

RF EXPOSURE EVALUATION REPORT

APPLICANT : Shanghai BroadMobi Communication

Technology Co., Ltd.

PRODUCT NAME: RX50

MODEL NAME : RX50

BRAND NAME : BroadMobi

FCC ID : 2AON8RX50

STANDARD(S) : FCC 47CFR Part 2(2.1091)

RECEIPT DATE : 2022-11-21

TEST DATE : 2022-12-09

ISSUE DATE : 2023-01-16

Edited by:

Xie Yiyun (Rapporteur)

Approved by:

Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

DIRECTORY

1.	Technical Information
1.1	Applicant and Manufacturer Information
1.2	Equipment under Test (EUT) Description
1.3	Applied Reference Documents
2.	Device Category and RF Exposure Limit
3.	Test Equipment List
4.	RF Output Power
5.	LTE Carrier Aggregation
6.	RF Exposure Assessment
An	nex A General Information
An	nex B Conducted Power

Change History				
Version	Date	Reason for Change		
1.0	2023-01-16	First edition		

1. Technical Information

Note: Provide by applicant.

1.1 Applicant and Manufacturer Information

Applicant: Shanghai BroadMobi Communication Technology Co., Ltd.	
Applicant Address:	15F,Building 9,No. 99,Tianzhou Rd.,Xuhui District, Shanghai
Manufacturer:	Shanghai BroadMobi Communication Technology Co., Ltd.
Manufacturer Address:	15F,Building 9,No. 99,Tianzhou Rd.,Xuhui District, Shanghai

1.2 Equipment under Test (EUT) Description

Product Name:	RX50		
EUT No.:	9#		
Hardware Version:	RX50A_MB_V4.0		
Software Version:	1.01		
	LTE Band 2: 1850 MHz ~ 1910 M	Hz	
	LTE Band 4: 1710 MHz ~ 1755 M	Hz	
	LTE Band 7: 2500 MHz ~ 2570 M	lHz	
	LTE Band 12: 699 MHz ~ 716 MH	łz	
Francisco Panda	LTE Band 48: 3550 MHz ~ 3700 I	MHz	
Frequency Bands:	LTE Band 66: 1710 MHz ~ 1755 I	MHz	
	5G NR n66: 1710 MHz ~ 1755 MHz		
	WLAN 2.4GHz: 2412 MHz ~ 2462 MHz		
	WLAN 5.2GHz: 5180 MHz ~ 5240 MHz		
	WLAN 5.8GHz: 5745 MHz ~ 5825 MHz		
	LTE: QPSK,16QAM,64QAM		
	5G NR: DFT-s-OFDM/CP-OFDM, PI/2 BPSK		
Modulation Mode:	QPSK, 16QAM, 64QAM, 256QAM		
Modulation Mode.	802.11b: DSSS		
	802.11a/g/n-HT20/HT40/ac-VHT20/40/80: OFDM		
	802.11ax-HEW20/40/80: OFDMA		
Carrier Aggregation:	Downlink		
Antonno Tynos	WWAN: Fixed Internal Antenna		
Antenna Type:	WLAN: Dipole Antenna		
Antenna Gain:	Frequency Bands	Antenna Gain (dBi)	
Antenna Galli.	LTE Band 2	4.48	

	LTE Band 4	3.46
	LTE Band 7	3.29
	LTE Band 12	1.28
	LTE Band 48	4.79
	LTE Band 66	4.23
	5G NR n66	4.23
	WLAN 2.4GHz (ANT 0)	2.03
	WLAN 2.4GHz (ANT 1)	2.02
	WLAN 2.4GHz (ANT 2)	2.05
	WLAN 2.4GHz (ANT 3)	2.01
	WLAN 5.2GHz (ANT 0)	0.08
	WLAN 5.2GHz (ANT 1)	1.04
	WLAN 5.2GHz (ANT 2)	1.36
	WLAN 5.2GHz (ANT 3)	1.17
	WLAN 5.8GHz (ANT 0)	1.71
	WLAN 5.8GHz (ANT 1)	2.04
	WLAN 5.8GHz (ANT 2)	1.88
_	WLAN 5.8GHz (ANT 3)	2.06

Note:

When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

1.3 Applied Reference Documents

Leading reference documents for testing:

Identity	Document Title	Method determination /Remark
FCC 47CFR Part 2(2.1091)	Radio Frequency Radiation Exposure Assessment: mobile devices	No deviation
KDB 447498 D04v01	General RF Exposure Guidance	No deviation

Note 1: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

Shenzhen Morlab Communications Technology Co., Ltd.

2. Device Category and RF Exposure Limit

Per user manual, Based on 47CFR 2.1091, this device belongs to mobile device category with General Population/Uncontrolled exposure.

Mobile Devices:

47CFR 2.1091(b)

For purposes of this section, a mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons. In this context, the term "fixed location" means that the device is physically secured at one location and is not able to be easily moved to another location. Transmitting devices designed to be used by consumers or workers that can be easily re-located, such as wireless devices associated with a personal computer, are considered to be mobile devices if they meet the 20 centimeter separation requirement.

General Population/Uncontrolled Exposure:

The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Warning labels placed on low-power consumer devices such as cellular telephones are not considered sufficient to allow the device to be considered under the occupational/controlled category, and the general population/uncontrolled exposure limits apply to these devices.

Table 1—Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(E	3) Limits for General	Population/Uncontro	lled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	-	-	f/1500	30
1500-100,000	-	-	1.0	30

f = frequency in MHz* = Plane-wave equivalent power density

Tel: 86-755-36698555 Http://www.morlab.cn

3. Test Equipment List

Manufacturer	Name of			Calibi	ration
Wallulacturei	Equipment	Type/Model	SW Version	Last Cal.	Due Date
Anritsu	Network Emulator	MT8820C	6200985414	2022.10.11	2023.10.10
Anritsu	Network Emulator	MT8821C	6261830572	2022.02.14	2023.02.13

Note:

The EUT was connected to Base Station Anritsu MT8820C referred to the Setup Configuration. For the maximum power, it was established between EUT and Base Station with following setting:

For LTE testing, the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and different configurations.

4. RF Output Power

Remark:

The output power of LTE/WLAN refers to the annex B of this report.

Shenzhen Morlab Communications Technology Co., Ltd.

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

The output power of WLAN is derived from the report SZ22100099W04/05.

5. LTE Carrier Aggregation

Carrier Aggregation Configuration

	arrier Aggregation co	ga.a				
2CC Downlink Carrier Aggregation						
No.	Combination	MIMO	Restriction	Completely Covered by Measurement Superset		
1	CA_12A-66A	66A	-	No		
2	CA_2A-4A	2A-4A	-	No		
3	CA_2A-7A	2A-7A	-	No		
4	CA_4A-7A	4A-7A	-	No		
5	CA_4A-12A	4A	-	No		
6	CA_4A-48A	4A-48A	-	No		
7	CA_48C	48C	-	No		
8	CA_48A-66A	48A-66A	-	No		
9	CA_66A-66A	66A-66A	-	No		
10	CA_7C	7C	-	No		
11	CA_48A-48A	48A-48A	-	No		

	3CC Downlink Carrier Aggregation					
No	Combination	MINAC	Daatistissa	Completely Covered by		
No.		MIMO	Restriction	Measurement Superset		
1	CA_12A-66A-66A	66A-66A	-	No		
2	CA_4A-48C	4A-48C	-	No		
3	CA_48A-66A-66A	66A-66A	-	No		
4	CA_48C-66A	48C-66A	-	No		
5	CA_48A-48A-66A	48A-48A;48A-66A	-	No		
6	CA_48A-48C	48A-48C	-	No		
7	CA_48D	48D	-	No		

	4CC Downlink Carrier Aggregation						
No.	Combination	MIMO	Restriction	Completely Covered by Measurement Superset			
1	CA_48A-48A-66A-66A	48A-48A-66A; 48A-66A-66A	-	No			
2	CA_48A-48C-66A	48A-48C-66A	-	No			
3	CA_48C-66A-66A	48C-66A-66A	-	No			
4	CA_48D-66A	48D-66A	-	No			
5	CA_48E	48E	-	No			

6	CA_48A-48D	48A-48D	-	No
7	CA_48C-48C	48C-48C	-	No

5CC Downlink Carrier Aggregation						
No.	Combination	МІМО	Restriction	Completely Covered by		
	Combination			Measurement Superset		
1	CA_48C-48D	48C-48D	-	No		
2	CA_48E-66A	48E-66A	-	No		
3	CA_48A-48D-66A	48A-48D-66A	-	No		
4	CA_48C-48C-66A	48C-48C-66A	-	No		

Note:

- 1. Uplink maximum output power with downlink carrier aggregation active does not show more than ¼ dB higher than the maximum output power without downlink carrier aggregation active, therefore SAR evaluation with downlink carrier aggregation active can be excluded.
- 2. For power measurement were control and acknowledge data is sent on uplink channels that operate identical to specifications when downlink carrier aggregation is inactive.
- 3. Selected highest measured power when downlink carrier aggregation is inactive for conducted power comparison with downlink carrier aggregation is active, to confirm that when downlink carrier aggregation is active uplink maximum output power remains within the specified tune-up tolerance limits and not more than ¼ dB higher than the maximum output power measured when downlink carrier aggregation inactive.
- 4. For non-contiguous intra-band CA, the SCC selected to provide maximum separation from the PCC and must remain fully within the downlink transmission band.
- 5. For Intra-band, contiguous CA, the downlink channels selected to perform the uplink power measurement must satisfy 7. 3GPP channel spacing (5.4.1A of 3GPP TS 36.521 or equivalent) and channel bandwidth (5.4.2A) requirements.

6. The output power of CA downlink refers to the annex B of this report.

Shenzhen Morlab Communications Technology Co., Ltd.

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

6. RF Exposure Assessment

> Standalone Transmission Assessment

<Standalone Antenna Transmission Assessment>

Bands	Frequency (MHz)	Tune-up Power (dBm)	Antenna Gain (dBi)	EIRP (mW)	PD (mW/cm²)	Limit Value (mW/cm²)	
LTE Band 2	1880	25	4.48	887.16	0.177	1.0	
LTE Band 4	1732.5	25	3.46	701.46	0.140	1.0	
LTE Band 7	2535	24.5	3.29	601.17	0.120	1.0	
LTE Band 12	707.5	24.5	1.28	378.44	0.075	0.47	
LTE Band 48	3625	24.5	4.79	849.18	0.169	1.0	
LTE Band 66	1745	25	4.23	837.53	0.167	1.0	
5G NR n66	1770	30	4.23	2648.50	0.527	1.0	
WLAN 2.4GHz (ANT 0)	2452	22	2.03	252.93	0.050	1.0	
WLAN 2.4GHz (ANT 1)	2452	22	2.02	252.35	0.050	1.0	
WLAN 2.4GHz (ANT 2)	2452	22	2.05	254.10	0.051	1.0	
WLAN 2.4GHz (ANT 3)	2462	22	2.01	251.77	0.050	1.0	
WLAN 5GHz (ANT 0)	5210	22.5	0.08	181.13	0.036	1.0	
WLAN 5GHz (ANT 1)	5210	22.5	1.04	225.94	0.045	1.0	
WLAN 5GHz (ANT 2)	5775	22.5	1.88	274.16	0.055	1.0	
WLAN 5GHz (ANT 3)	5825	23	2.06	320.63	0.064	1.0	

<MIMO Transmission Assessment>

Tanomicolon Accocomons							
Bands	Frequency (MHz)	Tune-up Power (dBm)	Antenna Gain (dBi)	EIRP (mW)	PD (mW/cm²)	Limit Value (mW/cm²)	
WLAN 2.4GHz (4x4 MIMO)	2452	21.5	1.36	193.20	0.038	1.0	
WLAN 5GHz (4x4 MIMO)	5825	22.5	2.06	285.76	0.057	1.0	

Note:

1. According to KDB 447498, MPE assessment is based on source-based time-averaged

maximum conducted output power of the RF channel requiring assessment, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

2. MPE calculate method

$S = PG/4\pi R^2$

Where: S= Power density (in appropriate units, e.g. mW/cm²)

P = Time-average maximum tune-up power (in appropriate units, e.g. dBm)

G = numeric gain of the antenna (in appropriate units, e.g. dBi)

R = Separation distance to the centre of radiation of the antenna (20cm)

Simultaneous Transmission Assessment

Multi-Band Simultaneous Transmission Consideration

	Position	Applicable Combination
Simultaneous Transmission	Hand/Body	WLAN 2.4GHz/5GHz MIMO
Consideration		WWAN+WLAN 2.4GHz SISO/MIMO
		WWAN+WLAN 5GHz SISO/MIMO

- 1. This device contains transmitters that may operate simultaneously, therefore simultaneous transmission analysis is required.
- 2. The worst condition for WWAN & WLAN 2.4GHz/5GHz will be calculated for transmitting simultaneously.

Formula: Result=Power density₁/ limit₁ + Power density₂/ limit₂ \leq 1.

Transmission Bands	Power Density/ SAR	Limit	Simultaneous Transmission Result
WWAN	0.527	1.0	0.570
WLAN 2.4GHz	0.051	1.0	0.578

Transmission Bands	Power Density/ SAR	Limit	Simultaneous Transmission Result
WWAN	0.527	1.0	0.504
WLAN 5GHz	0.064	1.0	0.591

Conclusion

According to FCC 47 CFR Part 2(2.1091), this device complies with human exposure basic restrictions.

Annex A General Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
Laboratory Address:	FL.1-3, Building A, FeiYang Science Park, No.8		
	LongChang Road, Block 67, BaoAn District, ShenZhen,		
	GuangDong Province, P. R. China		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Address:	FL.1-3, Building A, FeiYang Science Park, No.8
	LongChang Road, Block 67, BaoAn District, ShenZhen,
	GuangDong Province, P. R. China

3. Facilities and Accreditations

The FCC designation number is CN1192, the test firm registration number is 226174.

Note:

The main report is end here and the other Annex B will be submitted separately.

END OF REPORT	

