

TEST REPORT

Applicant Name: FCC: Shenzhen Gotron Electronic CO.,LTD.
IC: Shenzhen Gotron Electronic CO.,LTD

Address: FCC: 7B01, Building A, Block 1, Anhongji Tianyao Plaza,
Longhua District, Shenzhen City, Guangdong Province China
IC: 7B01, Building A, Block 1, Anhongji Tianyao Plaza,
Longhua District, Shenzhen Guangdong China

Report Number: 2501S51531E-RFA

FCC ID: 2AOWK-5020

IC: 12564A-5020

Test Standard (s)

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2;
RSS-247 ISSUE 3, AUGUST 2023

Sample Description

Product Type: Smart Phone

Model No.: FCC/IC: Armor X16 Pro

Multiple Model(s) No.: FCC: GQ5020, Armor X16 Ultra, Armor X16E, Armor X16S,
(for FCC only) Armor X16 Lite, Armor X16s, Armor X16s Pro

Trade Mark: **ulefone**

Date Received: 2025-04-03

Issue Date: 2025-05-30

Test Result:	Pass▲
--------------	-------

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Jim Cheng

Jim Cheng
RF Engineer

Approved By:

Nancy Wang

Nancy Wang
RF Supervisor

Note: The information marked[#] is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government.

This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "▼".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China
Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	3
GENERAL INFORMATION.....	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	4
OBJECTIVE	4
TEST METHODOLOGY	4
MEASUREMENT UNCERTAINTY	5
TEST FACILITY	5
SYSTEM TEST CONFIGURATION.....	6
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
REQUIREMENTS AND TEST PROCEDURES	12
AC LINE CONDUCTED EMISSIONS.....	12
RADIATED EMISSIONS.....	14
20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH.....	17
CHANNEL SEPARATION TEST	19
QUANTITY OF HOPPING CHANNEL TEST	21
TIME OF OCCUPANCY (DWELL TIME)	23
PEAK OUTPUT POWER MEASUREMENT	25
BAND EDGES.....	27
ANTENNA REQUIREMENT	28
TEST DATA AND RESULTS.....	29
AC LINE CONDUCTED EMISSIONS.....	29
RADIATED EMISSIONS.....	32
RF CONDUCTED DATA	50
RF EXPOSURE EVALUATION	51
EUT PHOTOGRAPHS.....	54
TEST SETUP PHOTOGRAPHS	55

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2501S51531E-RFA	Original Report	2025-05-30

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

HVIN	GQ5020
FVIN	N/A
Product	Smart Phone
Tested Model	FCC/IC: Armor X16 Pro
Multiple Model(s)	FCC: GQ5020, Armor X16 Ultra, Armor X16E, Armor X16S, Armor X16 Lite, Armor X16s, Armor X16s Pro
Frequency Range	2402~2480MHz
Transmit Peak Power	1.80dBm
Modulation Technique	Bluetooth: GFSK, $\pi/4$ -DQPSK, 8DPSK
Antenna Specification[#]	0.29dBi (provided by the applicant)
Voltage Range	DC 3.87V from battery or DC 5V/9V from adapter
Sample serial number	30VS-2 for Conducted and Radiated Emissions Test 30VS-1 for RF Conducted Test (Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
Adapter Information	Model: UF82PD3303 Input: AC 100-240V, 50/60Hz, 0.8A PD Output: DC 5.0V, 3.0A 15.0W or 9.0V, 3.0A 27.0W or 12.0V, 2.5A 30.0W or 15.0V, 2.0A 30.0W or 20.0V, 1.5A 30.0W PPS: DC 5.0-11.0V, 3.0A or 5.0-16.0V, 2.0A 33.0W Max

Note: The Multiple models are electrically identical with the test model except for model name and sales channel. Please refer to the declaration letter[#] for more detail, which was provided by manufacturer.

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules and RSS-247 Issue 3, August 2023, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2020, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and RSS-247 Issue 3, August 2023, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Channel Bandwidth		109.2kHz(k=2, 95% level of confidence)
RF output power, conducted		0.86dB(k=2, 95% level of confidence)
Dwell Time		±1%(k=2, 95% level of confidence)
AC Power Lines Conducted Emissions	9kHz-150kHz	3.63dB(k=2, 95% level of confidence)
	150kHz-30MHz	3.66dB(k=2, 95% level of confidence)
Radiated Emissions	0.009MHz~30MHz	3.60dB(k=2, 95% level of confidence)
	30MHz~200MHz (Horizontal)	5.32dB(k=2, 95% level of confidence)
	30MHz~200MHz (Vertical)	5.43dB(k=2, 95% level of confidence)
	200MHz~1000MHz (Horizontal)	5.77dB(k=2, 95% level of confidence)
	200MHz~1000MHz (Vertical)	5.73dB(k=2, 95% level of confidence)
	1GHz - 6GHz	5.34dB(k=2, 95% level of confidence)
	6GHz - 18GHz	5.40dB(k=2, 95% level of confidence)
	18GHz - 40GHz	5.64dB(k=2, 95% level of confidence)
Temperature		±1°C
Humidity		±1%
Supply voltages		±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0023.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	40	2442
1	2403	41	2443
2	2404	42	2444
...
...
36	2438	75	2477
37	2439	76	2478
38	2440	77	2479
39	2441	78	2480

EUT was tested with Channel 0, 39 and 78.

EUT Exercise Software

Exercise Software [#]	Engineer Mode
Power Level [#]	9

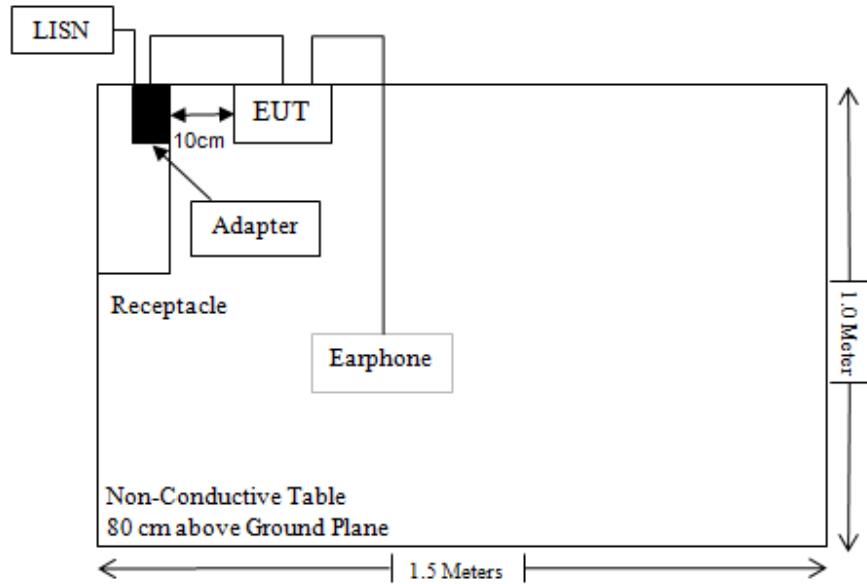
Special Accessories

No special accessory.

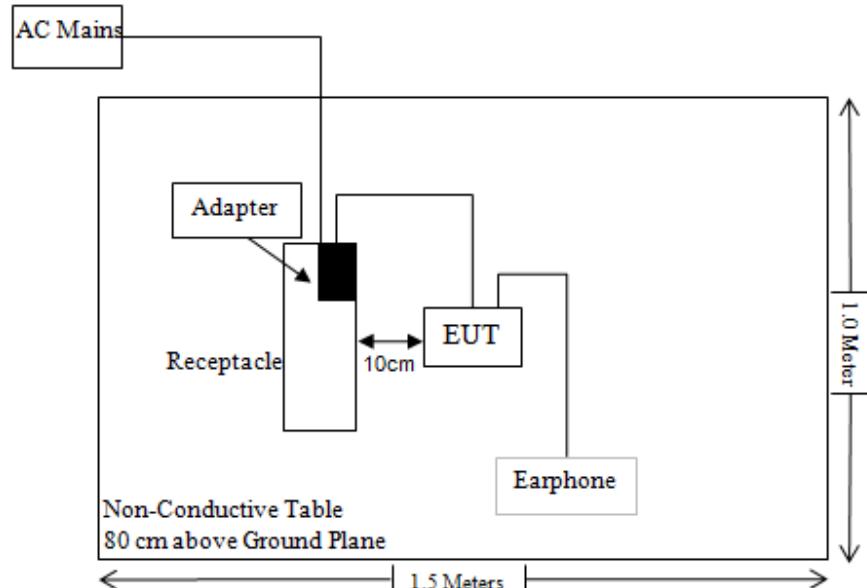
Equipment Modifications

No modification was made to the EUT tested.

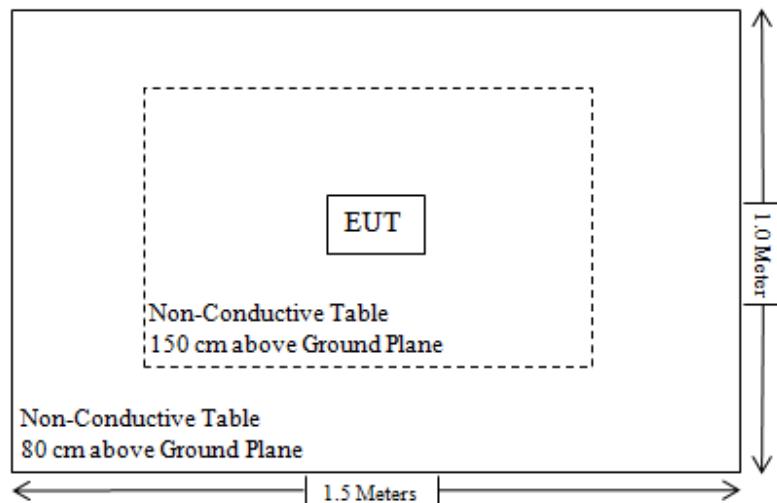
Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Unknown	Receptacle	Unknown	Unknown
Unknown	Earphone	Unknown	Unknown

External I/O Cable


Cable Description	Length (m)	From Port	To
Un-shielding Detachable USB Cable	0.8	EUT	Adapter
Un-shielding Detachable Audio Cable	1.2	EUT	Earphone
Un-Shielded Un-detachable AC Cable	1.2	Receptacle	LISN/AC Mains

Block Diagram of Test Setup


For Conducted Emissions:

For Radiated Emissions below 1GHz:

For Radiated Emissions above 1GHz:

SUMMARY OF TEST RESULTS

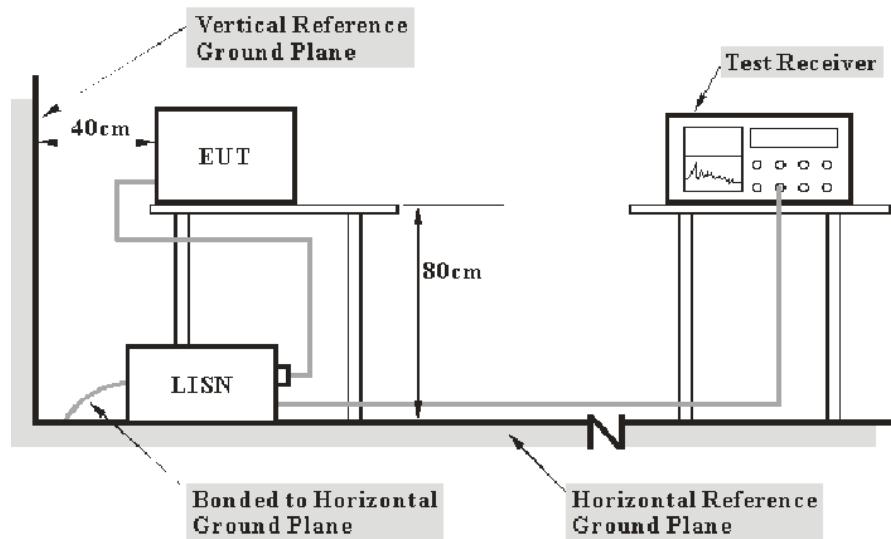
FCC Rules	RSS Rules	Description of Test	Result
FCC §1.1307&§2.1093&§15.247 (i)	/	RF Exposure	Compliant
/	RSS-102 § 6.3	SAR Exemption Limits	Compliant
FCC §15.207(a)	RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
FCC §15.205, §15.209, §15.247(d)	RSS-247 § 5.5, RSS-GEN § 8.10	Radiated Emissions	Compliant
FCC §15.247(a)(1)	RSS-247 § 5.1(a), RSS-GEN § 6.7	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
FCC §15.247(a)(1)	RSS-247 § 5.1 (b)	Channel Separation Test	Compliant
FCC §15.247(a)(1)(iii)	RSS-247 § 5.1 (d)	Time of Occupancy (Dwell Time)	Compliant
FCC §15.247(a)(1)(iii)	RSS-247 § 5.1 (d)	Quantity of hopping channel Test	Compliant
FCC §15.247(b)(1)	RSS-247 § 5.1(b) &§ 5.4(b)	Peak Output Power Measurement	Compliant
FCC §15.247(d)	RSS-247 § 5.5	Band edges	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Conducted Emission Test					
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/12/04	2025/12/03
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2024/05/21	2025/05/20
Rohde & Schwarz	LISN	ENV216	101613	2024/12/04	2025/12/03
Unknown	CE Cable	Unknown	UF A210B-1-0720-504504	2024/05/21	2025/05/20
Audix	EMI Test software	E3	191218(V9)	NCR	NCR
Radiated Emission Test					
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/12/04	2025/12/03
Sonoma instrument	Pre-amplifier	310N	186238	2024/05/21	2025/05/20
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19
Unknown	Cable	Chamber Cable 1	F-03-EM236	2024/06/18	2025/06/17
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13
Unknown	Cable	2Y194	0735	2024/12/04	2025/12/03
Unknown	Cable	PNG214	1354	2024/12/04	2025/12/03
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR
Rohde&Schwarz	Spectrum Analyzer	FSV40	101605	2025/03/26	2026/03/25
A.H.System	Preamplifier	PAM-0118P	489	2024/11/15	2025/11/14
Schwarzbeck	Horn Antenna	BBHA9120D (1201)	1143	2023/07/26	2026/07/25
Unknown	RF Cable	KMSE	0735	2024/12/06	2025/12/05
Unknown	RF Cable	UFA147	219661	2024/12/06	2025/12/05
Unknown	RF Cable	XH750A-N	J-10M	2024/12/06	2025/12/05
JD	Filter Switch Unit	DT7220FSU	DS79906	2024/09/09	2025/09/08
JD	Multiplex Switch Test Control Set	DT7220SCU	DS79903	2024/09/09	2025/09/08
A.H.System	Pre-amplifier	PAM-1840VH	190	2024/06/18	2025/06/17
Electro-Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17
UTIFLEX	RF Cable	NO. 13	232308-001	2024/12/18	2025/12/17
Audix	EMI Test software	E3	191218(V9)	NCR	NCR

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
RF Conducted Test					
Tonscend	RF control Unit	JS0806-2	19D8060154	2024/08/06	2025/08/05
Rohde & Schwarz	Spectrum Analyzer	FSV40	101473	2024/12/04	2025/12/03
Unknown	10dB Attenuator	Unknown	F-03-EM014	2024/06/27	2025/06/26

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).


REQUIREMENTS AND TEST PROCEDURES

AC Line Conducted Emissions

Applicable Standard

FCC §15.207(a), RSS-GEN § 8.8

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2020. The related limit was specified in FCC Part 15.207 & RSS-Gen.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

$$\text{Factor} = \text{LISN VDF} + \text{Cable Loss}$$

The “**Over limit**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

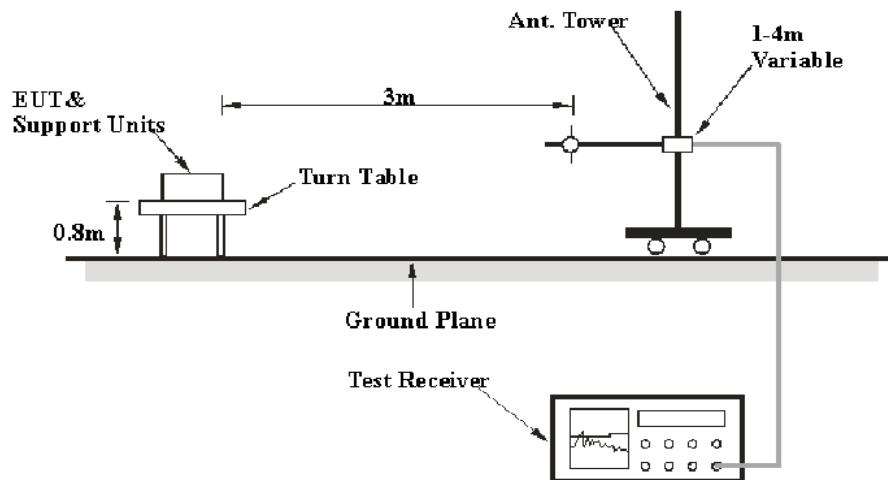
$$\text{Over Limit} = \text{Level} - \text{Limit}$$

$$\text{Level} = \text{Read Level} + \text{Factor}$$

Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

Radiated Emissions

Applicable Standard


FCC §15.205; §15.209; §15.247(d); RSS-247§ 5.5; RSS-GEN § 8.10


EUT Setup

9 kHz-30MHz:

30MHz-1GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2020. The specification used was the FCC 15.209, FCC 15.247, RSS-247, RSS-Gen limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement	Detector
9 kHz – 150 kHz	/	/	200 Hz	QP	QP
	300 Hz	1 kHz	/	PK	Peak
150 kHz – 30 MHz	/	/	9 kHz	QP	QP
	10 kHz	30 kHz	/	PK	Peak
30 MHz – 1000 MHz	/	/	120 kHz	QP	QP
	100 kHz	300 kHz	/	PK	Peak
Above 1 GHz	Harmonics				
	1MHz	3 MHz	/	PK	Peak
	Average Emission Level=Peak Emission Level+20*log(Duty cycle)				
	Band Edge & Other Emissions				
	1MHz	3 MHz	/	PK	Peak
	1MHz	≥ 10 Hz	/	Average	Peak

For Duty cycle measurement:

Use the duty cycle factor correction factor method per 15.35(c).

Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln,

Where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

$$\text{Factor} = \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “**Over Limit/Margin**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

$$\begin{aligned} \text{Over Limit/Margin} &= \text{Level/Corrected Amplitude} - \text{Limit} \\ \text{Level / Corrected Amplitude} &= \text{Read Level} + \text{Factor} \end{aligned}$$

20 dB Emission Bandwidth & 99% Occupied Bandwidth

According to FCC §15.247(a) (1):

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

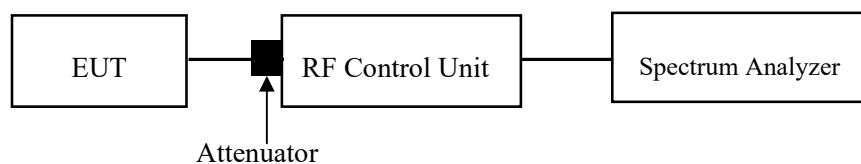
According to RSS-247 § 5.1 (a), RSS-GEN § 6.7:

The occupied bandwidth or the “99% emission bandwidth” is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the “20 dB bandwidth” is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 20 dB below the maximum in-band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

Test Method: ANSI C63.10-2020 Clause 6.9.2


- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be at least three times RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than $[10 \log (\text{OBW}/\text{RBW})]$ below the reference level. Specific guidance is given in 4.1.6.2.
- d) Steps a) through c) might require iteration to adjust within the specified tolerances.
- e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target “–xx dB down” requirement; that is, if the requirement calls for measuring the –20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.
- f) Set detection mode to peak and trace mode to max-hold.
- g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).

h) Determine the “-xx dB down amplitude” using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.

i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).

j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the “-xx dB down amplitude” determined in step h). If a marker is below this “-xx dB down amplitude” value, then it shall be as close as possible to this value. The dBc bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the “-xx dB down amplitude” determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

k) The dBc bandwidth shall be reported by providing spectral plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Channel Separation Test

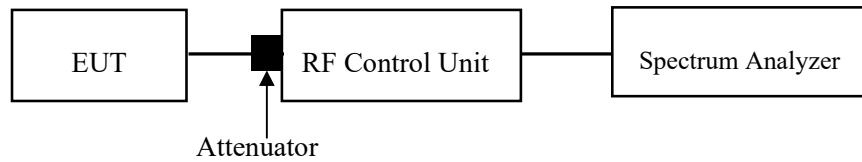
According to FCC §15.247(a) (1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

According to RSS-247 § 5.1 (b):

Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure


Test Method: ANSI C63.10-2020 Clause 7.8.2

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) \geq RBW.
- d) Sweep: No faster than coupled (auto) time.
- e) Detector function: Peak.
- f) Trace: Max-hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A spectral plot of the data shall be included in the test report.

Where the device shares the same channel plan (carrier frequencies and number of channels) across multiple data rates or modulation schemes then the carrier separation need only be measured for one of those modulation schemes or data rates.

Note: The limit is $2/3 \times 20$ dB bandwidth

Quantity of Hopping Channel Test

Applicable Standard

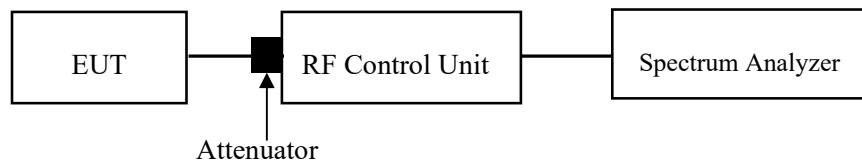
According to FCC §15.247(a) (1) (iii):

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

According to RSS-247 § 5.1 (d):

Frequency hopping systems (FHSS) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Test Procedure


Test Method: ANSI C63.10-2020 Clause 7.8.3

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it could be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW \geq RBW.
- d) Sweep: No faster than coupled (auto) time.
- e) Detector function: Peak.
- f) Trace: Max-hold.
- g) Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A spectral plot of the data shall be included in the test report.

Where the device shares the same channel plan (carrier frequencies and number of channels) across multiple data rates or modulation schemes then the number of channels need only be measured for one of those modulation schemes or data rates.

Time of Occupancy (Dwell Time)**Applicable Standard**

According to FCC §15.247(a) (1) (iii):

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

According to RSS-247 § 5.1 (d):

Frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Test Procedure

Test Method: ANSI C63.10-2020 Clause 7.8.4

Use the following spectrum analyzer settings to determine the dwell time per hop:

- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be \leq channel spacing and where possible RBW should be set $\gg 1 / T$, where T is the expected transmission time per hop.
- c) Sweep time: Set so that the start of the first transmission and end of the last transmission for the hop are clearly captured. Setting the sweep time to be slightly longer than the hopping period per channel (hopping period = 1/hopping rate) should achieve this.
- d) Use a video trigger, where possible with a trigger delay, so that the start of the transmission is clearly observed. The trigger level might need adjustment to reduce the chance of triggering when the system hops on an adjacent channel.
- e) Detector function: Peak.
- f) Trace: Clear-write, single sweep.
- g) Place markers at the start of the first transmission on the channel and at the end of the last transmission. The dwell time per hop is the time between these two markers.

To determine the number of hops on a channel in the regulatory observation period repeat the measurement using a longer sweep time. When the device uses a single hopping sequence the period of measurement should be sufficient to capture at least 2 hops. When the device uses a dynamic hopping sequence, or the sequence varies, the period of measurement may need to capture multiple hops to better determine the average time of occupancy. Count the number of hops on the channel across the sweep time.

The average number of hops on the same channel within the regulatory observation period is calculated from the number of hops on the channel divided by the spectrum analyzer sweep time multiplied by the regulatory observation period. For example, if three hops are counted with an analyzer sweep time of 500 ms and the regulatory observation period is 10 s, then the number of hops in that ten seconds is $3 / 0.5 \times 10$, or 60 hops.

The average time of occupancy is calculated by multiplying the dwell time per hop by the number of hops in the observation period.

Peak Output Power Measurement

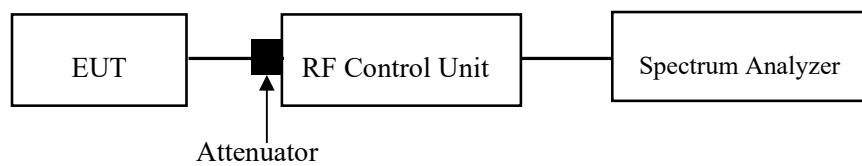
Applicable Standard

According to FCC §15.247(b) (1):

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

According to RSS-247§ 5.1(b) &§ 5.4(b):

For frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W (see Section 5.4(e) for exceptions).


Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

Test Procedure

Test Method: ANSI C63.10-2020 Clause 7.8.5

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. Frequency hopping shall be disabled for this test. Use the following spectrum analyzer settings:

- a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- b) RBW > 20 dB bandwidth of the emission being measured.
- c) VBW \geq RBW.
- d) Sweep: No faster than coupled (auto) time.
- e) Detector function: Peak.
- f) Trace: Max-hold.
- g) Allow trace to stabilize.
- h) Use the marker-to-peak function to set the marker to the peak of the emission.
- i) The indicated level is the peak output power, after any corrections for external attenuators and cables.
- j) A spectral plot of the test results and setup description shall be included in the test report.

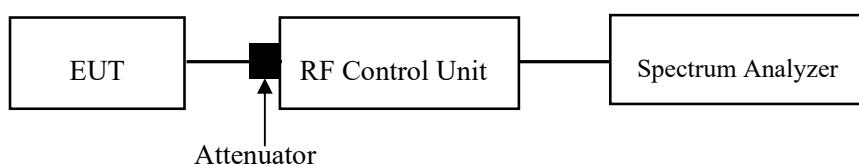
Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable loss

Band Edges

Applicable Standard

According to FCC §15.247(d).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


According to RSS-247 § 5.5.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(e), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Test Procedure

Test Method: ANSI C63.10-2020 Clause 7.8.7.2 & Clause 6.10

- 1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products that fall outside of the authorized band of operation.
- 2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than $[10 \log (\text{OBW}/\text{RBW})]$ below the reference level. Specific guidance is given in 4.1.6.2.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: No faster than coupled (auto) time.
- 5) Resolution bandwidth: 100 kHz.
- 6) Video bandwidth: 300 kHz.
- 7) Detector: Peak.
- 8) Trace: Max-hold.

ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

According to FCC § 15.203, the applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer. The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached, the antenna gain[#] is 0.29dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Antenna Type	Antenna Gain [#]	Impedance	Frequency Range
PIFA	0.29dBi	50Ω	2.4~2.5GHz

Result: Compliant


TEST DATA AND RESULTS

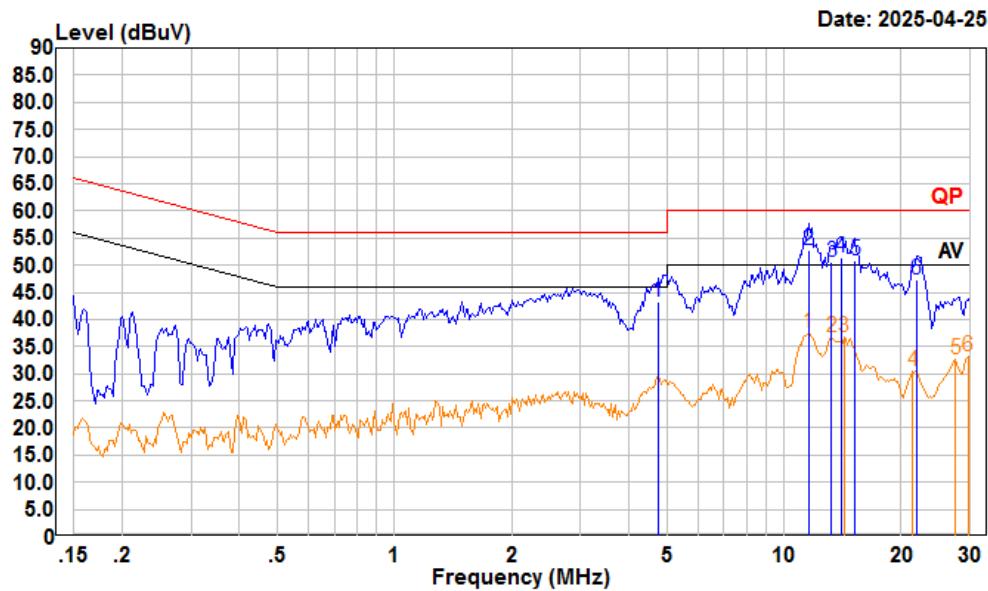
AC Line Conducted Emissions

Environmental Conditions

Temperature (°C)	25.1	Relative Humidity (%)	53
ATM Pressure (kPa)	100.5	Test engineer	Macy Shi
Test date	2025/04/25		
EUT operation mode	Transmitting(Maximum output power mode, BDR Mode Middle Channel)		

AC 120V 60 Hz, Line

Condition: Line


Project : 2501S51531E-RF

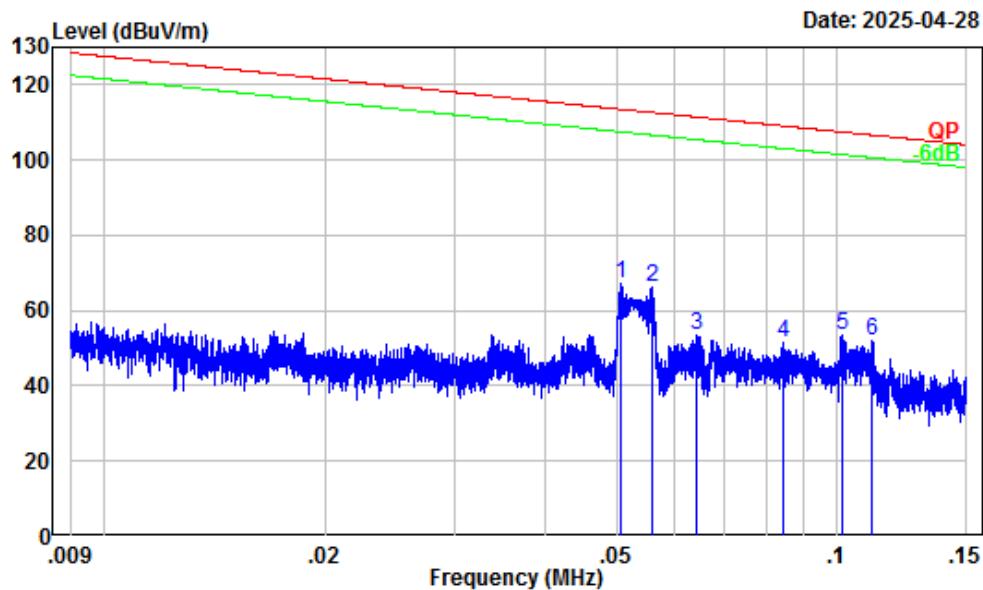
tester : Macy.shi Note:BT Transmitting

Setting : RBW:9kHz

Freq	Read		LISN	Cable	Limit	Over	Remark
	Level	Level					
MHz							
1	1.593	21.59	42.70	10.94	10.17	56.00	-13.30 QP
2	2.077	23.60	44.88	11.09	10.19	56.00	-11.12 QP
3	5.166	31.20	52.14	10.76	10.18	60.00	-7.86 QP
4	9.253	30.49	51.07	10.37	10.21	60.00	-8.93 QP
5	11.683	32.70	53.21	10.30	10.21	60.00	-6.79 QP
6	14.750	28.90	49.42	10.30	10.22	60.00	-10.58 QP
Read							
Freq	Level		LISN	Cable	Limit	Over	Remark
	Level	Level					
MHz							
1	5.058	14.64	35.59	10.77	10.18	50.00	-14.41 Average
2	8.501	13.79	34.43	10.44	10.20	50.00	-15.57 Average
3	11.683	20.52	41.03	10.30	10.21	50.00	-8.97 Average
4	13.695	18.08	38.60	10.30	10.22	50.00	-11.40 Average
5	14.907	16.60	37.12	10.30	10.22	50.00	-12.88 Average
6	17.291	9.80	30.65	10.65	10.20	50.00	-19.35 Average

AC 120V 60 Hz, Neutral

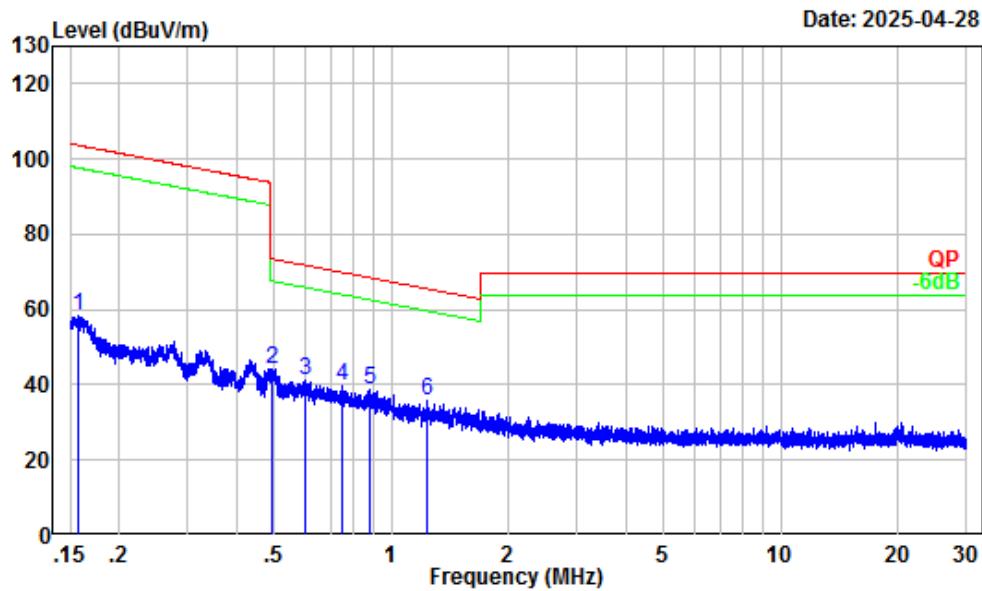
Freq	Read	LISN	Cable	Limit	Over	Remark
	MHz	dBuV	dBuV	dB	dBuV	
1	4.746	22.30	43.37	10.88	10.19	56.00 -12.63 QP
2	11.559	32.10	52.74	10.43	10.21	60.00 -7.26 QP
3	13.267	30.10	50.68	10.36	10.22	60.00 -9.32 QP
4	13.989	30.80	51.35	10.33	10.22	60.00 -8.65 QP
5	15.226	30.40	50.96	10.34	10.22	60.00 -9.04 QP
6	21.830	26.10	47.29	11.01	10.18	60.00 -12.71 QP


Freq	Read	LISN	Cable	Limit	Over	Remark
	MHz	dBuV	dBuV	dB	dBuV	
1	11.559	17.00	37.64	10.43	10.21	50.00 -12.36 Average
2	13.267	16.08	36.66	10.36	10.22	50.00 -13.34 Average
3	14.288	16.06	36.60	10.32	10.22	50.00 -13.40 Average
4	21.373	9.34	30.55	11.03	10.18	50.00 -19.45 Average
5	27.562	11.52	32.51	10.78	10.21	50.00 -17.49 Average
6	29.684	12.32	33.25	10.71	10.22	50.00 -16.75 Average

Radiated Emissions**Environmental Conditions**

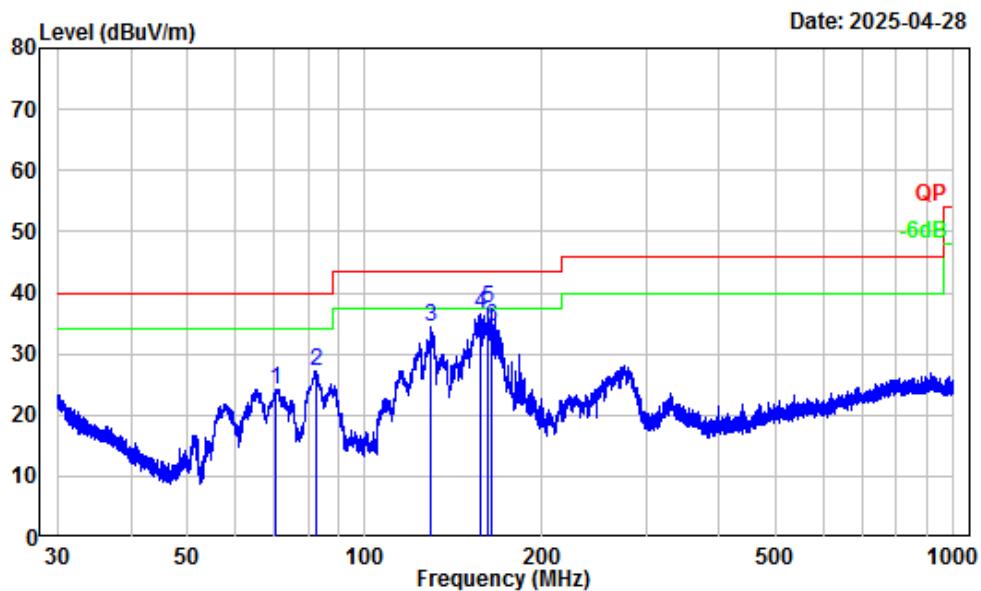
Temperature (°C)	24.8-25.2	Relative Humidity (%)	50.1-52
ATM Pressure (kPa):	100.6-101.3	Test engineer:	Alex Yan & Zenos Qiao
Test date:	2025/04/19-2025/04/28		
EUT operation mode:	Below 1GHz: Transmitting (Maximum output power mode, BDR Mode 2441MHz) Above 1GHz: Transmitting (Maximum output power mode, BDR Mode)		
Note:	1. For the radiated spurious emission below 30MHz, only the worst case (parallel) was recorded. 2. When the test result of peak was less than the limit of QP/Average more than 6dB, just peak value were recorded. 3. The spurious emission from 9 kHz-30MHz of IC RSS-GEN standard, the unit of final result on the test plots are dB μ V/m, so the limit should be added by 51,5 dB from dB μ A/m to dB μ V/m. 4. After pre-scan in the X, Y and Z axes of orientation, the worst case y-axis of orientation were recorded.		

Below 1GHz:


9kHz-150kHz

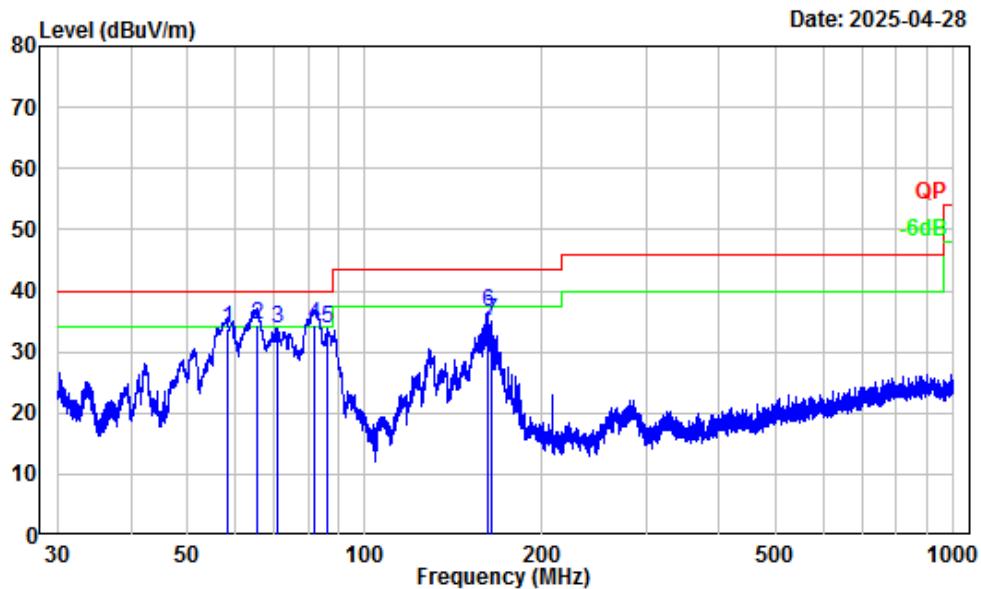
Site : Chamber A
Condition : 3m
Project Number : 2501S51531E-RF
Test Mode : BT Transmitting
Detector: Peak RBW/VBW: 0.3/1kHz
Tester : Alex Yan

Freq	Factor	Read	Limit	Over	Remark	
		Level	Level	Line		
1	0.051	26.32	40.93	67.25	113.49	-46.24 Peak
2	0.056	25.82	40.33	66.15	112.67	-46.52 Peak
3	0.064	24.95	28.37	53.32	111.42	-58.10 Peak
4	0.085	23.08	28.33	51.41	109.06	-57.65 Peak
5	0.101	21.92	31.47	53.39	107.49	-54.10 Peak
6	0.112	21.31	30.53	51.84	106.64	-54.80 Peak


150kHz-30MHz

Site : Chamber A
Condition : 3m
Project Number : 2501S51531E-RF
Test Mode : BT Transmitting
Detector: Peak RBW/VBW: 10/30kHz
Tester : Alex Yan

	Freq	Factor	Read Level	Limit Level	Line	Over Limit	Remark
	MHz	dB/m	dB _{UV}	dB _{UV} /m	dB _{UV} /m	dB	
1	0.157	18.66	39.52	58.18	103.71	-45.53	Peak
2	0.494	6.52	37.83	44.35	73.73	-29.38	Peak
3	0.605	5.11	36.30	41.41	71.93	-30.52	Peak
4	0.746	3.36	36.24	39.60	70.07	-30.47	Peak
5	0.881	2.09	36.76	38.85	68.59	-29.74	Peak
6	1.241	0.53	35.29	35.82	65.56	-29.74	Peak


30MHz-1GHz_Horizontal

Site : Chamber A
Condition : 3m Horizontal
Project Number : 2501S51531E-RF
Test Mode : BT Transmitting
Detector: Peak RBW/VBW: 100/300kHz
Tester : Alex Yan

	Freq	Factor	Read Level	Limit Level	Line	Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	70.43	-17.87	42.15	24.28	40.00	-15.72	Peak
2	82.54	-18.04	45.34	27.30	40.00	-12.70	Peak
3	129.58	-11.21	45.70	34.49	43.50	-9.01	Peak
4	156.66	-12.64	49.11	36.47	43.50	-7.03	Peak
5	161.26	-12.72	50.15	37.43	43.50	-6.07	Peak
6	163.61	-12.81	47.32	34.51	43.50	-8.99	QP

30MHz-1GHz_Verical

Site : Chamber A
Condition : 3m Vertical
Project Number : 2501S51531E-RF
Test Mode : BT Transmitting
Detector: Peak RBW/VBW: 100/300kHz
Tester : Alex Yan

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m		
1	58.23	-18.22	51.90	33.68	40.00	-6.32	QP
2	65.40	-17.95	52.50	34.55	40.00	-5.45	QP
3	70.77	-17.87	51.81	33.94	40.00	-6.06	Peak
4	82.11	-18.01	52.39	34.38	40.00	-5.62	QP
5	86.35	-18.08	51.92	33.84	40.00	-6.16	Peak
6	161.26	-12.72	49.29	36.57	43.50	-6.93	Peak
7	163.68	-12.81	47.88	35.07	43.50	-8.43	Peak

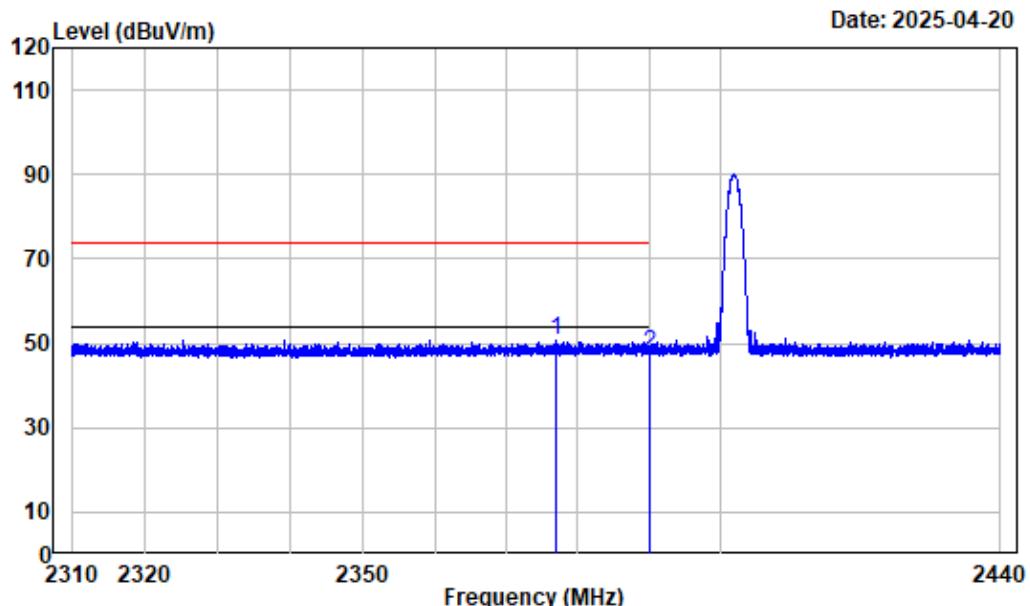
Above 1GHz:

Frequency (MHz)	Reading (dB μ V)	PK/Ave	Polar (H/V)	Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
GFSK							
Low Channel							
4804	57.36	PK	H	-7.79	49.57	74	-24.43
4804	56.98	PK	V	-7.79	49.19	74	-24.81
Middle Channel							
4882	57.75	PK	H	-7.58	50.17	74	-23.83
4882	57.32	PK	V	-7.58	49.74	74	-24.26
High Channel							
4960	56.94	PK	H	-7.56	49.38	74	-24.62
4960	56.47	PK	V	-7.56	48.91	74	-25.09

Note:

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

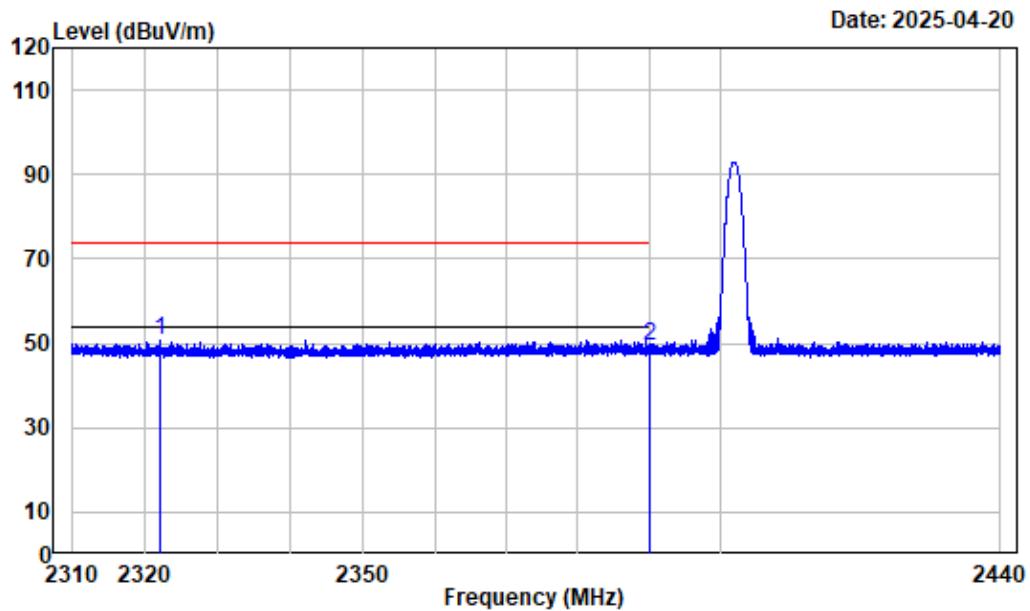
Corrected Amplitude = Factor + Reading


Margin = Corrected Amplitude - Limit

The other spurious emission which is in the noise floor level was not recorded.

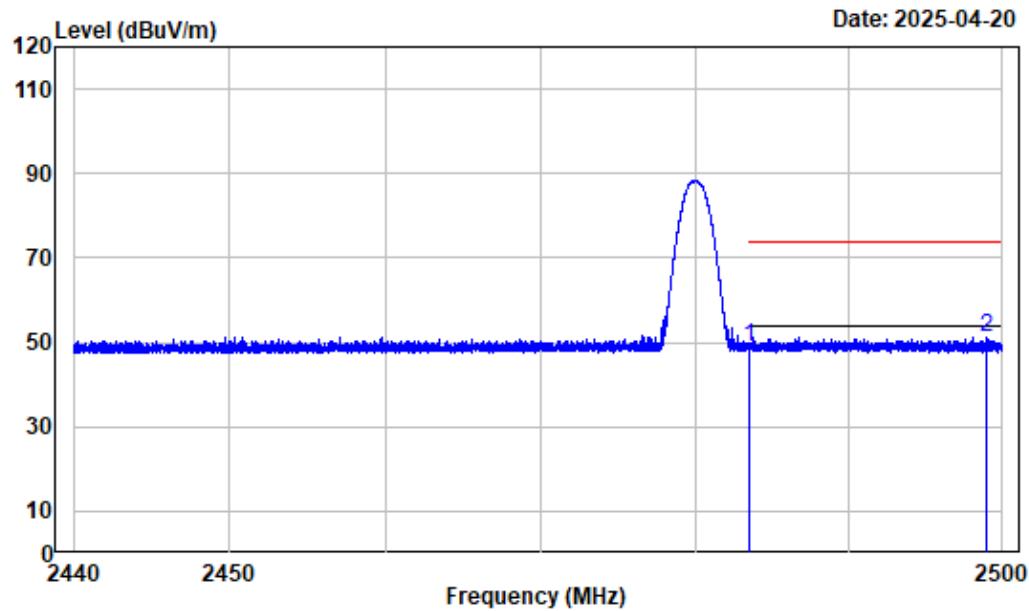
The test result of peak was less than the limit of average, so just peak values were recorded.

Band Edge Test plots**Test plots**


Left Band edge_Horizontal

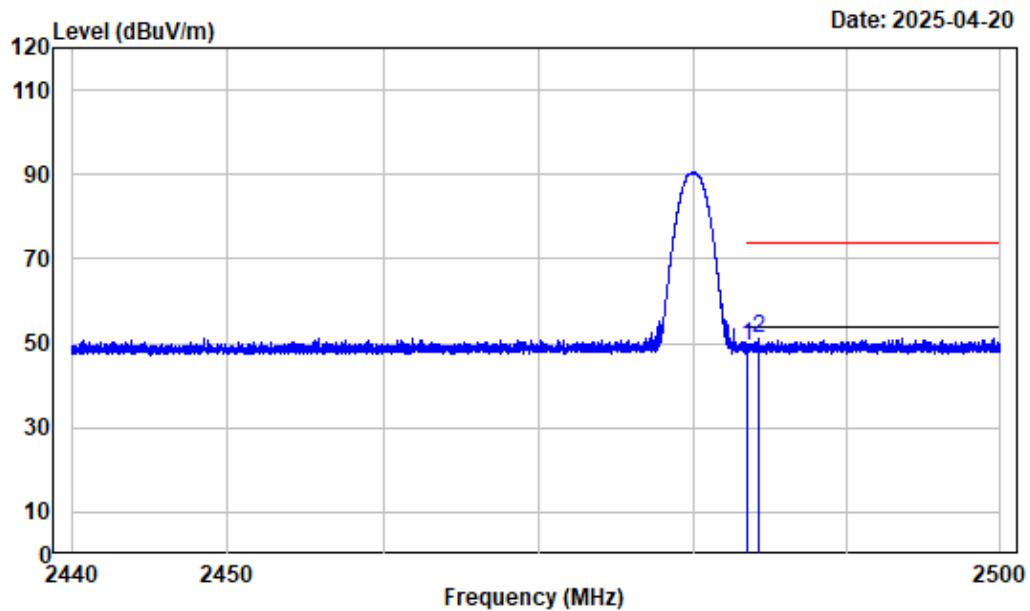
Condition : Horizontal
Project No. : 2501S51531E-RF
Tester : Zenos Qiao
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak
Note : BT-DH5-2402

Freq	Factor	Read		Limit		Over	Remark
		Level	Level	Line	Line		
MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	2376.958	-10.95	61.53	50.58	74.00	-23.42	Peak
2	2390.000	-10.98	58.66	47.68	74.00	-26.32	Peak


Left Band edge_Verical

Condition : Vertical
Project No. : 2501S51531E-RF
Tester : Zenos Qiao
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak
Note : BT-DH5-2402

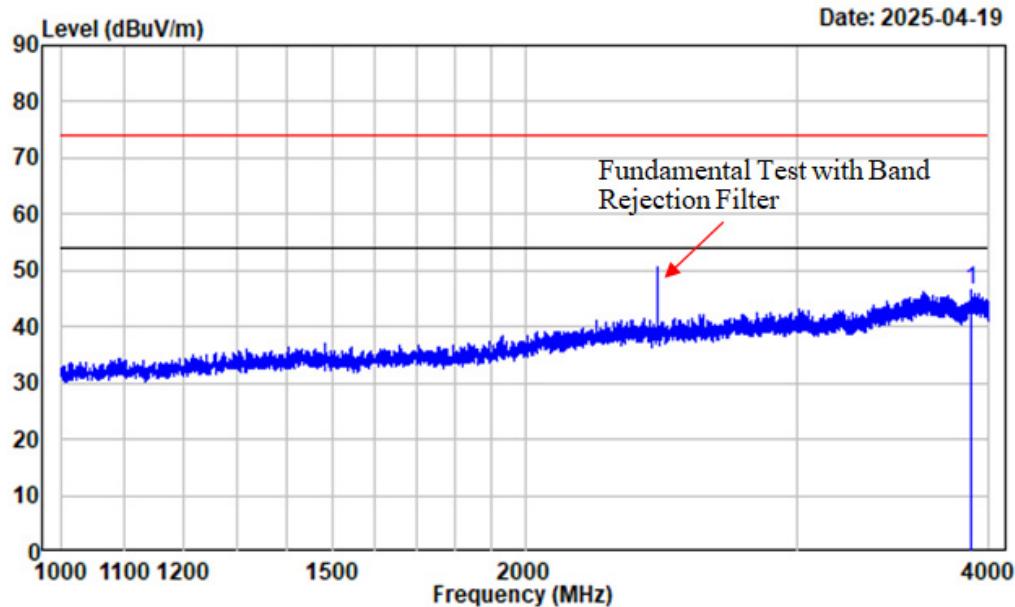
Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dB _{uV}	dB _{uV/m}		
1	2322.010	-10.81	61.50	50.69	74.00	-23.31	Peak
2	2390.000	-10.98	60.45	49.47	74.00	-24.53	Peak


Right Band edge_Horizontal_Peak

Condition : Horizontal
Project No. : 2501S51531E-RF
Tester : Zenos Qiao
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak
Note : BT-DH5-2480

Freq	Factor	Read	Limit	Over	Remark	
		Level	Level	Line		
MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	59.78	48.81	74.00	-25.19 Peak
2	2499.017	-11.00	62.32	51.32	74.00	-22.68 Peak

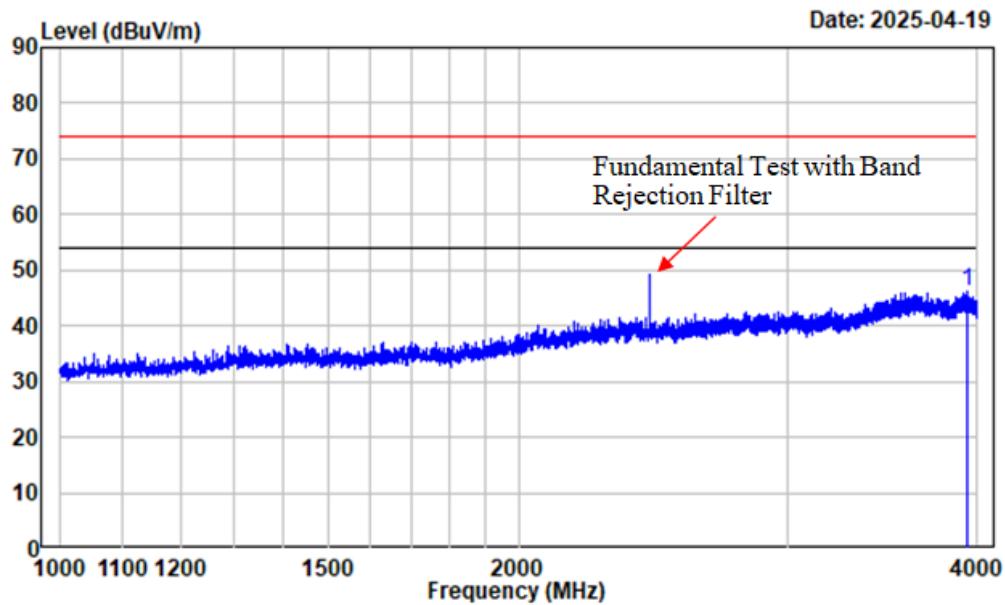
Right Band edge_Vertical_Peak



Condition : Vertical
Project No. : 2501S51531E-RF
Tester : Zenos Qiao
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak
Note : BT-DH5-2480

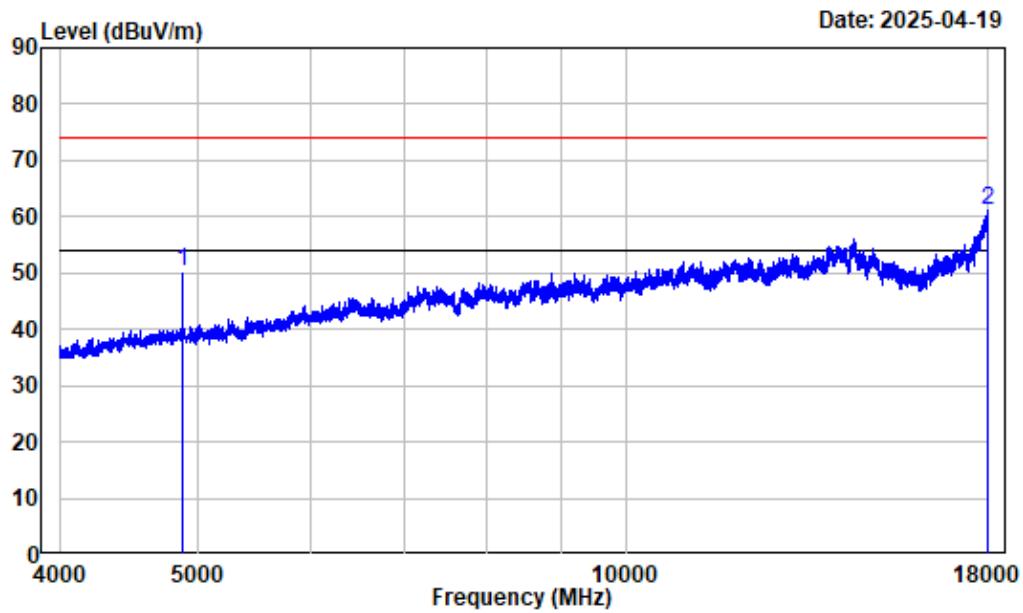
Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m		
1	2483.500	-10.97	60.33	49.36	74.00	-24.64	Peak
2	2484.248	-10.97	62.15	51.18	74.00	-22.82	Peak

Listed with the worst harmonic margin test plot


1-4GHz_Horizontal_DH5_2441MHz

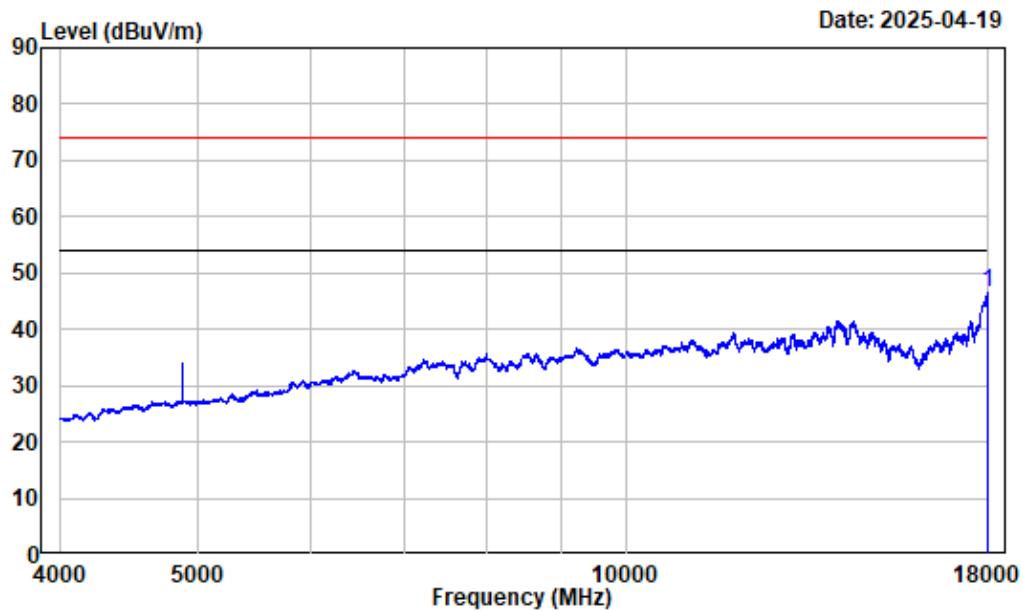
Condition : Horizontal
Project No. : 2501S51531E-RF
Tester : Zenos Qiao
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak
Note : BT-DH5-2441

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dB _u V	dB _u V/m	dB _u V/m	
1	3898.362	-9.84	56.43	46.59	74.00	-27.41	Peak


1-4GHz_Vertical_DH5_2441MHz

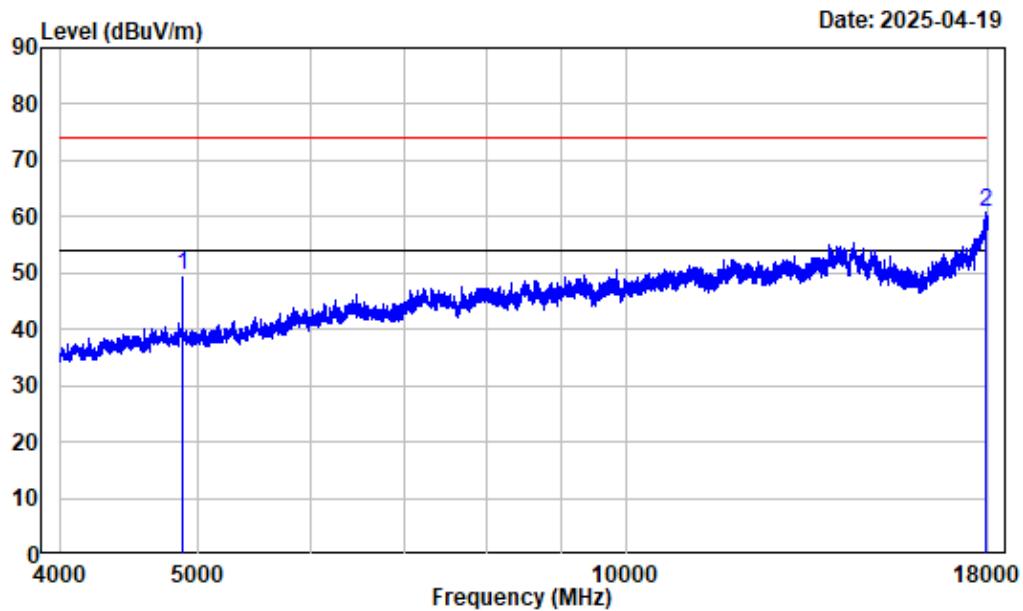
Condition : Vertical
Project No. : 2501S51531E-RF
Tester : Zenos Qiao
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak
Note : BT-DH5-2441

Freq	Factor	Read	Limit	Over	Remark
		Level	Level	Line	
1	3943.743	-9.39	55.42	46.03	74.00 -27.97 Peak


4-18GHz_Horizontal_Peak_DH5_2441MHz

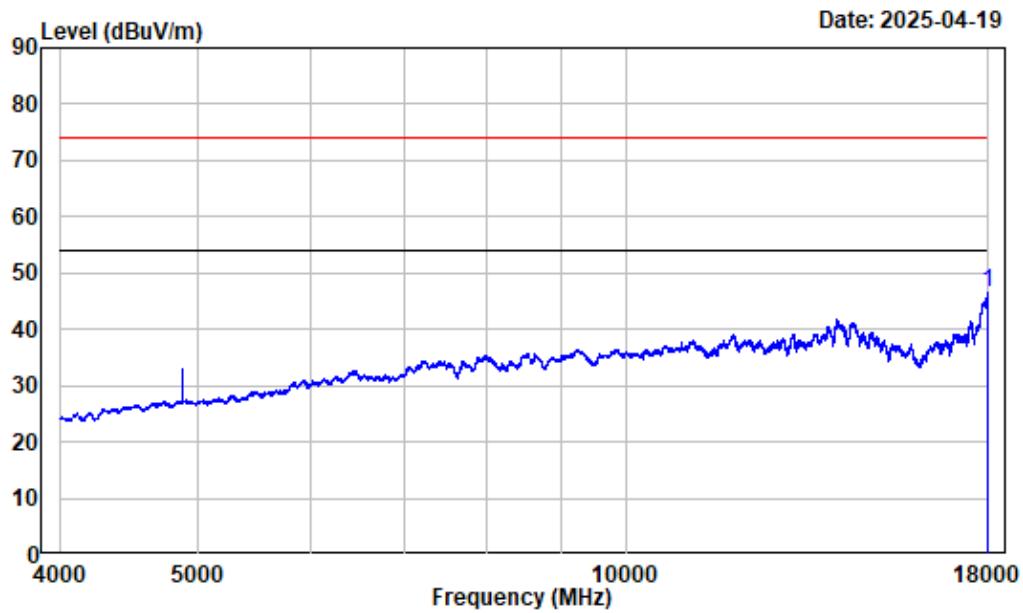
Condition : Horizontal
Project No. : 2501S51531E-RF
Tester : Zenos Qiao
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak
Note : BT-DH5-2441

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dB _{uV}	dB _{uV/m}		
1	4882.000	-7.58	57.75	50.17	74.00	-23.83	Peak
2	17980.750	13.11	48.16	61.27	74.00	-12.73	Peak


4-18GHz_Horizontal_Average_DH5_2441MHz

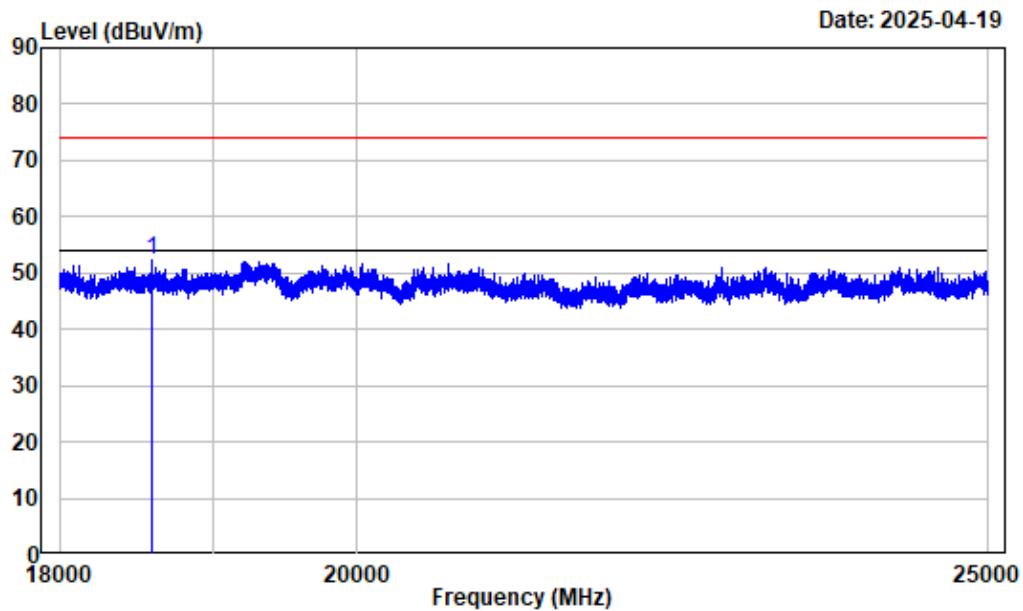
Condition : Horizontal
Project No. : 2501S51531E-RF
Tester : Zenos Qiao
Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak
Note : BT-DH5-2441

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m		
1	17998.250	13.19	33.49	46.68	54.00	-7.32	Average


4-18GHz_Vertical_Peak_DH5_2441MHz

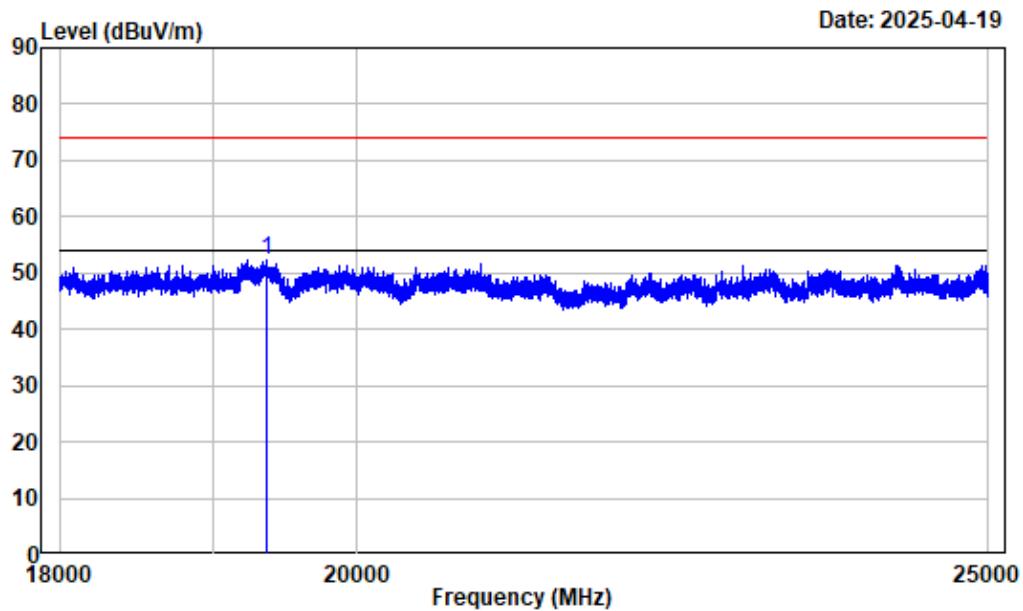
Condition : Vertical
Project No. : 2501S51531E-RF
Tester : Zenos Qiao
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak
Note : BT-DH5-2441

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dB _{uV}	dB _{uV/m}		
1	4882.000	-7.58	57.32	49.74	74.00	-24.26	Peak
2	17938.740	12.89	47.84	60.73	74.00	-13.27	Peak


4-18GHz_Vertical_Average_DH5_2441MHz

Condition : Vertical
Project No. : 2501S51531E-RF
Tester : Zenos Qiao
Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak
Note : BT-DH5-2441

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m		
1	17997.880	13.19	33.35	46.54	54.00	-7.46	Average


18-25GHz_Horizontal_DH5_2441MHz

Condition : Horizontal
Project No. : 2501S51531E-RF
Tester : Zenos Qiao
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak
Note : BT-DH5-2441

Freq	Factor	Read		Limit		Over	Remark
		Level	Level	Line	Line		
MHz	dB/m	dB _{uV}	dB _{uV/m}	dB _{uV/m}	dB		
1 18595.950	14.68	37.71	52.39	74.00	-21.61	peak	

18-25GHz_Vertical_DH5_2441MHz

Condition : Vertical
Project No. : 2501S51531E-RF
Tester : Zenos Qiao
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak
Note : BT-DH5-2441

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dB _{UV}	dB _{UV} /m		
1	19366.040	15.44	36.90	52.34	74.00	-21.66	peak

RF Conducted data

Please refer to Annex "Appendix J" for detail test data.

RF EXPOSURE EVALUATION

RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance v06.

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g extremity SAR, where}$

1. $f(\text{GHz})$ is the RF channel transmit frequency in GHz.
2. Power and distance are rounded to the nearest mW and mm before calculation.
3. The result is rounded to one decimal place for comparison.
4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

For worst case:

Mode	Frequency (MHz)	Max tune-up conducted power [#] (dBm)	Max tune-up conducted power [#] (mW)	Distance (mm)	Calculated value	Threshold (1-g SAR)	SAR Test Exclusion
BT	2402-2480	2.0	1.58	5	0.5	3	Yes

Result: Compliant

SAR EXEMPTION LIMITS

Applicable Standard

According to RSS-102 Issue 6 § (6.3), Devices operating at or below the applicable output power levels (adjusted for tune-up tolerance) specified in table 11, based on the separation distance, are exempt from SAR evaluation. The separation distance, defined as the distance between the user and/or bystander and the antenna and/or radiating element of the device or the outer surface of the device, shall be less than or equal to 20 cm for these exemption limits to apply.

Table 11: Power limits for exemption from routine SAR evaluation based on the separation distance

Frequency (MHz)	≤ 5 mm (mW)	10 mm (mW)	15 mm (mW)	20 mm (mW)	25 mm (mW)	30 mm (mW)	35 mm (mW)	40 mm (mW)	45 mm (mW)	> 50 mm (mW)
≤ 300	45	116	139	163	189	216	246	280	319	362
450	32	71	87	104	124	147	175	208	248	296
835	21	32	41	54	72	96	129	172	228	298
1900	6	10	18	33	57	92	138	194	257	323
2450	3	7	16	32	56	89	128	170	209	245
3500	2	6	15	29	50	72	94	114	134	158
5800	1	5	13	23	32	41	54	74	102	128

The exemption limits in table 11 Table 11 are based on measurements and simulations of half-wave dipole antennas at separation distances of 5 mm to 50 mm from a flat phantom, which provides a SAR value of approximately 0.4 W/kg for 1 g of tissue.

For limb-worn devices where the 10 gram of tissue applies, the exemption limits for routine evaluation in table 11 are multiplied by a factor of 2.5.

For controlled-use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in table 11 Table 11 are multiplied by a factor of 5.

When the operating frequency of the device is between two frequencies located in table 11, linear interpolation shall be applied for the applicable separation distance. If the separation distance of the device is between two distances located in table 11, linear interpolation may be applied for the applicable frequency. Alternatively, the limit corresponding to the smaller distance may be employed. For example, in case of a 7 mm separation distance, either use the exception value for a 5 mm separation distance or interpolate between the limits corresponding to 5 mm and 10 mm separation distances.

For implanted medical devices, the exemption limit for routine SAR evaluation is set at an output power of 1 mW, regardless of frequency.

The SAR levels from exempted transmitters shall be included in the compliance assessment and the determination of the TER. Detailed guidance is included in sections 7.1.8 and 8.2.2.1.

Test Result:

Mode	Frequency	Gain [#]	Max tune-up conducted power [#]	Max tune-up EIRP [#]		Distance (mm)	Exemption Limit	SAR Evaluation Exemption
	(MHz)	(dBi)	(dBm)	(dBm)	(mW)			
BT	2402-2480	0.29	2.0	2.29	1.69	5	2.97	Yes

Note 1: (2480-2450)/(3500-2450)= (3-P)/(3-2), the exemption limit of 2480MHz is P= 2.97mW

Note 2: The max tune-up conducted power[#] and antenna gain[#] were declared by the applicant

Compliant

EUT PHOTOGRAPHS

Please refer to the attachment 2501S51531E-RF External photo and 2501S51531E-RF Internal photo.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2501S51531E-RFA Test Setup photo.

******* END OF REPORT *******