

RADIO FREQUENCY EXPOSURE REPORT

FOR THE

Bluetooth to Cellular Hub / At-home patient monitoring
Model: M1-B1-USB-SIG-CSTM

Report No.: 107284-9

Date of issue: February 9, 2023

PREPARED FOR:

Signetik
3833 S 14th St
Lincoln, NE 68502

PREPARED BY:

S. Yamamoto
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services
CKC Laboratories, Inc.

Purpose:

To demonstrate compliance with United States RF Exposure requirements for Portable equipment (devices used ≤20cm from the body) with power output below exemption levels or Mobile equipment (devices used >20cm from the body) where Maximum Permissible Exposure (MPE) Calculations apply.

Device and Antenna Operating Configuration:

Device operating at maximum output power with continuous transmission of modulated data.

Method:

This equipment is evaluated in accordance with the guidelines set forth in 47 CFR 1.1310, KDB 447498 & ANSI C95.1 for the US.

Other Considerations:

Report considers stand-alone equipment configurations only. RF Exposure limits are calculated at the mid-point of each operating band.

Referenced Test Reports:

The following test reports were referenced in conjunction with this assessment:
107284-4

Decision Rule:

Outcome of RF exposure assessment is listed in the comment section(s) below as a binary statement for simple acceptance rule according to ILAC-G8 (2019).

RF Exposure Mobile Equipment Assessment
Power Density Calculations
(Single Transmitter, Stand Alone)

MPE Calculation:

$$\text{Power Density } (S) = \frac{EIRP}{4\pi d^2} \quad \text{Given: EIRP in } mW \text{ or W and } d \text{ in cm or m}$$

US MPE Assessment

Power Reported is:	<input checked="" type="checkbox"/> Peak <input type="checkbox"/> Average						
Limit Used is:	<input checked="" type="checkbox"/> General Population <input type="checkbox"/> Occupational Exposure						
Operating Band MHz	Power dBm	Ant Type/Gain dBi	EIRP dBm	Distance cm	MPE mW/cm ²	Limit mW/cm ²	Comment
2402 to 2480	1.17	Surface Mount/3.2	4.37	20	0.024	1.0	Pass

Summary:***Exemptions:***

Equipment demonstrating compliance by portable RF exposure exemption have been evaluated, without further testing, for use under either portable or mobile RF exposure configurations. Additional configurations including collocation or simultaneous transmission with other transmitters (including necessary separation distances) are subject to further assessment. Certain exemption criteria may define specific separation distances. It is assumed that the manufacturer shall design the equipment such that these minimum separation distance is met.

MPE Calculation Results:

Equipment demonstrating compliance with MPE calculations have been evaluated, without further testing, for use under mobile RF exposure configurations as identified herein. Additional configurations including collocation or simultaneous transmission with other transmitters (including necessary separation distances) are subject to further assessment. It is assumed that the manufacturer shall design the equipment such that the minimum separation distance of 20cm (or greater, as listed above) is met or that the manufacturer provides a protection guide (e.g. installation instructions) to the end user such that the antenna(s) may be installed in accordance with the manufacturer's instructions in such a manner to maintain the minimum separation distance.

General Comments:

The absorption and distribution of Electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape and physiological condition of the body; the orientation of the body with respect to the fields; and, the electrical properties of the body and the environment. Variables that may play a substantial role in possible biological effects are those that characterize the environment (including but not limited to: ambient temperature, air velocity, relative humidity and body insulation); and those that characterize the individual (including but not limited to: age, gender, activity level and existing debilitation or disease). Because innumerable factors may interact to determine specific biological effects of exposure to electromagnetic fields, any protection guide should consider both intended and unintended operational environments and provide guidance for installation and use of the equipment such that proper separation distances can be maintained. (ANSI C95.1).

APPENDIX A - RF Exposure Limits

United States Compliance Requirements (1.1310):

RF Exposure Evaluation Limits Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
0.3-3.0	614	1.63	*(100)	< 6
3.0-30	1842 / f _{MHz}	4.89 / f _{MHz}	*(900 / f _{MHz} ²)	< 6
30-300	61.4	0.163	1	< 6
300-1500	--	--	f _{MHz} / 300	< 6
1500-100,000	--	--	5.0	< 6

RF Exposure Evaluation Limits General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
0.3-1.34	614	1.63	*(100)	< 30
1.34-30	824 / f _{MHz}	2.19 / f _{MHz}	*(180 / f _{MHz} ²)	< 30
30-300	27.5	0.073	0.2	< 30
300-1500	--	--	f _{MHz} / 1500	< 30
1500-100,000	--	--	1.0	< 30

* Plane wave equivalent power density

Limit is calculated based on the mid-band frequency used in the operating frequency range.

Exemption Limits for Stand-Alone SAR Evaluation:

In accordance with 47 CFR 1.1307(b)(3)(i)

Exemption Threshold for Maximum Time Averaged Output Power or EIRP (mW)		
Frequency (MHz)	0.5 ≤ d ≤ 20cm	20cm < d ≤ 40cm
0.1 – 100,000	≤ 1 (including d<0.5)	
0.3 – 1.34	1.64 * 192 * d ² d ≥ λ/2π	
1.34 – 30	1.64 * 345 * $\frac{d^2}{f_{MHz}^2}$ d ≥ λ/2π	
30 – 300	1.64 * 0.383 * d ² d ≥ λ/2π	
300 – 1500 –	1.64 * 0.00128 * d ² * f _{MHz} d ≥ λ/2π, or 1.64 * 2.04 * f _{MHz} * $\left(\frac{d}{20}\right)^{-\text{Log}\left(\frac{60}{2040*f_{MHz}^{1.5}}\right)-4.5}$	1.64 * 0.00128 * d ² * f _{MHz} d ≥ λ/2π, or 1.64 * 2.04 * f _{MHz}
1500 – 6000	1.64 * 1.92 * d ² d ≥ λ/2π, or 1.64 * 3060 * $\left(\frac{d}{20}\right)^{-\text{Log}\left(\frac{60}{3060*f_{MHz}^{0.5}}\right)-1.5}$	1.64 * 1.92 * d ² d ≥ λ/2π, or 1.64 * 3060
6000 – 100,000	1.64 * 1.92 * d ² d ≥ λ/2π	

Equations have been modified from the published version to reflect consistent units of d in cm, P_{th} in mW (EIRP) and f in MHz.

Appendix B - References

1. ACMA Radiocommunications (Electromagnetic Radio – Human Exposure) Standard, 2014.
2. AS/NZS 2772.2, Radiofrequency fields – Principles and method of measurement and computation – 3 kHz to 300 GHz, 2011.
3. Australian Radiation Protection and Nuclear Safety Agency, ARPANSA RPS S-1, Standard for Limiting Exposure to Radiofrequency Fields 100 kHz to 300 GHz, 2021.
4. New Zealand Standard, NZS 2772.1, Radiofrequency Fields Part 1: Maximum Exposure Levels 3 kHz to 300 GHz, 1999.
5. Federal Communications Commission Knowledge Database (KDB) Publication 447498, "What are the RF exposure requirements and procedures for mobile and portable devices?" As in effect on the issue date of this report.
6. Title 47 Code of Federal Regulations, Part 1.1307(b)(3), "Determination of exemption." As in effect on the issue date of this report.
7. Title 47 Code of Federal Regulations, Part 1.1310, "Radiofrequency radiation exposure limits." As in effect on the issue date of this report.
8. Title 47 Code of Federal Regulations, Part 2.1091, "Radiofrequency radiation exposure evaluation: mobile devices." As in effect on the issue date of this report.
9. ANSI C95.1 (2005) IEEE Standard for Safety Level with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 GHz, 2005.
10. Health Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz, 2015.
11. Industry Canada GL-01 Guidelines for the Measurement of Radio Frequency Fields at Frequencies From 3 kHz to 300 GH, Issue 3, March 2015.
12. Industry Canada RSS-102 Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
13. EC Council Recommendation 1999/519/EC "On the limitation of exposure of the general public to electromagnetic fields (0Hz to 300GHz)," (1999).
14. European Committee for Electrotechnical Standardization. European Normative, EN 62311 Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz to 300 GHz), 2008.
15. European Committee for Electrotechnical Standardization. European Normative, EN 62479 Assessment of the compliance of low power electronic and electrical equipment with the basic restrictions related to human exposure to electromagnetic fields (10 MHz to 300 GHz), 2010.
16. International Commission on Non-Ionizing Radiation Protection. Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz). Health Physics 74 (4): 494-522; 1998.
17. International Commission on Non-Ionizing Radiation Protection Statement on the "Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Physics 97(3):257-259, 2009.
18. International Commission on Non-Ionizing Radiation Protection. Guidelines for Limiting Exposure to Electromagnetic Fields (100kHz to 300 GHz). Health Physics 118-(5): 483-524; 2020.