



## FCC PART 15C

### TEST REPORT

For

### XIAMEN INTERACTIVE TECHNOLOGY CO.,LTD.

Second floor,Intech industrial park,No,21 xinban road,houxi town,jimeidistrict,xiamen,China

**FCC ID: 2AOQT-WT01-02A**

|                                                                    |                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Report Type:</b><br>Original Report                             | <b>Product Name:</b><br>SMART MINI LIBRARY                                                                                                                                                                                                                                                                 |
| <b>Report Number:</b> <u>RXM180102052-00A</u>                      |                                                                                                                                                                                                                                                                                                            |
| <b>Report Date:</b> <u>2018-05-30</u>                              |                                                                                                                                                                                                                                                                                                            |
| <b>Reviewed By:</b><br>Reviewed By:<br><br><b>Test Laboratory:</b> | Jerry Zhang<br>EMC Manager<br><br>Jerry Zhang<br><br>Bay Area Compliance Laboratories Corp. (Dongguan)<br>No.69 Pulongcun, Puxinhu Industry Area,<br>Tangxia, Dongguan, Guangdong, China<br>Tel: +86-769-86858888<br>Fax: +86-769-86858891<br><a href="http://www.baclcorp.com.cn">www.baclcorp.com.cn</a> |

**Note:** This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA\* or any agency of the Federal Government. \* This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk “\*”

## **TABLE OF CONTENTS**

|                                                                                     |            |
|-------------------------------------------------------------------------------------|------------|
| <b>GENERAL INFORMATION.....</b>                                                     | <b>.3</b>  |
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) .....                            | .3         |
| OBJECTIVE .....                                                                     | .3         |
| RELATED SUBMITTAL(S)/GRANT(S).....                                                  | .3         |
| TEST METHODOLOGY .....                                                              | .4         |
| MEASUREMENT UNCERTAINTY .....                                                       | .4         |
| TEST FACILITY .....                                                                 | .4         |
| <b>SYSTEM TEST CONFIGURATION.....</b>                                               | <b>.5</b>  |
| JUSTIFICATION .....                                                                 | .5         |
| EUT EXERCISE SOFTWARE .....                                                         | .5         |
| LOCAL SUPPORT EQUIPMENT LIST AND DETAILS .....                                      | .5         |
| SUPPORT CABLE LIST AND DETAILS .....                                                | .5         |
| BLOCK DIAGRAM OF TEST SETUP .....                                                   | .5         |
| TEST EQUIPMENT LIST .....                                                           | .6         |
| <b>SUMMARY OF TEST RESULTS .....</b>                                                | <b>.7</b>  |
| <b>FCC§15.203- ANTENNA REQUIREMENT.....</b>                                         | <b>.8</b>  |
| APPLICABLE STANDARD .....                                                           | .8         |
| ANTENNA CONNECTED CONSTRUCTION .....                                                | .8         |
| <b>FCC §15.207 – AC LINE CONDUCTED EMISSION.....</b>                                | <b>.9</b>  |
| APPLICABLE STANDARD .....                                                           | .9         |
| EUT SETUP .....                                                                     | .9         |
| EMI TEST RECEIVER SETUP.....                                                        | .10        |
| TEST PROCEDURE .....                                                                | .10        |
| CORRECTED AMPLITUDE & MARGIN CALCULATION .....                                      | .10        |
| TEST RESULTS SUMMARY .....                                                          | .11        |
| TEST DATA .....                                                                     | .11        |
| <b>FCC§15.225, §15.205 &amp; §15.209- RADIATED EMISSIONS .....</b>                  | <b>.14</b> |
| APPLICABLE STANDARD .....                                                           | .14        |
| EUT SETUP .....                                                                     | .14        |
| EMI TEST RECEIVER SETUP.....                                                        | .15        |
| CORRECTED AMPLITUDE & MARGIN CALCULATION .....                                      | .15        |
| TEST RESULTS SUMMARY .....                                                          | .15        |
| TEST DATA .....                                                                     | .15        |
| <b>FCC§15.225(E) - FREQUENCY STABILITY.....</b>                                     | <b>.20</b> |
| APPLICABLE STANDARD .....                                                           | .20        |
| TEST PROCEDURE .....                                                                | .20        |
| TEST DATA .....                                                                     | .20        |
| <b>FCC §15.215(C) – 20 DB EMISSION BANDWIDTH &amp; 99% OCCUPIED BANDWIDTH .....</b> | <b>.22</b> |
| APPLICABLE STANDARD .....                                                           | .22        |
| TEST PROCEDURE .....                                                                | .22        |
| TEST DATA .....                                                                     | .22        |

## GENERAL INFORMATION

### Product Description for Equipment Under Test (EUT)

|                             |                                                                                                                                                                                                                                           |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>EUT Name:</b>            | SMART MINI LIBRARY                                                                                                                                                                                                                        |
| <b>EUT Model:</b>           | WT01-02A                                                                                                                                                                                                                                  |
| <b>Multiple Models:</b>     | WT01-01A, WT01-01B, WT01-01C, WT01-02B, WT01-02C, WT02-01A, WT02-01B, WT02-01C, WT02-02A, WT02-02B, WT02-02C, WT-1000, WT-2000, WT-3000, WT-4000, WT-5000, ST01-05A, ST01-05B, ST02-05A, ST02-05B, ST01-10A, ST01-10B, ST02-10A, ST02-10B |
| <b>FCC ID:</b>              | 2AOQT-WT01-02A                                                                                                                                                                                                                            |
| <b>Rated Input Voltage:</b> | AC 120V/60Hz                                                                                                                                                                                                                              |
| <b>External Dimension:</b>  | Length (153.5cm)*Width (45.2cm)*High (188.5cm)                                                                                                                                                                                            |
| <b>Serial Number:</b>       | 180102052                                                                                                                                                                                                                                 |
| <b>EUT Received Date:</b>   | 2018.01.03                                                                                                                                                                                                                                |

*Note: The series product models WT01-01A, WT01-01B, WT01-01C, WT01-02B, WT01-02C, WT02-01A, WT02-01B, WT02-01C, WT02-02A, WT02-02B, WT02-02C, WT-1000, WT-2000, WT-3000, WT-4000, WT-5000, ST01-05A, ST01-05B, ST02-05A, ST02-05B, ST01-10A, ST01-10B, ST02-10A, ST02-10B are electrically identical with the tested model WT01-02A, we selected WT01-02A for fully testing. The differences between them were explained in the attached declaration letter.*

### Objective

This type approval report is prepared on behalf of *XIAMEN INTERACTIVE TECHNOLOGY CO.,LTD.* in accordance with Part 2, Subpart J, and Part 15, Subparts A and C of the Federal Communications Commission's rules.

The objective is to determine the compliance of the EUT with FCC rules, sec 15.203, 15.205, 15.207, 15.209 and 15.225.

### Related Submittal(s)/Grant(s)

FCC Part 15C DTS submissions with FCC ID: 2AOQT-WT01-02A.

## Test Methodology

All measurements detailed in this Test Report were performed in accordance with ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices".

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

## Measurement Uncertainty

| Parameter                         | Measurement Uncertainty                                                                                                                   |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Occupied Channel Bandwidth        | ±5 %                                                                                                                                      |
| radiated Emissions                | 9kHz~30MHz: 4.12dB<br>30M~200MHz: 4.58 dB for Horizontal, 4.59 dB for Vertical<br>200M~1GHz: 4.83 dB for Horizontal, 5.85 dB for Vertical |
| Temperature                       | ±1°C                                                                                                                                      |
| Humidity                          | ±5%                                                                                                                                       |
| DC and low frequency voltages     | ±0.4%                                                                                                                                     |
| Duty Cycle                        | 1%                                                                                                                                        |
| AC Power Lines Conducted Emission | 3.12 dB (150 kHz to 30 MHz)                                                                                                               |

## Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218, the FCC Designation No. : CN1220.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062D.

## SYSTEM TEST CONFIGURATION

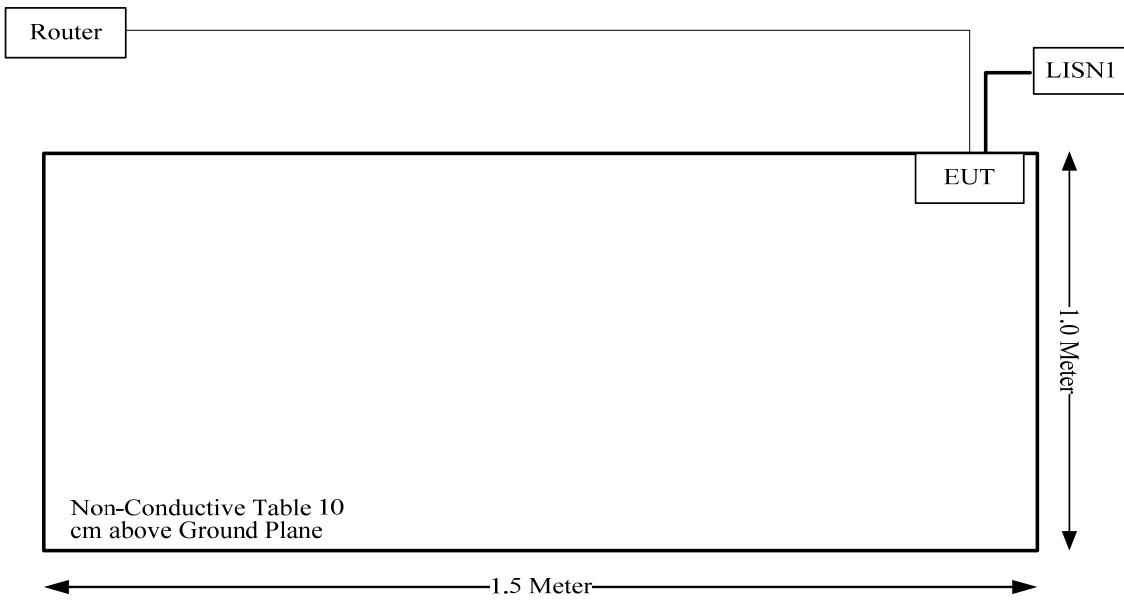
### Justification

The system was configured for testing in a test mode.

The device was operating on 13.56MHz

### EUT Exercise Software

No software used in test.


### Local Support Equipment List and Details

| Manufacturer | Description | Model | Serial Number |
|--------------|-------------|-------|---------------|
| Tenda        | Router      | W311R | /             |

### Support Cable List and Details

| Cable Description | Shielding Type | Ferrite Core | Length (m) | From Port | To  |
|-------------------|----------------|--------------|------------|-----------|-----|
| RJ45 Cable        | No             | No           | 10         | Router    | EUT |

### Block Diagram of Test Setup



## Test Equipment List

| Manufacturer   | Description                   | Model     | Serial Number | Calibration Date | Calibration Due Date |
|----------------|-------------------------------|-----------|---------------|------------------|----------------------|
| R&S            | EMI Test Receiver             | ESCS 30   | 830245/006    | 2017-12-11       | 2018-12-11           |
| Unknown        | Coaxial Cable                 | C-NJNJ-50 | C-0200-01     | 2017-09-05       | 2018-09-05           |
| R&S            | Test Software                 | EMC32     | Version8.53.0 | N/A              | N/A                  |
| R&S            | Two-line V-network            | ENV 216   | 101614        | 2017-12-08       | 2018-12-08           |
| R&S            | EMI Test Receiver             | ESCI      | 100224        | 2017-12-11       | 2018-12-11           |
| Unknown        | Coaxial Cable                 | C-NJNJ-50 | C-0400-01     | 2017-09-05       | 2018-09-05           |
| Unknown        | Coaxial Cable                 | C-NJNJ-50 | C-0075-01     | 2017-09-05       | 2018-09-05           |
| Unknown        | Coaxial Cable                 | C-NJNJ-50 | C-1000-01     | 2017-09-05       | 2018-09-05           |
| Farad          | Test Software                 | EZ-EMC    | V1.1.4.2      | N/A              | N/A                  |
| Sunol Sciences | Antenna                       | JB3       | A060611-1     | 2017-11-10       | 2020-11-10           |
| HP             | Amplifier                     | 8447D     | 2727A05902    | 2017-09-05       | 2018-09-05           |
| Farad          | Test Software                 | EZ-EMC    | V1.1.4.2      | N/A              | N/A                  |
| EMCO           | Passive Loop                  | 6512      | 9706-1206     | 2017-03-05       | 2020-03-04           |
| Dongzhixu      | High Temperature Test Chamber | DP1000    | 201105083-4   | 2017-09-10       | 2018-09-10           |
| UNI-T          | Multimeter                    | UT39A     | M130199938    | 2017-05-09       | 2018-05-09           |

\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

**SUMMARY OF TEST RESULTS**

| FCC Rules                  | Description of Test        | Result     |
|----------------------------|----------------------------|------------|
| §15.203                    | Antenna Requirement        | Compliance |
| §15.207                    | AC Line Conducted Emission | Compliance |
| §15.225<br>§15.209 §15.205 | Radiated Emission Test     | Compliance |
| §15.225(e)                 | Frequency Stability        | Compliance |
| §15.215(c)                 | 20 dB Emission Bandwidth   | Compliance |

## **FCC§15.203- ANTENNA REQUIREMENT**

### **Applicable Standard**

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

### **Antenna Connected Construction**

The EUT has one integral antenna arrangement, which was permanently attached and fulfill the requirement of this section. Please refer to the EUT photos.

**Result:** Compliance.

## FCC §15.207 – AC LINE CONDUCTED EMISSION

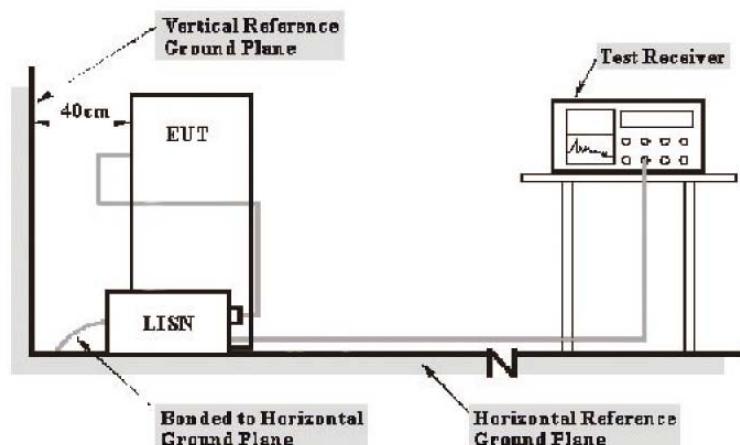
### Applicable Standard

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz-30 MHz, shall not exceed the limits in Table 3.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in Table 3 below. The more stringent limit applies at the frequency range boundaries.

The conducted emissions shall be measured in accordance with the reference publication mentioned in Section 3.

**Table 3 - AC Power Lines Conducted Emission Limits**


| Frequency range<br>(MHz) | Conducted limit (dB $\mu$ V) |           |
|--------------------------|------------------------------|-----------|
|                          | Quasi-Peak                   | Average** |
| 0.15 – 0.5               | 66 to 56*                    | 56 to 46* |
| 0.5 – 5                  | 56                           | 46        |
| 5 – 30                   | 60                           | 50        |

Note:

\* The level decreases linearly with the logarithm of the frequency.

\*\* A linear average detector is required.

### EUT Setup



**Note:**

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main LISN with an AC 120V/60Hz power source.

### EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Frequency Range  | IF B/W |
|------------------|--------|
| 150 kHz – 30 MHz | 9 kHz  |

### Test Procedure

During the conducted emission test, the EUT was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

According FCC publication number 174176, for a device with a permanent antenna operating at or below 30 MHz, the measurements done with a suitable dummy load, in lieu of the permanent antenna under the following conditions: (1) perform the AC line conducted tests with the permanent antenna to determine compliance with the Section 15.207 limits outside the transmitter's fundamental emission band; (2) retest with a dummy load in lieu of the permanent antenna to determine compliance with the Section 15.207 limits within the transmitter's fundamental emission band.

### Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_c + VDF$$

Herein,

$V_C$ : corrected voltage amplitude

$V_R$ : reading voltage amplitude

$A_c$ : attenuation caused by cable loss

VDF: voltage division factor of AMN or ISN

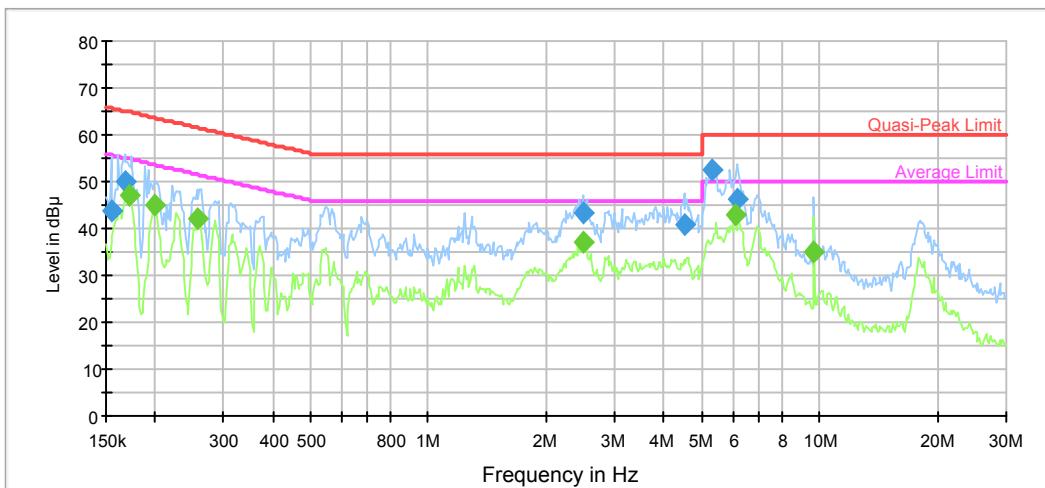
The “**Margin**” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

## Test Results Summary

According to the recorded data in following table, the EUT complied with the [FCC Part 15.207](#).

## Test Data


### Environmental Conditions

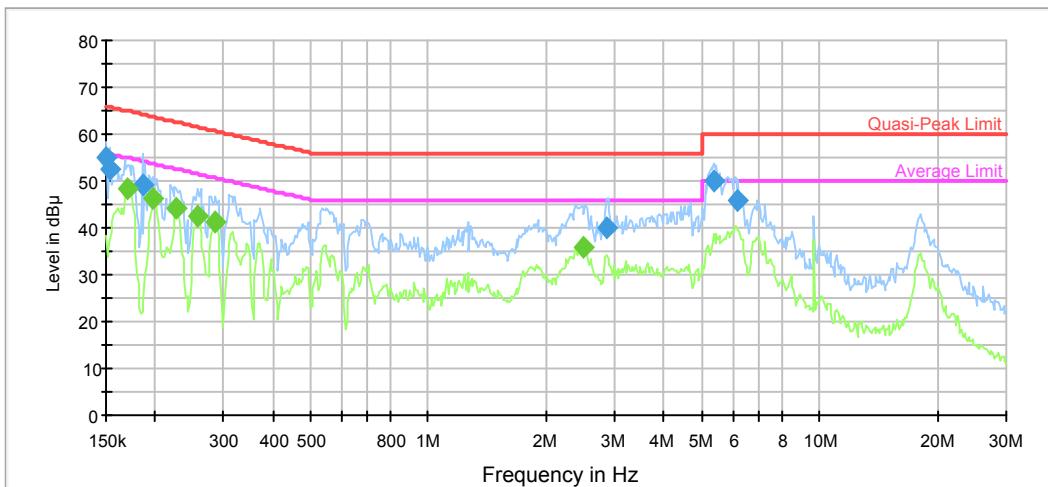
|                           |           |
|---------------------------|-----------|
| <b>Temperature:</b>       | 29.7 °C   |
| <b>Relative Humidity:</b> | 54 %      |
| <b>ATM Pressure:</b>      | 102.5 kPa |

*The testing was performed by Vern Shen on 2018-04-28.*

**Result:** Compliance.

Model Number: WT01-02A  
 Port: L  
 Test Mode: Operating  
 Power Source: AC 120V/60Hz




### Final Result 1

| Frequency (MHz) | QuasiPeak (dB $\mu$ V) | Bandwidth (kHz) | Line | Corr. (dB) | Margin (dB) | Limit (dB $\mu$ V) |
|-----------------|------------------------|-----------------|------|------------|-------------|--------------------|
| 0.154858        | 43.6                   | 9.000           | L1   | 11.1       | 22.1        | 65.7               |
| 0.167702        | 50.2                   | 9.000           | L1   | 10.9       | 14.9        | 65.1               |
| 2.478557        | 43.3                   | 9.000           | L1   | 9.8        | 12.7        | 56.0               |
| 4.505456        | 40.9                   | 9.000           | L1   | 9.8        | 15.1        | 56.0               |
| 5.326108        | 52.5                   | 9.000           | L1   | 9.8        | 7.5         | 60.0               |
| 6.147514        | 46.1                   | 9.000           | L1   | 9.8        | 13.9        | 60.0               |

### Final Result 2

| Frequency (MHz) | Average (dB $\mu$ V) | Bandwidth (kHz) | Line | Corr. (dB) | Margin (dB) | Limit (dB $\mu$ V) |
|-----------------|----------------------|-----------------|------|------------|-------------|--------------------|
| 0.171759        | 47.2                 | 9.000           | L1   | 10.9       | 7.7         | 54.9               |
| 0.199835        | 45.1                 | 9.000           | L1   | 10.6       | 8.5         | 53.6               |
| 0.257874        | 42.2                 | 9.000           | L1   | 10.3       | 9.3         | 51.5               |
| 2.478557        | 37.1                 | 9.000           | L1   | 9.8        | 8.9         | 46.0               |
| 6.098724        | 42.9                 | 9.000           | L1   | 9.8        | 7.1         | 50.0               |
| 9.681660        | 35.1                 | 9.000           | L1   | 9.9        | 14.9        | 50.0               |

Model Number: WT01-02A  
 Port: N  
 Test Mode: Operating  
 Power Source: AC 120V/60Hz

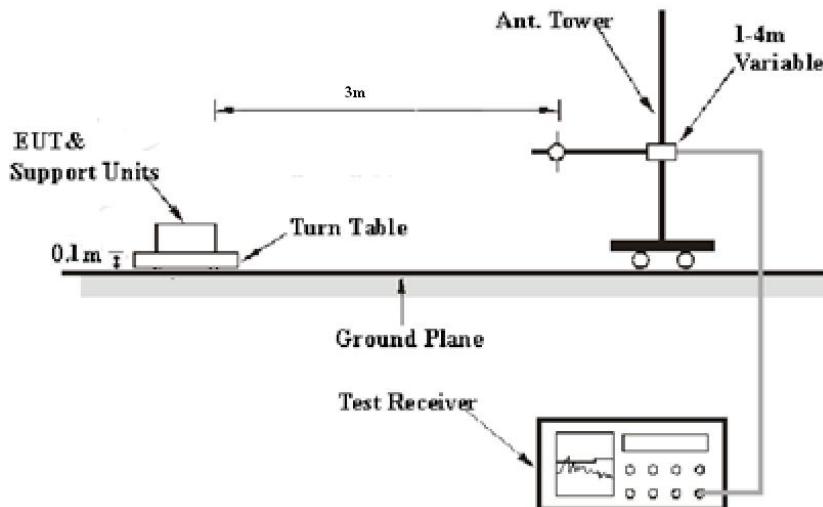


### Final Result 1

| Frequency (MHz) | QuasiPeak (dB μ V) | Bandwidth (kHz) | Line | Corr. (dB) | Margin (dB) | Limit (dB μ V) |
|-----------------|--------------------|-----------------|------|------------|-------------|----------------|
| 0.150000        | 54.9               | 9.000           | N    | 11.2       | 11.1        | 66.0           |
| 0.153629        | 52.6               | 9.000           | N    | 11.1       | 13.2        | 65.8           |
| 0.186006        | 49.3               | 9.000           | N    | 10.7       | 14.9        | 64.2           |
| 2.860806        | 40.2               | 9.000           | N    | 9.8        | 15.8        | 56.0           |
| 5.368716        | 50.2               | 9.000           | N    | 9.8        | 9.8         | 60.0           |
| 6.196694        | 45.7               | 9.000           | N    | 9.8        | 14.3        | 60.0           |

### Final Result 2

| Frequency (MHz) | Average (dB μ V) | Bandwidth (kHz) | Line | Corr. (dB) | Margin (dB) | Limit (dB μ V) |
|-----------------|------------------|-----------------|------|------------|-------------|----------------|
| 0.170396        | 48.5             | 9.000           | N    | 10.9       | 6.4         | 54.9           |
| 0.198249        | 46.1             | 9.000           | N    | 10.6       | 7.6         | 53.7           |
| 0.227007        | 44.1             | 9.000           | N    | 10.5       | 8.4         | 52.6           |
| 0.255827        | 42.3             | 9.000           | N    | 10.3       | 9.2         | 51.6           |
| 0.283749        | 41.1             | 9.000           | N    | 10.2       | 9.6         | 50.7           |
| 2.478557        | 35.8             | 9.000           | N    | 9.8        | 10.2        | 46.0           |


## FCC§15.225, §15.205 & §15.209- RADIATED EMISSIONS

### Applicable Standard

As per FCC Part 15.225:

- (a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

### EUT Setup



The radiated emission tests were performed in the 3-meter chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part Subpart C limits.

The spacing between the peripherals was 10 cm.

## EMI Test Receiver Setup

The system was investigated from 9 kHz to 1 GHz.

During the radiated emission test, the EMI test Receiver was set with the following configurations:

| Frequency Range   | RBW     | Video B/W | Measurement |
|-------------------|---------|-----------|-------------|
| 9 kHz – 150 kHz   | 200 Hz  | 1 kHz     | QP          |
| 150 kHz – 30 MHz  | 9 kHz   | 30 kHz    | QP          |
| 30 MHz – 1000 MHz | 120 kHz | 300 kHz   | QP          |

If the maximized peak measured value complies with the limit, then it is unnecessary to perform an QP measurement

## Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

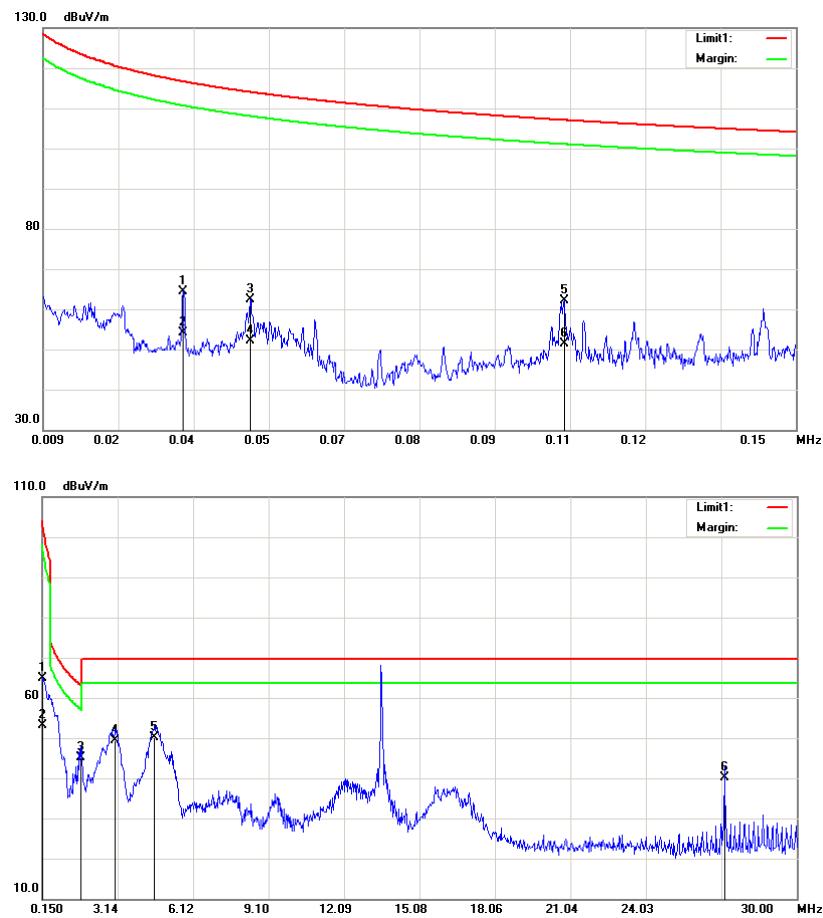
$$\text{Margin} = \text{Limit} - \text{Corr. Ampl.}$$

## Test Results Summary

According to the data in the following table, the EUT complied with the FCC Part 15.209&15.225.

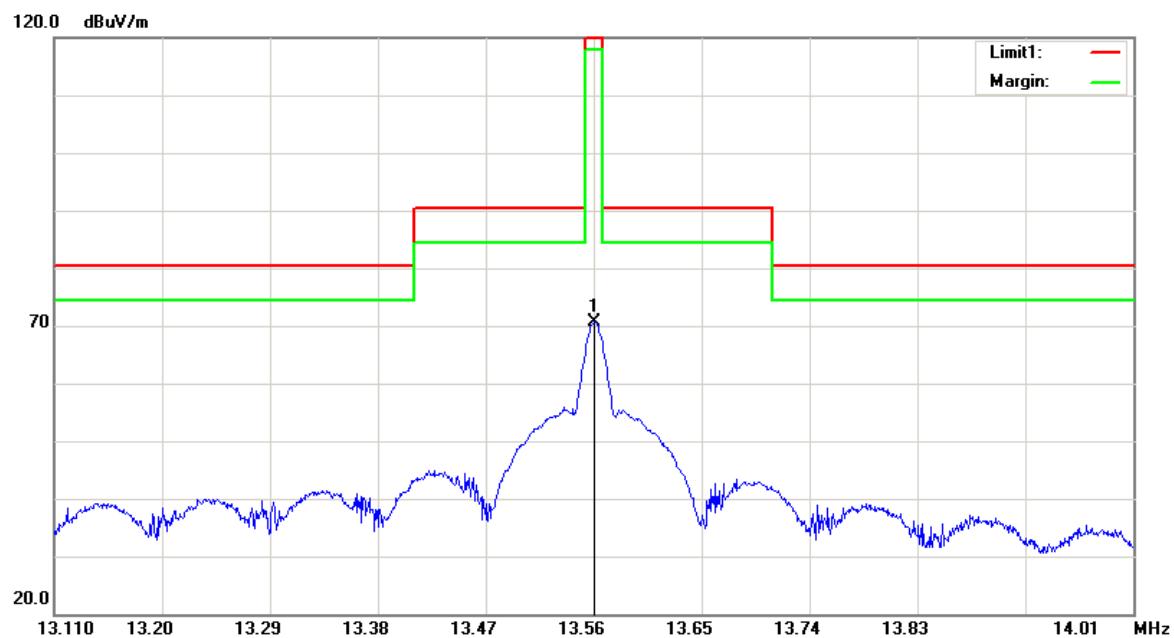
## Test Data

### Environmental Conditions


|                    |           |
|--------------------|-----------|
| Temperature:       | 25.1 °C   |
| Relative Humidity: | 42 %      |
| ATM Pressure:      | 101.1 kPa |

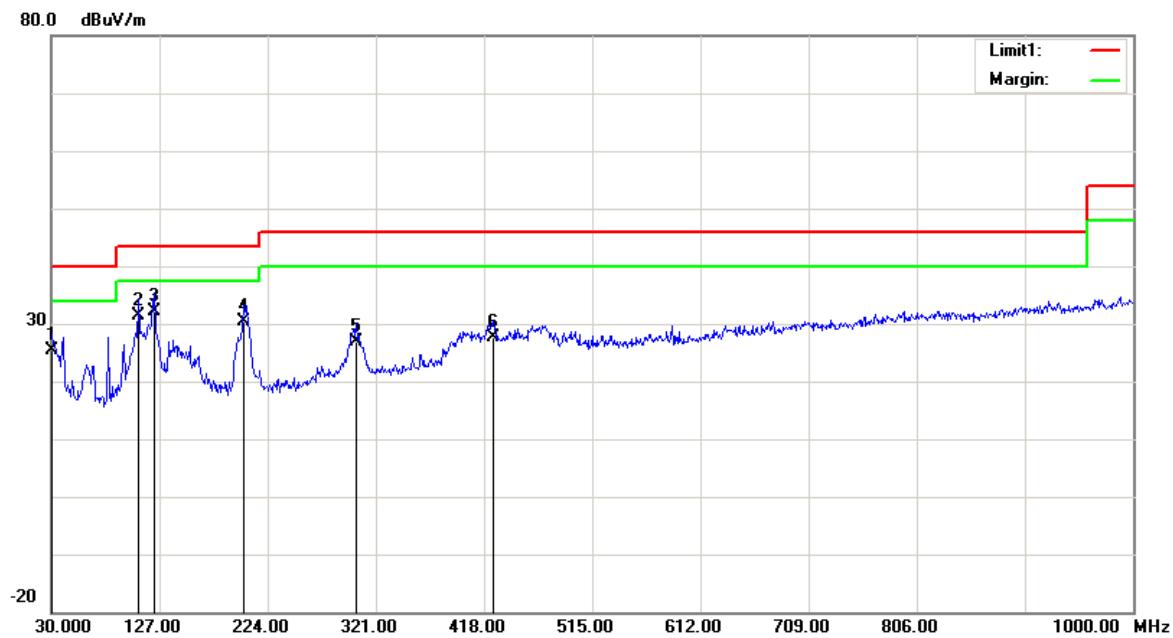
\* The testing was performed by Vern Shen on 2018-03-30.

**Result:** Compliance.


*Test mode: Transmitting*

1) 9 kHz~30MHz:




| Frequency (MHz) | Receiver Reading (dB $\mu$ V) | Detector | Correction Factor (dB) | Cord. Amp. (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) |
|-----------------|-------------------------------|----------|------------------------|---------------------------|----------------------|-------------|
| 0.0352          | -11.52                        | peak     | 75.94                  | 64.42                     | 116.67               | 52.25       |
| 0.0478          | -11.71                        | peak     | 74.02                  | 62.31                     | 114.01               | 51.70       |
| 0.1066          | -4.32                         | peak     | 66.35                  | 62.03                     | 107.05               | 45.02       |
| 0.1797          | 28.34                         | peak     | 36.57                  | 64.91                     | 102.51               | 37.60       |
| 1.6724          | 27.07                         | peak     | 18.03                  | 45.10                     | 63.13                | 18.03       |
| 3.0455          | 36.07                         | peak     | 13.23                  | 49.30                     | 69.54                | 20.24       |
| 4.5976          | 39.16                         | peak     | 11.04                  | 50.20                     | 69.54                | 19.34       |
| 27.1343         | 31.39                         | peak     | 8.71                   | 40.10                     | 69.54                | 29.44       |

Fundamental:



| No. | Frequency (MHz) | Receiver Reading (dB $\mu$ V) | Detector | Correction Factor (dB) | Cord. Amp. (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) |
|-----|-----------------|-------------------------------|----------|------------------------|---------------------------|----------------------|-------------|
| 1   | 13.5610         | 61.36                         | peak     | 9.29                   | 70.65                     | 124.00               | 53.35       |

30 MHz-1GHz:

**Horizontal**

| No. | Frequency (MHz) | Receiver Reading (dB $\mu$ V) | Detector | Correction Factor (dB) | Cord. Amp. (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) |
|-----|-----------------|-------------------------------|----------|------------------------|---------------------------|----------------------|-------------|
| 1   | 30.0000         | 23.86                         | QP       | 1.54                   | 25.40                     | 40.00                | 14.60       |
| 2   | 108.5700        | 38.17                         | QP       | -6.77                  | 31.40                     | 43.50                | 12.10       |
| 3   | 122.1500        | 37.02                         | QP       | -4.82                  | 32.20                     | 43.50                | 11.30       |
| 4   | 202.6600        | 36.45                         | QP       | -6.15                  | 30.30                     | 43.50                | 13.20       |
| 5   | 303.5400        | 30.96                         | QP       | -3.96                  | 27.00                     | 46.00                | 19.00       |
| 6   | 425.7600        | 29.09                         | QP       | -1.49                  | 27.60                     | 46.00                | 18.40       |

**Vertical**

| No. | Frequency (MHz) | Receiver Reading (dB $\mu$ V) | Detector | Correction Factor (dB) | Cord. Amp. (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) |
|-----|-----------------|-------------------------------|----------|------------------------|---------------------------|----------------------|-------------|
| 1   | 30.0000         | 28.96                         | QP       | 1.54                   | 30.50                     | 40.00                | 9.50        |
| 2   | 40.6700         | 36.85                         | QP       | -6.35                  | 30.50                     | 40.00                | 9.50        |
| 3   | 62.0100         | 40.29                         | QP       | -12.19                 | 28.10                     | 40.00                | 11.90       |
| 4   | 81.4100         | 42.08                         | QP       | -11.38                 | 30.70                     | 40.00                | 9.30        |
| 5   | 108.5700        | 40.97                         | QP       | -6.77                  | 34.20                     | 43.50                | 9.30        |
| 6   | 408.3000        | 33.66                         | QP       | -1.86                  | 31.80                     | 46.00                | 14.20       |

## FCC§15.225(e) - FREQUENCY STABILITY

### Applicable Standard

As per FCC Part 15.225:

The frequency tolerance of the carrier signal shall be maintained within  $\pm 0.01\%$  of the operating frequency over a temperature variation of  $-20$  degrees to  $+50$  degrees C at normal supply voltage, and for a variation in the primary supply voltage from  $85\%$  to  $115\%$  of the rated supply voltage at a temperature of  $20$  degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

### Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external AC power.

The RF part was placed inside the temperature chamber.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Spectrum Analyzer.

Frequency Stability vs. Voltage: An external variable DC power supply Source. The voltage was set to the end point of the battery. The output frequency was recorded for each voltage.

### Test Data

#### Environmental Conditions

|                    |           |
|--------------------|-----------|
| Temperature:       | 24.3 °C   |
| Relative Humidity: | 46 %      |
| ATM Pressure:      | 101.4 kPa |

\* The testing was performed by Vern Shen on 2018-03-31.

**Result:** Compliance.

*Test Mode: Transmitting*

| $f_o = 13.56 \text{ MHz}$ |                 |                    |                 |       |
|---------------------------|-----------------|--------------------|-----------------|-------|
| Temperature               | Voltage         | Measured frequency | Frequency Error | Limit |
| °C                        | V <sub>DC</sub> | MHz                | Hz              | Hz    |
| -20                       | 12              | 13.5602            | 200             | ±1356 |
| -10                       |                 | 13.5601            | 100             | ±1356 |
| 0                         |                 | 13.5602            | 200             | ±1356 |
| 10                        |                 | 13.5603            | 300             | ±1356 |
| 20                        |                 | 13.5605            | 500             | ±1356 |
| 25                        |                 | 13.5605            | 500             | ±1356 |
| 30                        |                 | 13.5605            | 500             | ±1356 |
| 40                        |                 | 13.5605            | 500             | ±1356 |
| 50                        |                 | 13.5606            | 600             | ±1356 |

Note: the 13.56MHz RF Part was place into the temperature chamber, the RF part powered by 12V dc from system.

## FCC §15.215(c) – 20 dB EMISSION BANDWIDTH & 99% Occupied Bandwidth

### Applicable Standard

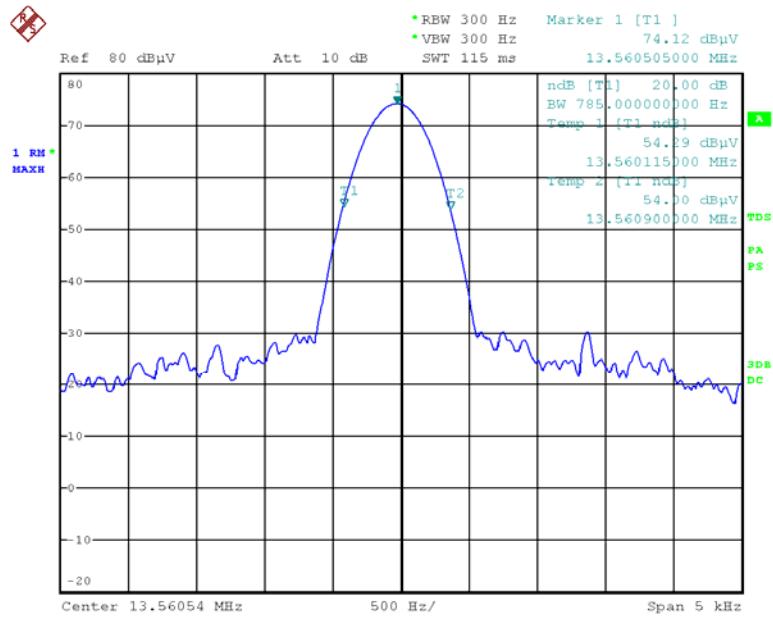
As per FCC Part 15.21(c):

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §15.217 through § 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of band operation.

### Test Procedure

Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.

### Test Data


#### Environmental Conditions

|                    |           |
|--------------------|-----------|
| Temperature:       | 24.3 °C   |
| Relative Humidity: | 46 %      |
| ATM Pressure:      | 101.4 kPa |

\* The testing was performed by Vern Shen on 2018-03-31.

**Result:** Compliance.

*Test Mode: Transmitting*

**20 dB Emission Bandwidth(0.785 kHz)**

Date: 31.MAR.2018 00:54:07

**\*\*\*\*\* END OF REPORT \*\*\*\*\***