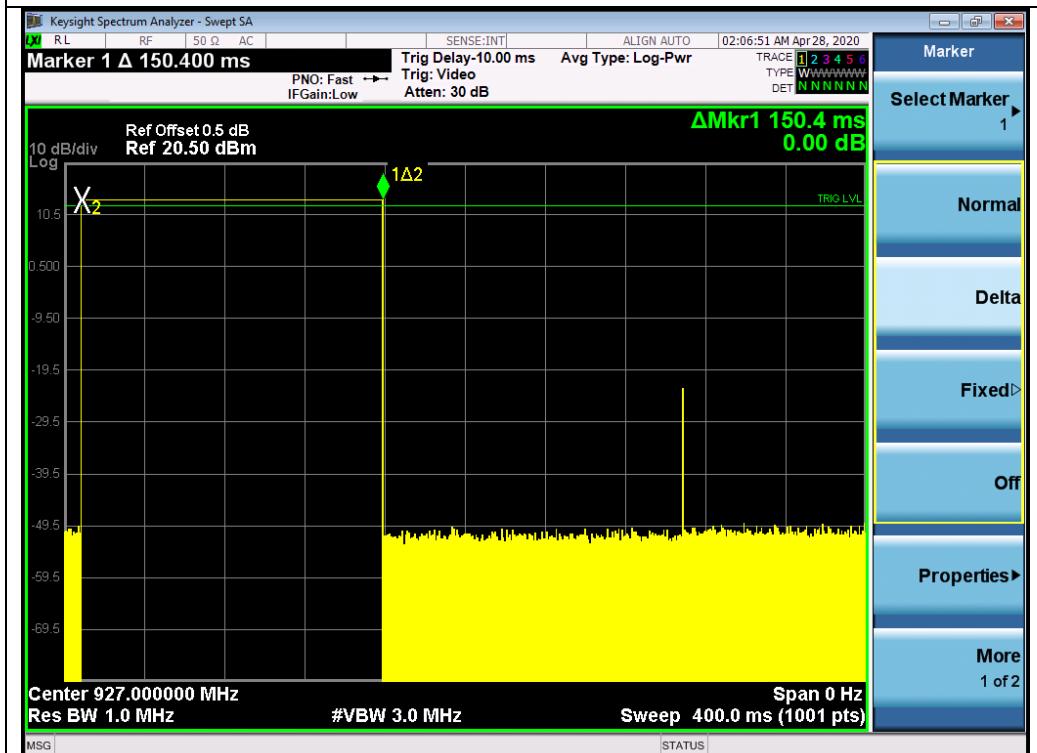
- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency to be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.
- .


4.7.5 Deviation from Test Standard


No deviation.


4.7.6 Test Results

Mode	Number of transmission in a 20 sec	Length of transmission time (msec)	Result (msec)	Limit (msec)
Low	2 times	150.4	300.8	400
Middle	2 times	150.4	300.8	400
High	2 times	150.4	300.8	400


NOTE: Test plots of the transmitting time slot are shown on next page.

High Channel – 20s

High Channel – Pulse width

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits of Conducted Out of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.8.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

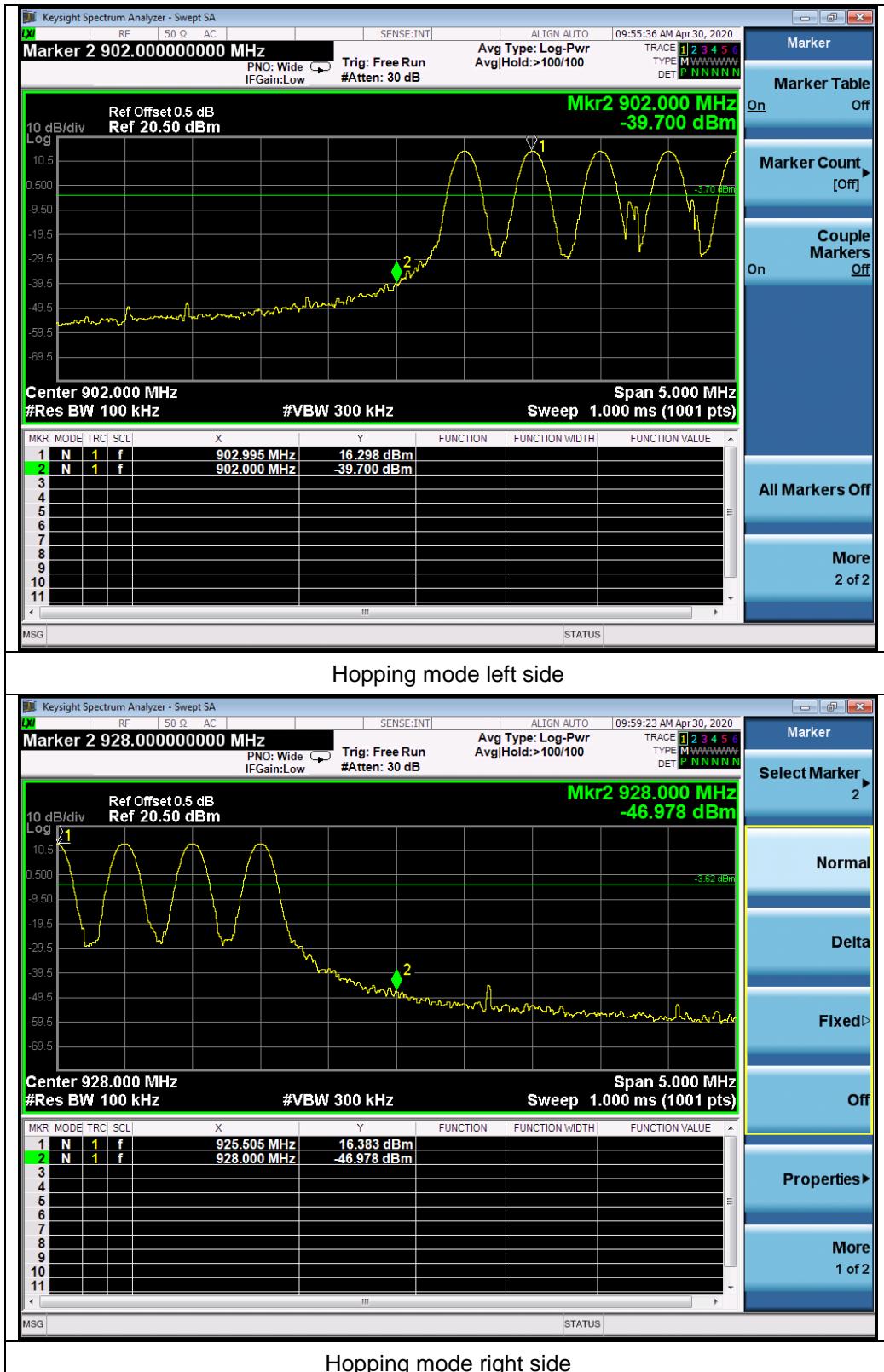
4.8.3 Test Procedure

The transmitter output was connected to the spectrum analyzer via a low loss cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 Deviation from Test Standard

No deviation.

4.8.5 EUT Operating Condition


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

4.8.7 Test Results

Appendix – Information on the Testing Laboratories

Bureau Veritas is a global leader in testing, inspection and certification (TIC) services. We help businesses improve safety, sustainability and productivity; and our clients include the majority of leading brands in retail, manufacturing and other industries. With a presence in every major country around the world, our quality assurance and compliance solutions are vital in helping our customers enhance product quality and concept-to-consumer journeys. We also assist with increasing speed to market, profitability and brand equity throughout the supply chain. Bureau Veritas is a leading wireless/IoT testing, inspection, audit and certification provider, with a global network of test laboratories to support the IoT industry in areas of connectivity, security, interoperability as well as quality, health & safety, and environmental/chemical requirements.

If you have any comments, please feel free to contact us at the following:

Milpitas EMC/RF/Safety/Telecom Lab

775 Montague Expressway, Milpitas, CA 95035
Tel: +1 408 526 1188

Sunnyvale OTA/Bluetooth Lab

1293 Anvilwood Avenue, Sunnyvale, CA
94089
Tel: +1 669 600 5293

Littleton EMC/RF/Safety/Environmental Lab

1 Distribution Center Cir #1, Littleton, MA 01460
Tel: +1 978 486 8880

Email: sales.eaw@us.bureauveritas.com

Web Site: www.cpsusa-bureauveritas.com

The address and road map of all our labs can be found in our web site also.

--- END ---