

RF Test Report

FCC ID: 2AOWK-5012

Test Report No.: RF250414001-01-001
Product(s) Name: Smart Phone
Model(s): GQ5012, Armor 29 Pro, Armor 29 Ultra, Armor 29, Armor 29T Ultra, Armor 29T Pro, Armor 29 Lite, Armor 29s, Armor 29s Pro
Brand Name: ulefone
Applicant: Shenzhen Gotron Electronic CO.,LTD.
Address: 7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China
Receipt Date: 2025.04.14
Test Date: 2025.04.26~2025.04.24
Issued Date: 2025.04.28
Standards: 47 CFR FCC Part 2
47 CFR FCC Part 27
ANSI C63.26-2015
ANSI/TIA/EIA-603-E-2016
FCC KDB 971168 D01 Power Meas License Digital Systems v03r01
Testing Laboratory: Shenzhen Haiyun Standard Technical Co., Ltd.

Prepared By:	Checked By:	Approved By:	
Jason Huang	Black Ding	Tim Zhang	
Jason Huang	Black Ding	Tim Zhang	

Table of Contents

REPORT ISSUED HISTORY	4
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
1.3 TEST ENVIRONMENT CONDITIONS	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF SUPPORT UNITS	8
3 . TEST RESULT	9
3.1 OUTPUT POWER MEASUREMENT	9
3.1.1 LIMIT	9
3.1.2 TEST PROCEDURE	9
3.1.3 TEST SETUP LAYOUT	9
3.1.4 TEST DEVIATION	9
3.1.5 TEST RESULTS	9
3.2 RADIATED SPURIOUS EMISSIONS MEASUREMENT	10
3.2.1 LIMIT	10
3.2.2 TEST PROCEDURES	10
3.2.3 TEST SETUP LAYOUT	11
3.2.4 TEST RESULTS (9KHZ TO 30MHZ)	12
3.2.5 TEST RESULTS (30MHZ TO 1000MHZ)	12
3.2.6 TEST RESULTS (ABOVE 1000MHZ)	12
3.3 CONDUCTED SPURIOUS EMISSIONS	13
3.4 OCCUPIED BANDWIDTH	14
3.4.1 LIMIT	14
3.4.2 TEST PROCEDURES USED	14
3.4.3 TEST SETTINGS	14
3.4.4 TEST SETUP LAYOUT	14
3.4.5 TEST RESULTS	14
3.5 BAND EDGE MEASUREMENTS	15
3.5.1 TEST PROCEDURES USED	15
3.5.2 TEST SETTINGS	15
3.5.3 TEST SETUP LAYOUT	15
3.5.4 TEST RESULTS	15
3.6 PEAK TO AVERAGE RATIO	16
3.6.1 TEST PROCEDURES USED	16

Table of Contents

3.6.2 TEST SETTINGS	16
3.6.3 TEST SETUP LAYOUT	16
3.6.4 TEST RESULTS	16
3.7 FREQUENCY STABILITY	17
3.7.1 TIME PERIOD AND PROCEDURE:	17
3.7.2 TEST PROCEDURES USED	17
3.7.3 TEST SETUP LAYOUT	17
3.7.4 TEST RESULTS	17
4. LIST OF MEASUREMENT EQUIPMENTS	18
5. EUT TEST PHOTO	19
6. PHOTOGRAPHS OF EUT	20
APPENDIX B - RADIATED SPURIOUS EMISSIONS (9KHZ TO 30MHZ)	21
APPENDIX C - RADIATED SPURIOUS EMISSIONS (30MHZ TO 1GHZ)	22
APPENDIX D - RADIATED SPURIOUS EMISSIONS (ABOVE 1GHZ)	25

REPORT ISSUED HISTORY

Amendment Report Issue Date: 2025.04.28

- No additional attachment
- Additional attachments were issued following record

Attachment No.	Issue Date	Description

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC Part 2 & Part 27			
Standard(s) Section	Test Item	Judgment	Remark
2.1046 27.50(c) 27.50(d) 27.50(h) 27.50(j)	Output Power & Equivalent Isotropic Radiated Power & Equivalent Radiated Power	PASS	-----
2.1049	Occupied Bandwidth	PASS	-----
2.1051 27.53	Conducted Spurious Emissions	PASS	-----
2.1053 27.53	Radiated Spurious Emissions	PASS	-----
2.1051 27.53(h) 27.53(g) 27.53(m)	Band Edge Measurements	PASS	-----
22.913(d) 27.50(d) 27.50(j)	Peak To Average Ratio	PASS	-----
2.1055 27.54	Frequency Stability	PASS	-----

Note:

(1) "N/A" denotes test is not applicable in this test report.

1.1 TEST FACILITY

Company:	Shenzhen Haiyun Standard Technical CO., Ltd.
Address:	No. 110, 111, 112, 113, 115, 116, Block B, Jinyuan business Building, No. 302, Xixiang Avenue, Laodong Community, Xixiang Street, Bao'an District, Shenzhen P.R.C.
CNAS Registration Number:	CNAS L18252
CAB identifier:	CN0145
Company Number	30427
A2LA Certificate Number:	6823.01
Telephone:	0755-26024411

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))
The TIRT measurement uncertainty as below table:

Uncertainty	
Parameter	Uncertainty
Occupied Channel Bandwidth	±102kHz
RF power conducted	±0.377dB
Power Spectral Density	±0.743dB
Conducted Spurious Emission	±1.328dB
Conducted emission(9kHz~30MHz) AC main	±2.68dB
Radiated emission(9kHz~30MHz)	±2.74dB
Radiated emission (30MHz~1GHz)	±4.22dB
Radiated emission (1GHz~18GHz)	±5.06dB
Dwell time	±0.19%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
Radiated Spurious Emissions (9 kHz to 30 MHz)	24.5°C	52%	AC 120V/60Hz	Albert Fan
Radiated Spurious Emissions (30 MHz to 1000 MHz)	24.5°C	52%	AC 120V/60Hz	Albert Fan
Radiated Spurious Emissions (Above 1000 MHz)	24.5°C	52%	AC 120V/60Hz	Albert Fan
Output Power & ERP & EIRP	24.3°C	49%	DC 7.74V	Albert Fan
Conducted Spurious Emissions	24.3°C	49%	DC 7.74V	Albert Fan
Occupied Bandwidth	24.3°C	49%	DC 7.74V	Albert Fan
Band Edge Measurements	24.3°C	49%	DC 7.74V	Albert Fan
Peak To Average Ratio	24.3°C	49%	DC 7.74V	Albert Fan
Frequency Stability	24.3°C	49%	DC 7.74V	Albert Fan

Note: adapter supply voltage AC 120V/60Hz.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Test sample no.	POC250414001-S001
Equipment	Smart Phone
Brand Name	ulefone
Test Model	GQ5012
Product Model	GQ5012, Armor 29 Pro, Armor 29 Ultra, Armor 29, Armor 29T Ultra, Armor 29T Pro, Armor 29 Lite, Armor 29s, Armor 29s Pro
Model difference	Only the model name is different.
Power Source	DC 7.74V from battery or DC5V from adapter
Adapter information	Model: HJ-PD120W-US Input: 100-240V~, 50/60Hz 1.8A Output: 5.0V---3.0A 15.0W OR 9.0V---3.0A 27.0W OR 12.0V---3.0A 36.0W OR 15.0V---3.0A 45.0W OR 20.0V---5.0A 100.0W MAX PPS: 3.6V-20.0V---6.0A 120.0W MAX
Frequency Range	5G NR N66: 1710 ~ 1780MHz (TX); 2110 ~ 2180MHz (RX) 5G NR N71: 663 ~ 698MHz (TX); 617 ~ 652MHz (RX)
Bandwidth	5G NR N66: 5MHz / 10MHz / 15MHz / 20MHz / 40MHz 5G NR N77: 5MHz / 10MHz / 15MHz / 20MHz
NR Mode	SA: N66/N71
Subcarrier bandwidth	N66: 15KHz/30KHz N71: 15KHz
Type of Modulation	CP-OFDM: QPSK/16QAM/64QAM/256QAM DFT-s-OFDM: PI/2 BPSK/ QPSK/ 16QAM/ 64QAM/256QAM
Antenna gain	NR-N66: 2.18 dBi NR-N71: 0.67 dBi

NR-N66				
Bandwidth	BPSK		QPSK	
	Max EIRP(W)	Emission Designator	Max EIRP(W)	Emission Designator
5	0.246	4M48G7D	0.251	4M48G7D
10	0.248	9M19G7D	0.248	9M28G7D
15	0.249	14M0G7D	0.249	14M1G7D
20	0.250	18M7G7D	0.249	18M9G7D
40	0.252	38M5G7D	0.254	38M5G7D
	16QAM		64QAM	
5	0.205	4M48W7D	0.148	4M48W7D
10	0.207	9M28W7D	0.149	9M26W7D
15	0.210	14M1W7D	0.153	14M1W7D
20	0.246	18M9W7D	0.151	18M9W7D
40	0.212	38M5W7D	0.152	38M5W7D
	256QAM		/	
5	0.091	4M48W7D	/	/
10	0.088	9M26W7D	/	/
15	0.089	14M1W7D	/	/
20	0.090	18M9W7D	/	/
40	0.089	38M5W7D	/	/

NR-N71				
Bandwidth	BPSK		QPSK	
	Max EIRP(W)	Emission Designator	Max EIRP(W)	Emission Designator
5	0.189	4M48G7D	0.188	4M48G7D
10	0.185	9M23G7D	0.186	9M28G7D
15	0.186	14M0G7D	0.186	14M1G7D
20	0.190	18M8G7D	0.188	18M9G7D
	16QAM		64QAM	
5	0.149	4M48W7D	0.106	4M48W7D
10	0.151	9M28W7D	0.107	9M26W7D
15	0.150	14M1W7D	0.109	14M1W7D
20	0.150	18M9W7D	0.107	18M9W7D
	256QAM		/	
5	0.067	4M46W7D	/	/
10	0.066	9M26W7D	/	/
15	0.066	14M1W7D	/	/
20	0.066	18M9W7D	/	/

2.2 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support Equipment				
No.	Equipment	Manufacturer	Model Name	Remarks
1	SIM Card	/	Anli 5G Card	/

3. TEST RESULT

3.1 OUTPUT POWER MEASUREMENT

3.1.1 LIMIT

Mobile / Portable station are limited to 1 watts e.i.r.p. (Part 27.50)

Mobile / Portable station are limited to 2 watts e.i.r.p. (Part 27.50)

Mobile / Portable station are limited to 3 watts e.r.p (Part 27.50)

3.1.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 5.

EIRP:

$EIRP = \text{Output Power} + \text{Antennal gain}$

ERP:

$ERP = EIRP - 2.15$

Output Power:

The EUT was set up for the maximum power with 5G NR link data modulation and link up with simulator.

Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

3.1.3 TEST SETUP LAYOUT

Output Power Measurement

3.1.4 TEST DEVIATION

No deviation.

3.1.5 TEST RESULTS

Please refer to the attachments Appendix A.1-N66/ Appendix A.2-N71.

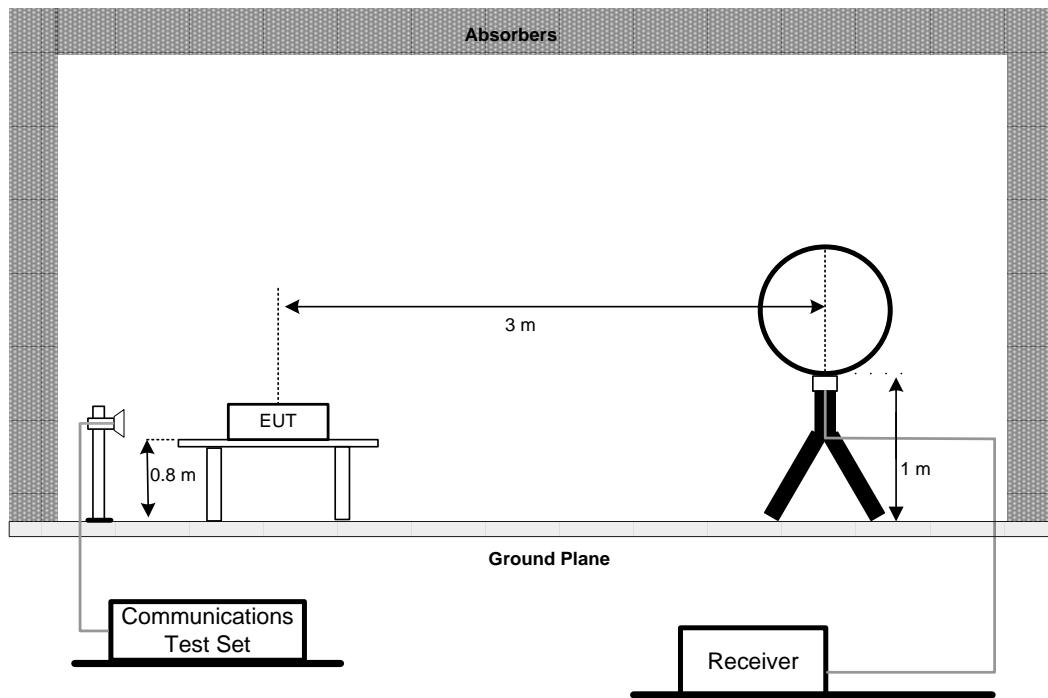
3.2 RADIATED SPURIOUS EMISSIONS MEASUREMENT

3.2.1 LIMIT

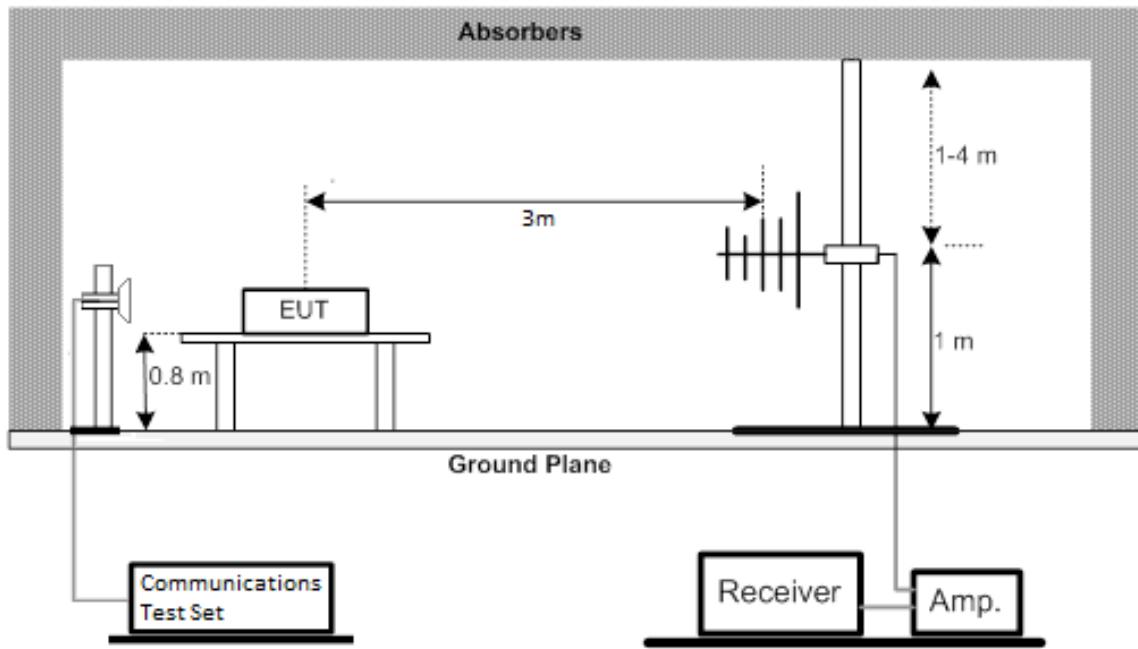
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit equal to -13dBm.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $55 + 10 \log(P)$ dB. The emission limit equal to -25dBm.

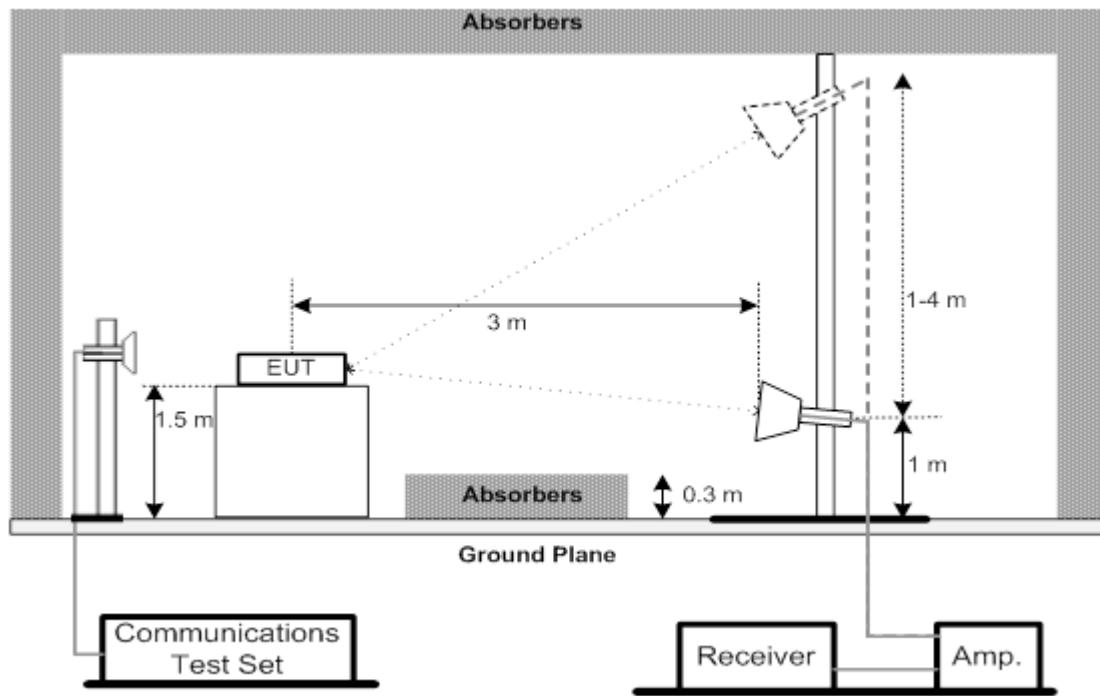
3.2.2 TEST PROCEDURES


The testing follows FCC KDB 971168 v03r01 Section 6.2.

1. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
2. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
3. EIRP = Output power level of S.G – TX cable loss + Antenna gain of substitution horn.
4. ERP can be calculated form EIRP by subtracting the gain of dipole, $ERP = EIRP - 2.15\text{dBi}$.
5. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.



3.2.3 TEST SETUP LAYOUT


Below 30MHz

30MHz to 1GHz

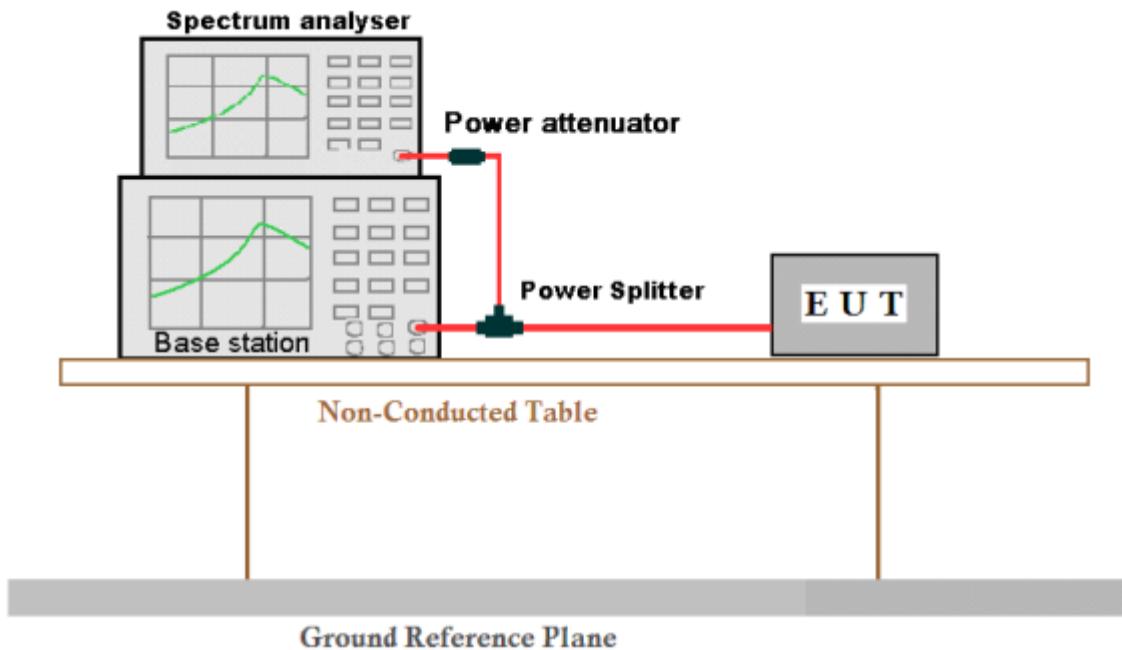
Above 1GHz

3.2.4 TEST RESULTS (9KHZ TO 30MHZ)

Please refer to the APPENDIX B.

3.2.5 TEST RESULTS (30MHZ TO 1000MHZ)

Please refer to the APPENDIX C.


3.2.6 TEST RESULTS (ABOVE 1000MHZ)

Please refer to the APPENDIX D.

Note: We tested all modes and only the worst case was recorded.

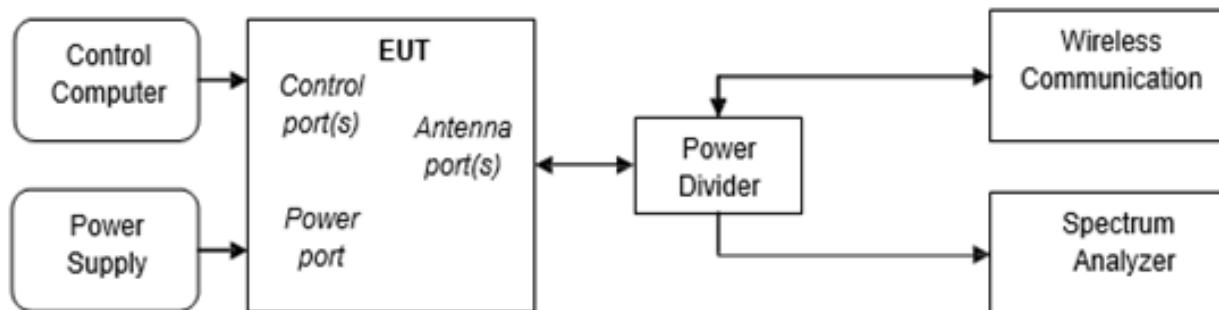
3.3 CONDUCTED SPURIOUS EMISSIONS

The transmitter output was connected to a calibrated coaxial cable, attenuator and power meter, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The power output at the transmitter antenna port was determined by adding the value of the cable insertion loss to the power reading. The tests were performed at three frequencies (low channel, middle channel and high channel) and on the highest power levels, which can be setup on the transmitters.

3.4 OCCUPIED BANDWIDTH

3.4.1 LIMIT

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1 percent of the selected span as is possible without being below 1 percent. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 percent of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth.


3.4.2 TEST PROCEDURES USED

KDB 971168 v02r02-Section 4.2

3.4.3 TEST SETTINGS

1. SET RBW=1-5% of OBW
2. SET VBW $\geq 3 \times$ RBW
3. Detector: Peak
4. Trace mode= max hold.
5. Sweep= auto couple
6. Steps 1-5 were repeated after it is stable

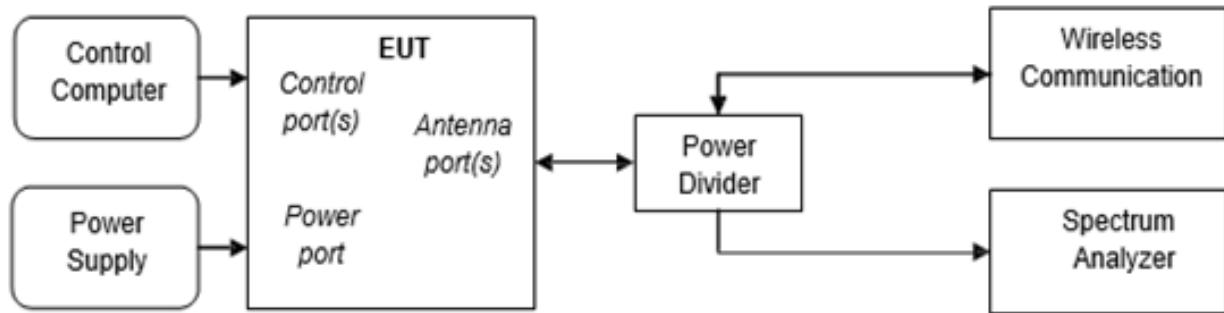
3.4.4 TEST SETUP LAYOUT

3.4.5 TEST RESULTS

Please refer to the attachments Appendix A.1-N66/ Appendix A.2-N71.

3.5 BAND EDGE MEASUREMENTS

The 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission power must be attenuated below the transmitting power (P) by a factor of at least $43+10\log_{10}P$ dB.


3.5.1 TEST PROCEDURES USED

KDB 971168 v02r02-Section 6.0

3.5.2 TEST SETTINGS

1. SET RBW $\geq 1\%$ of Emission BW.
2. SET VBW about three times of RBW
3. Detector: RMS
4. Trace mode= max hold.
5. Span= 2MHz

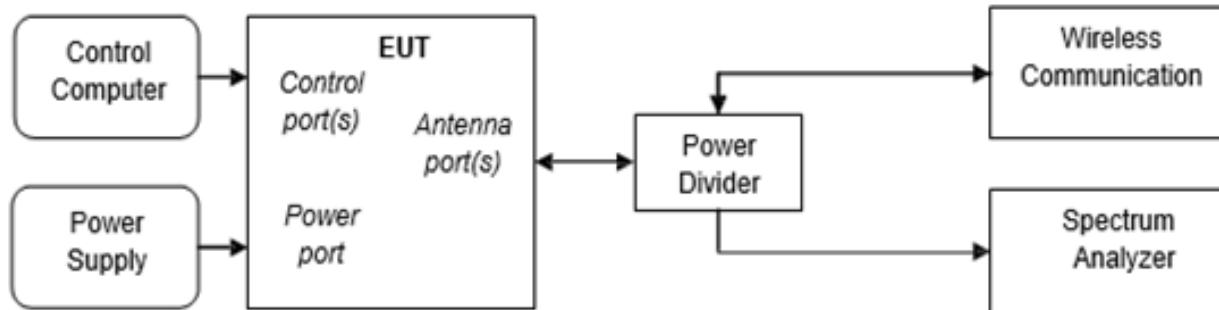
3.5.3 TEST SETUP LAYOUT

3.5.4 TEST RESULTS

Please refer to the attachments Appendix A.1-N66/ Appendix A.2-N71.

3.6 PEAK TO AVERAGE RATIO

A peak to average ratio measurement is performed at the conducted port of the EUT. For WCDMA signals, the spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level. For GSM signals, an average and a peak trace are used on a spectrum analyzer to determine the largest deviation between the average and the peak power of the EUT in a bandwidth greater than the emission bandwidth. The traces are generated with the spectrum analyzer set to zero span mode.


3.6.1 TEST PROCEDURES USED

KDB 971168 v02r02-Section 5.7.1

3.6.2 TEST SETTINGS

1. The signal analyzer's CCDF measurement profile enabled
2. Frequency= carrier center frequency
3. Measurement BW > EBW of signal
4. for continuous transmissions, set to 1ms
5. Record the maximum PAPR level associated with a probability of 0.1%.

3.6.3 TEST SETUP LAYOUT

3.6.4 TEST RESULTS

Please refer to the attachments Appendix A.1-N66/ Appendix A.2-N71.

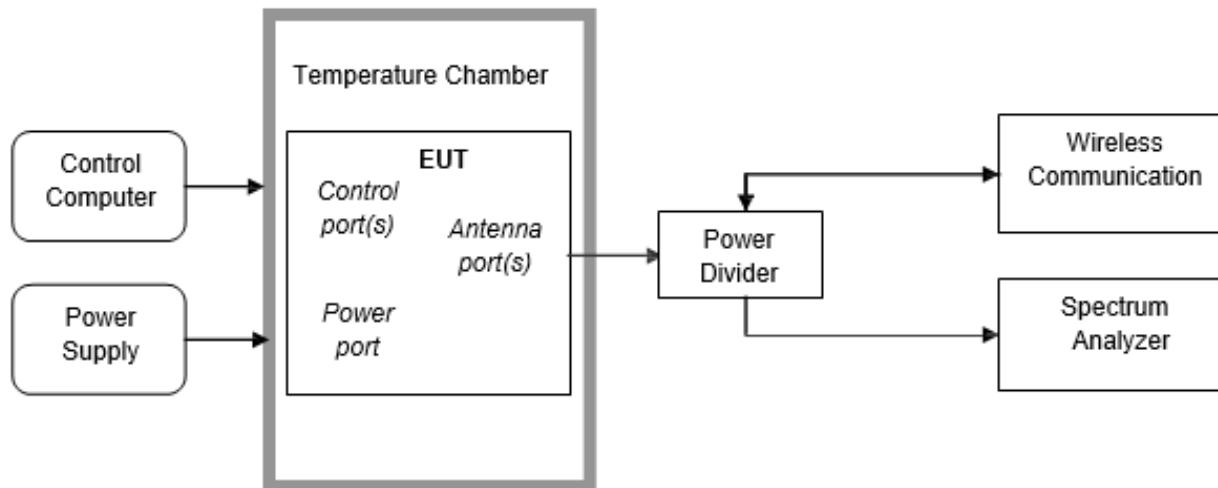
3.7 FREQUENCY STABILITY

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a. Temperature: The temperature is varied from -30°C to +65°C in 10°C increments using an environmental chamber.
- b. Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

3.7.1 TIME PERIOD AND PROCEDURE:


The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference). The equipment is turned on in a “standby” condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

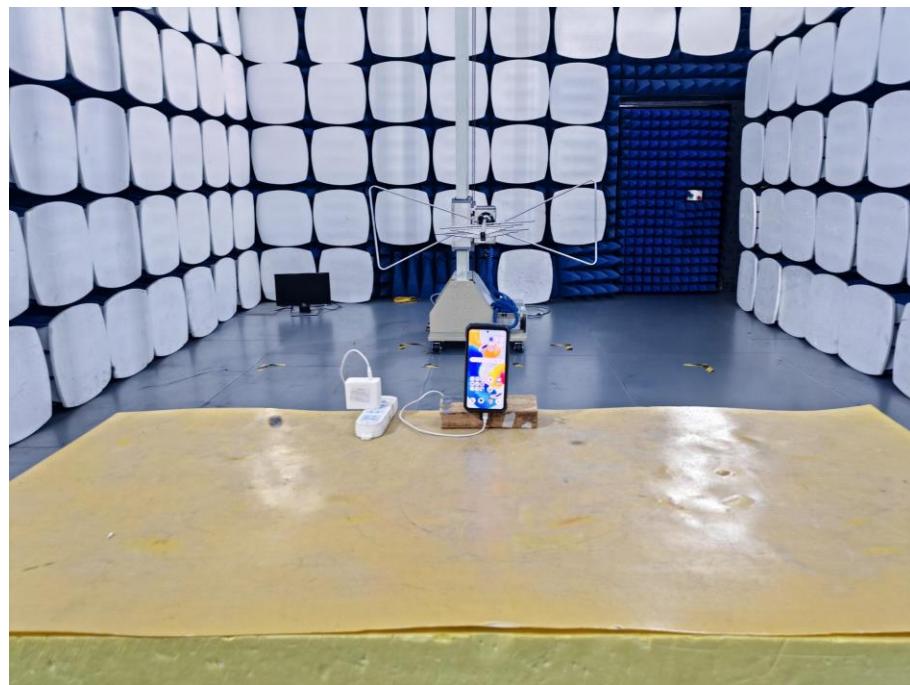
3.7.2 TEST PROCEDURES USED

ANSI/TIA-603-E-2016

3.7.3 TEST SETUP LAYOUT

3.7.4 TEST RESULTS

Please refer to the attachments Appendix A.1-N66/ Appendix A.2-N71.


4. LIST OF MEASUREMENT EQUIPMENTS

Radiated Emission							
No.	Name of Equipment	Manufacturer	Model Number	Serial Number	Inventory No.	Last Calibration	Due Calibration
1	Test receiver	Rohde&Schwarz	ESU	100184	JLE011	2025/3/1	2026/2/28
2	Log periodic antenna	Schwarzbeck	VULB 9168	1151	JLE012	2025/4/12	2026/4/11
3	Low frequency amplifier	/	LNA 0920N	2014	JLE023	2025/3/1	2026/2/28
4	High frequency amplifier	Schwarzbeck	BBV 9718	9718-284	JLE024	2025/3/1	2026/2/28
5	Horn Antenna	SCHWARZBECK	BBHA 9120 D	02670	JLE028	2025/4/12	2026/4/11
6	Temp&Humidity Recorder	Meideshi	JR900	/	JLE021	2025/4/15	2026/4/14
7	Horn Antenna	SCHWARZBECK	BBHA 9170	9170#685	JLE029	2024/7/15	2025/7/14
8	Loop Antenna	SCHWARZBECK	FMZB1519B	00029	JLE030	2024/7/15	2025/7/14
9	Broadband preamplifier	Schwarzbeck	BBV9721	9721-019	JLE025	2025/3/1	2026/2/28
10	Test software	Farad Technology Co., Ltd	EZ-EMC Ver.TW-03A2				

RF Conducted Emissions(5G NR test system)								
No.	Equipment	Manufacturer	Type No.	Serial No.	Inventory No.	Cal. date (yyyy/mm/dd)	Cal. Due date (yyyy/mm/dd)	
1	Signal Generator	Anritsu	MG3694C	#213104	JLE059	2025/4/14	2026/4/13	
2	Vector Signal Generator	Anritsu	MG3710E	6272323212	JLE060	2025/4/14	2026/4/13	
3	Signal Analyzer	Anritsu	MS2850A	6272347524	JLE061	2025/4/14	2026/4/13	
4	AR2000 Control Unit	Anritsu	AR2000	862200013 / 862200014	JLE062	2025/4/14	2026/4/13	
5	Radio Communication Analyzer	Anritsu	MT8821C	6272278400	JLE063	2025/4/14	2026/4/13	
6	Radio Communication Test Station	Anritsu	MT8000A	6272337398	JLE064	2025/4/14	2026/4/13	
7	Test software	Anritsu	UCTS	/				

5. EUT TEST PHOTO

Radiated Emissions Test Photos Below 1G

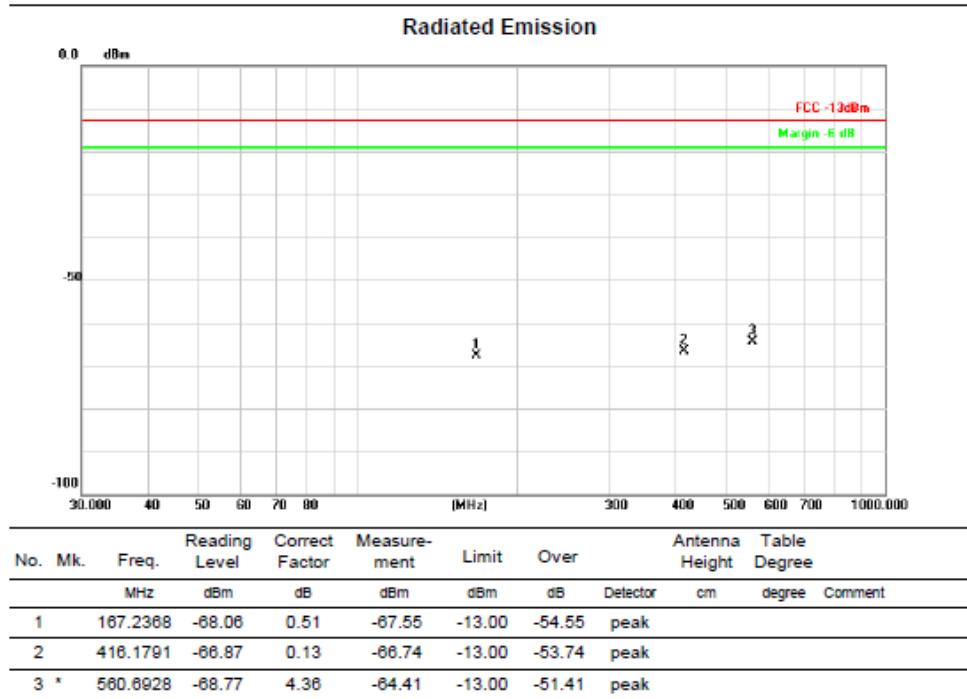
Above 1 GHz

6. PHOTOGRAPHS OF EUT

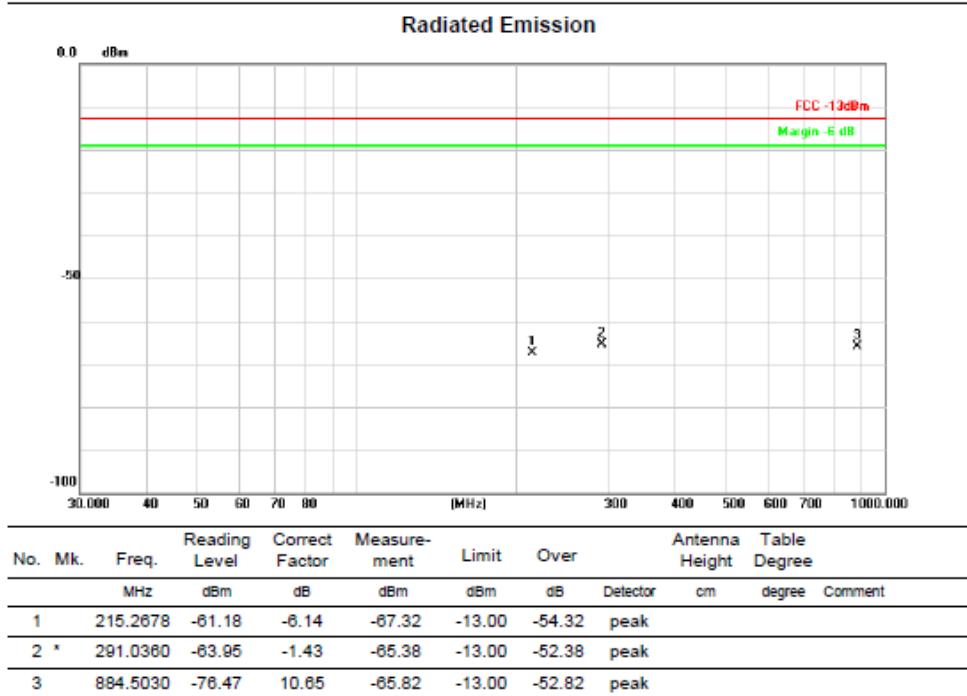
Please refer to Appendix-G Photographs of EUT.

APPENDIX B - RADIATED SPURIOUS EMISSIONS (9KHZ TO 30MHZ)

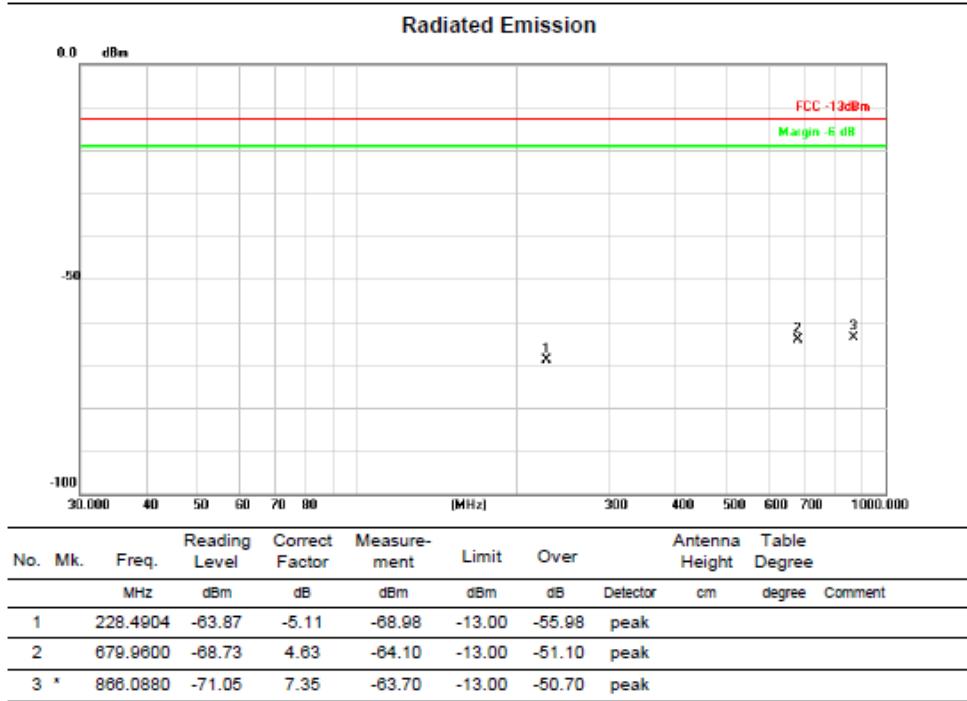
Radiated emission: 9KHz-30MHz

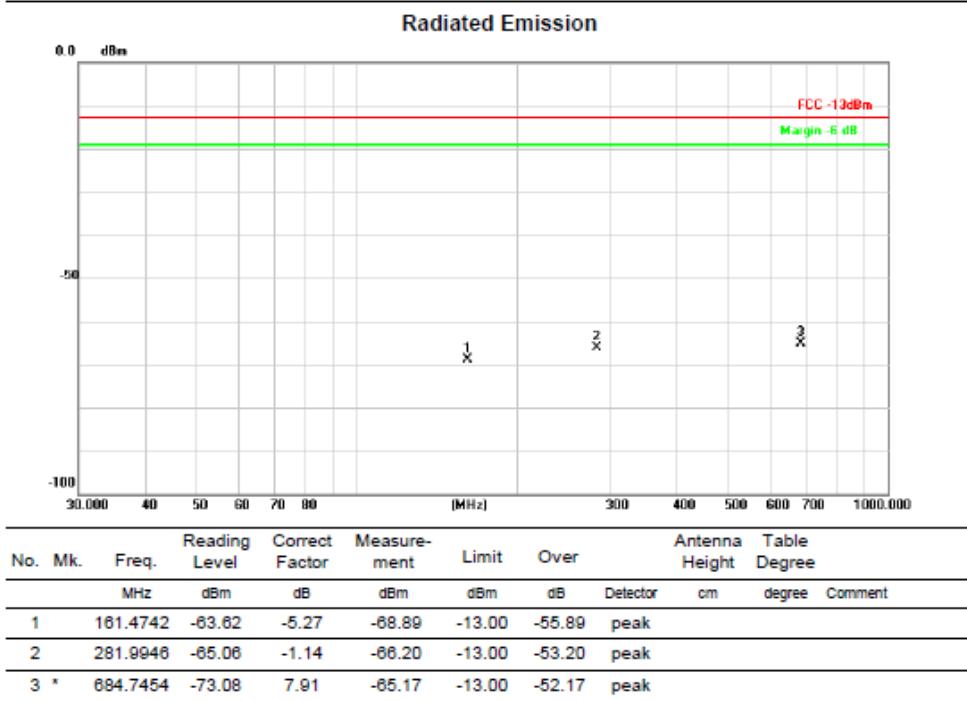

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.



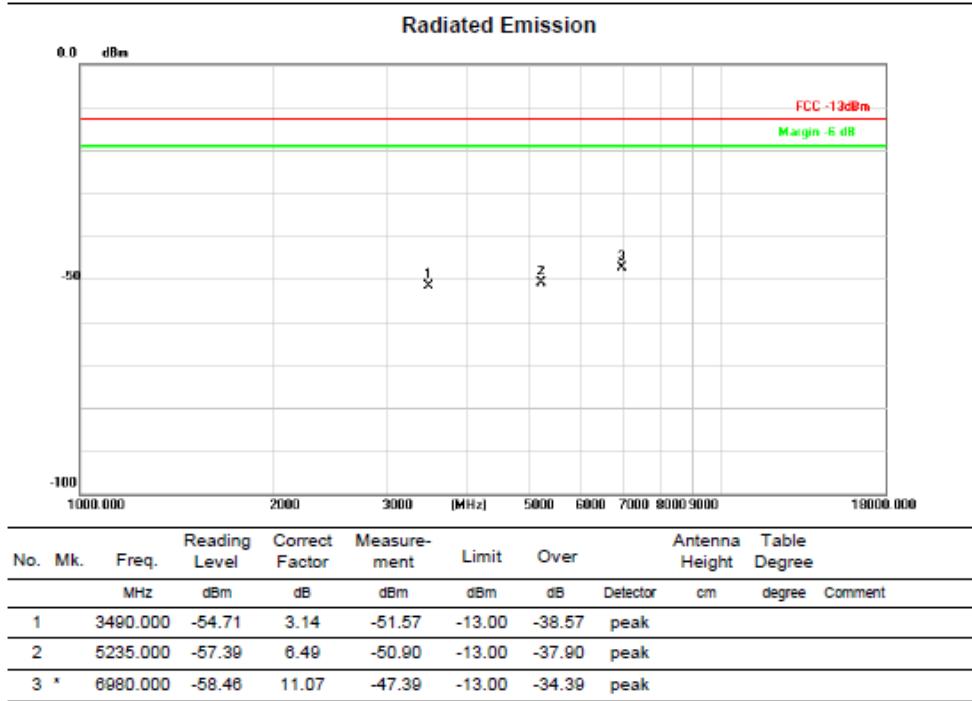
APPENDIX C - RADIATED SPURIOUS EMISSIONS (30MHZ TO 1GHZ)


Test Mode	5G NR N66_15KHz_5M_ TX Mid CH	Polarization	Vertical
-----------	-------------------------------	--------------	----------

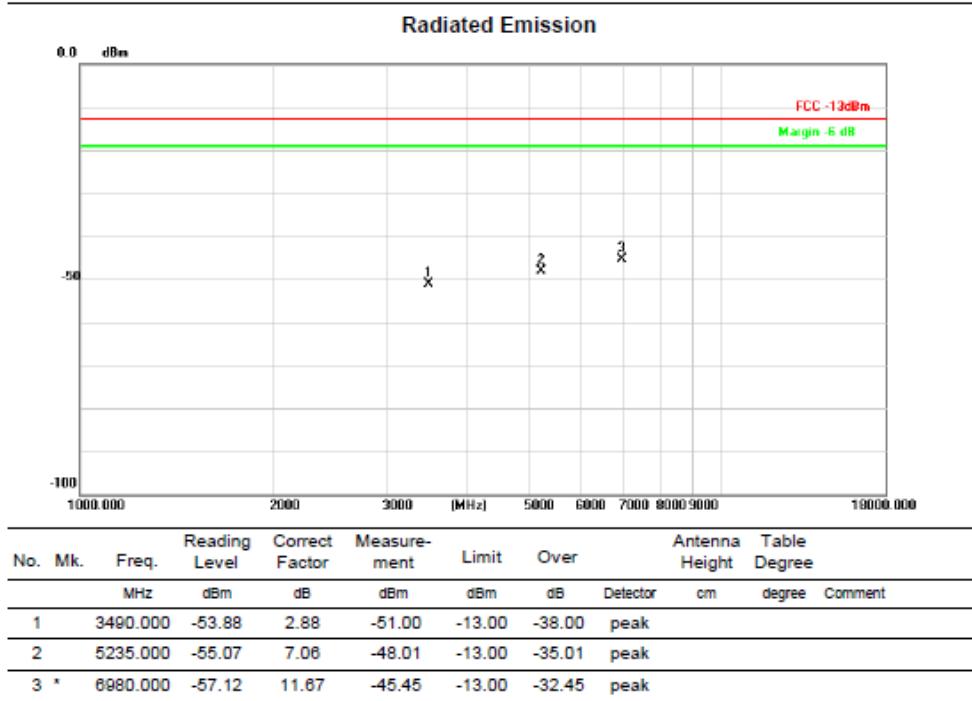

Test Mode	5G NR N66_15KHz_5M_ TX Mid CH	Polarization	Horizontal
-----------	-------------------------------	--------------	------------

Test Mode	5G NR N71_ TX Mid CH	Polarization	Vertical
-----------	----------------------	--------------	----------

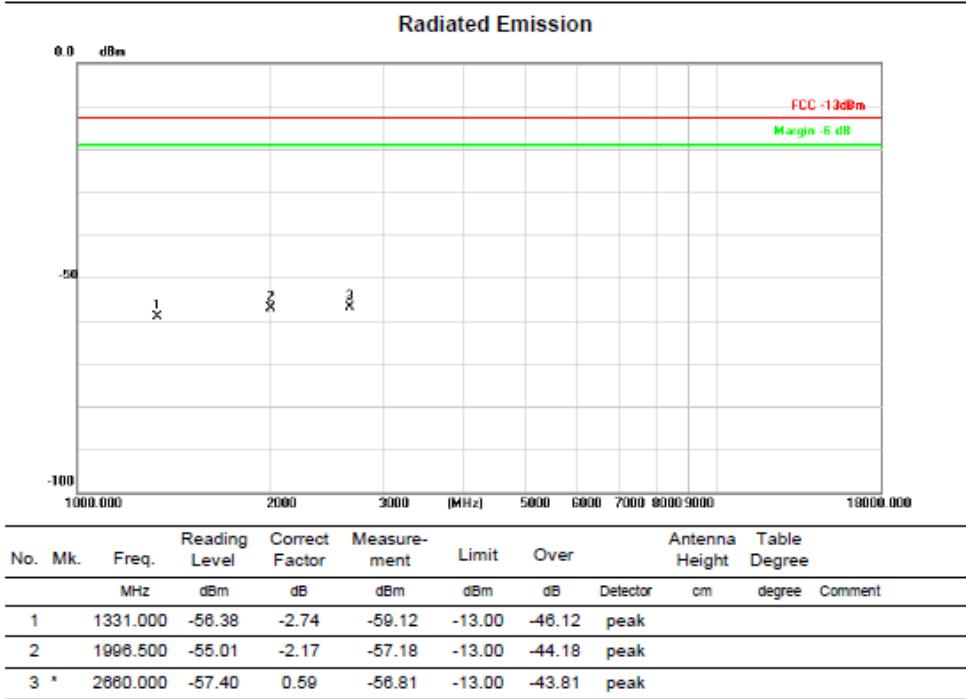
Test Mode	5G NR N71_ TX Mid CH	Polarization	Horizontal
-----------	----------------------	--------------	------------

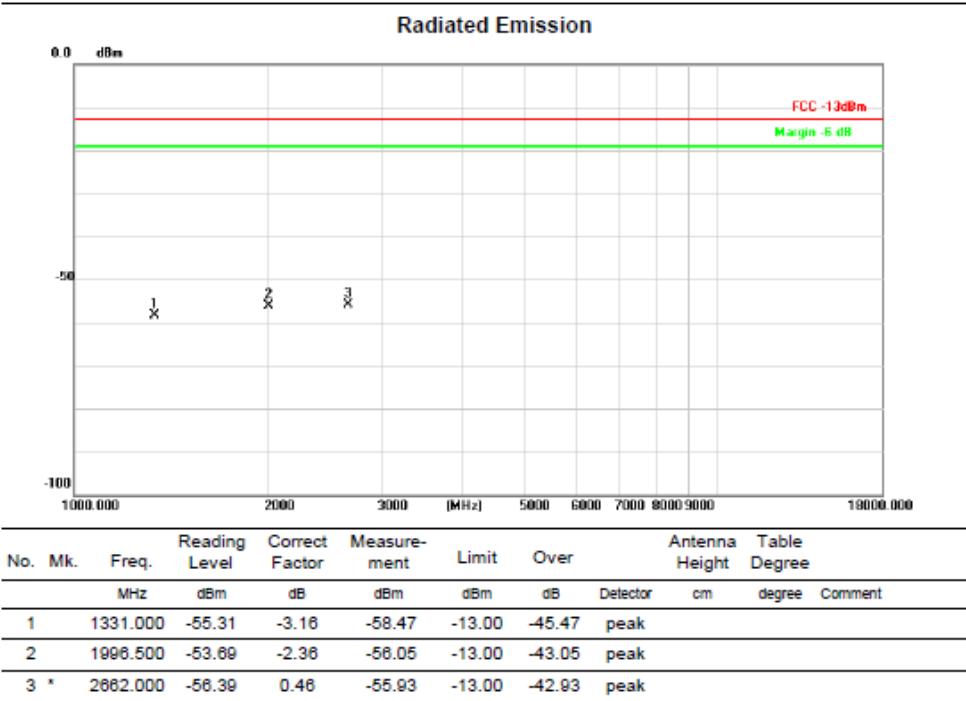

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.



APPENDIX D - RADIATED SPURIOUS EMISSIONS (ABOVE 1GHZ)


Test Mode	5G NR N66_ TX Mid CH	Polarization	Vertical
-----------	----------------------	--------------	----------


Test Mode	5G NR N66_ TX Mid CH	Polarization	Horizontal
-----------	----------------------	--------------	------------

Test Mode	5G NR N71_ TX Low CH	Polarization	Vertical
-----------	----------------------	--------------	----------

Test Mode	5G NR N71_ TX Low CH	Polarization	Horizontal
-----------	----------------------	--------------	------------

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

Statement

1. The report is invalid without the official seal or special seal of Shenzhen Haiyun Standard Technology Co., Ltd. (hereinafter referred to as the unit).
2. The report is invalid without the signature of the approver.
3. The report is invalid if altered arbitrarily.
4. The report shall not be partially copied without the written approval of the unit.
5. The reported test results are only valid for the tested samples.
6. If there is any objection to the test report, it shall be submitted to the test unit within 15 days from the date of receiving the report, and the overdue shall not be accepted.

Shenzhen Haiyun Standard Technology Co., Ltd.

Address: Room 110, 111, 112, 113, 115, 116, Block B, Jinyuan Business Building, No. 302, Xixiang Avenue, Labor Community, Xixiang Street, Baoan District, Shenzhen, China

Tel: 0755-26024411

Email: service@hy-lab.cn

(END OF REPORT)