

# Test Report



## INTENTIONAL RADIATOR TESTS ACCORDING TO FCC PART 15 C

Equipment Under Test: Inductive communication module (123 kHz)

Model: UWIS-INDS100

Manufacturer: UWIS Oy  
Kaarintie 700  
20540 Turku  
FINLAND

Customer: UWIS Oy  
Kaarintie 700  
20540 Turku  
FINLAND

FCC Rule Part: 15.209: 2016

Date: 30 June 2020

Issued by:

A handwritten signature in blue ink, appearing to read "Jani Tuomela".

Jani Tuomela  
Testing Engineer

Date: 30 June 2020

Checked by:

A handwritten signature in blue ink, appearing to read "Rauno Repo".

Rauno Repo  
Testing Engineer

**Table of Contents**

---

|                                                             |    |
|-------------------------------------------------------------|----|
| GENERAL REMARKS .....                                       | 3  |
| Disclaimer .....                                            | 3  |
| RELEASE HISTORY .....                                       | 4  |
| PRODUCT DESCRIPTION .....                                   | 5  |
| Equipment Under Test .....                                  | 5  |
| General Description .....                                   | 5  |
| Ratings and declarations .....                              | 5  |
| Power Supply .....                                          | 5  |
| Mechanical Size of the EUT .....                            | 5  |
| SUMMARY OF TESTING .....                                    | 6  |
| EUT Test Conditions during Testing .....                    | 6  |
| TEST RESULTS .....                                          | 7  |
| Transmitter Radiated Spurious Emissions 9 kHz - 2 GHz ..... | 7  |
| TEST EQUIPMENT .....                                        | 10 |

**GENERAL REMARKS****Disclaimer**

*This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com/en/Terms-and-Conditions.aspx> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx>*

*Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.*

*Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.*

**RELEASE HISTORY**

| Version | Changes         | Issued       |
|---------|-----------------|--------------|
| 1.0     | Initial release | 30 June 2020 |
|         |                 |              |

## PRODUCT DESCRIPTION

### Equipment Under Test

Trade mark: -  
Model: UWIS-INDS100  
Type: Inductive communication module  
Serial no: -  
FCC ID: -  
IC: -

### General Description

EUT is an Inductive low frequency transceiver (DXT) communication module with 123 kHz operating frequency.

### Classification

|                                              |                                     |
|----------------------------------------------|-------------------------------------|
| Fixed device                                 | <input type="checkbox"/>            |
| Mobile Device (Human body distance > 20cm)   | <input checked="" type="checkbox"/> |
| Portable Device (Human body distance < 20cm) | <input type="checkbox"/>            |

### Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing

### Ratings and declarations

Operating Frequency Range (OFR): 123 kHz  
Channels: 1  
Channel separation: -  
Transmission technique: -  
Modulation: -  
Output power (peak): 25 dBm (declared by the customer)  
Antenna type: Coil antenna  
Integral Antenna gain: 2.15 dBi max

### Power Supply

Operating voltage range: 12 VDC

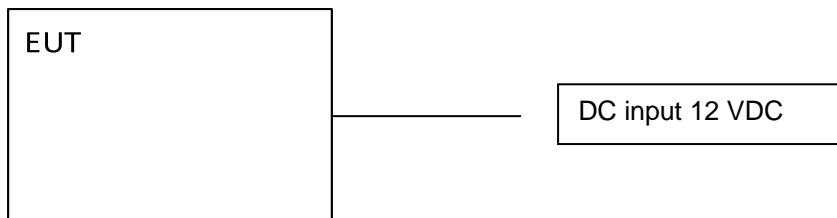
During the test, EUT was powered with 12 V battery back.

### Mechanical Size of the EUT

Height: 17 mm

Width: 60 mm

Length: 20 mm


**SUMMARY OF TESTING**

| Test Specification | Description of Test               | Result      |
|--------------------|-----------------------------------|-------------|
| §15.209(a)         | Radiated Emissions 9 kHz to 2 GHz | <b>PASS</b> |

*The decision rule applied for the tests results stated in this test report is according to the requirements of section 1.3 of ANSI C63.10-2013.*

**EUT Test Conditions during Testing**

The EUT was operating on 123 kHz and was in continuous transmit/receive mode during all the tests. EUT was transmitting and receiving alternately.



**Figure 1:** Test setup blocking diagram

**Test Facility**

|                                                                                                            |                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Testing Laboratory / address:<br>FCC designation number: <b>FI0002</b><br>ISED CAB identifier: <b>T004</b> | SGS Fimko Ltd<br>Takomotie 8<br>FI-00380, HELSINKI<br>FINLAND                                                                                                                                                     |
| Test Site:                                                                                                 | <input type="checkbox"/> K10LAB, ISED Canada registration number: <b>8708A-1</b><br><input checked="" type="checkbox"/> K5LAB, ISED Canada registration number: <b>8708A-2</b><br><input type="checkbox"/> T10LAB |

## TEST RESULTS

### Transmitter Radiated Spurious Emissions 9 kHz - 2 GHz

**Standard:** ANSI C63.10 (2013)  
**Tested by:** JAT  
**Date:** 14 November 2017, 4 June 2020  
**Temperature:** 23 ± 3 °C  
**Humidity:** 20 - 60 % RH  
**Measurement uncertainty:** ± 4.51 dB **Level of confidence 95 % (k = 2)**

#### FCC Rule: 15.209(a)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

Three orthogonal positions (X, Y, Z) were measured and the worst-case result has been reported.

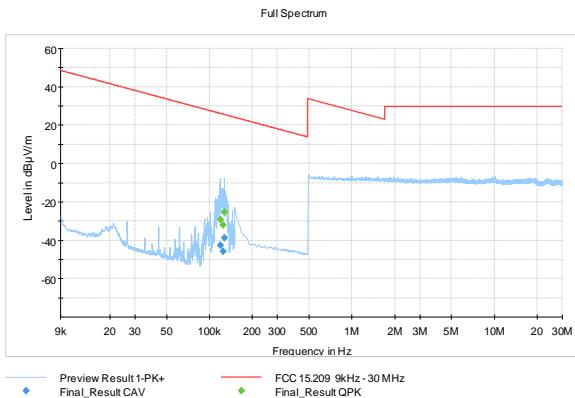
The correction factor in the final result table contains the sum of the transducers (antenna + amplifier + cables).

Peak values of emissions below 1000 MHz measured for reference as well as transmitter fundamental.

Testing was performed at a 3 meter distance and the field strength reading below 30MHz extrapolated to 30 or 300 meters for comparison to the 30 or 300 meters limits.

The field strength reading was extrapolated using the extrapolation (distance) factor of 40dB/decade as specified in 15.31 (f) (2) for frequencies below 30MHz.

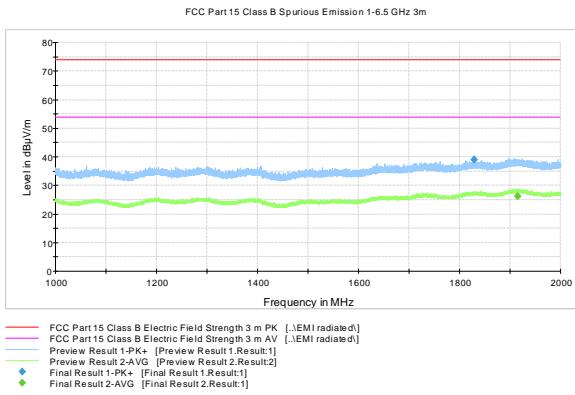
Distance Factor from 30 meters to 3 meters (1 decade) = -40dB


Distance Factor from 300 meters to 3 meters (2 decades) = -80dB

| Frequency range [MHz] | Limit [ $\mu$ V/m] | Limit [dB $\mu$ V/m] | Detector   |
|-----------------------|--------------------|----------------------|------------|
| 30 - 80               | 100                | 40.0                 | Quasi-peak |
| 88 - 216              | 150                | 43.5                 | Quasi-peak |
| 216 - 960             | 200                | 46.0                 | Quasi-peak |
| 960 - 1000            | 500                | 53.9                 | Quasi-peak |
| Above 1000            | 500                | 53.9                 | Average    |
| Above 1000            | 5000               | 73.9                 | Peak       |


## Results

30 MHz – 2000 MHz measured 14 November 2017


9 kHz – 30 MHz measured 4 June 2020



**Figure 2:** 9 kHz – 30 MHz The field strength reading extrapolated to the measuring distance of 300 / 30 m.



**Figure 3:** 30 MHz – 1000 MHz



**Figure 4:** 1 GHz – 2 GHz

**Table 1:** Peak results

| Frequency (MHz) | MaxPeak (dB $\mu$ V/m) | Meas. Time (ms) | Bandwidth (kHz) | Height (cm) | Polarization | Azimuth (deg) | Corr. (dB) | Margin (dB) | Limit (dB $\mu$ V/m) |
|-----------------|------------------------|-----------------|-----------------|-------------|--------------|---------------|------------|-------------|----------------------|
| 1828.500000     | 38.9                   | 1000.0          | 1000.000        | 198.0       | H            | 55.0          | 2.8        | 35.0        | 73.9                 |

**Table 2:** Average results

| Frequency (MHz) | Average (dB $\mu$ V/m) | Meas. Time (ms) | Bandwidth (kHz) | Height (cm) | Polarization | Azimuth (deg) | Corr. (dB) | Margin (dB) | Limit (dB $\mu$ V/m) |
|-----------------|------------------------|-----------------|-----------------|-------------|--------------|---------------|------------|-------------|----------------------|
| 0.118930        | -42.48                 | 1000.0          | 0.200           | 100.0       | 90°          | 282.0         | -60.3      | 68.57       | 26.09                |
| 0.123920        | -45.77                 | 1000.0          | 0.200           | 100.0       | 90°          | 277.0         | -60.3      | 71.50       | 25.74                |
| 0.127490        | -38.86                 | 1000.0          | 0.200           | 100.0       | 90°          | 273.0         | -60.3      | 64.35       | 25.49                |
| 1915.300000     | 26.1                   | 1000.0          | 1000.000        | 150.0       | V            | 237.0         | 3.7        | 27.8        | 53.9                 |

**Table 3:** Quasi-peak results

| Frequency (MHz) | QuasiP (dB $\mu$ V/m) | Meas. Time (ms) | Bandwidth (kHz) | Height (cm) | Antenna Angle (deg) or Polarization | Azimuth (deg) | Corr. (dB) | Margin (dB) | Limit (dB $\mu$ V/m) |
|-----------------|-----------------------|-----------------|-----------------|-------------|-------------------------------------|---------------|------------|-------------|----------------------|
| 30.720000       | 9.3                   | 1000.0          | 120.000         | 343.0       | V                                   | 228.0         | 13.0       | 30.7        | 40.0                 |

**TEST EQUIPMENT****RF-Test Equipment, 9 kHz – 30 MHz measured 4 June 2020**

| Equipment                    | Manufacturer              | Type                 | Inv or serial | Prev Calib | Next Calib |
|------------------------------|---------------------------|----------------------|---------------|------------|------------|
| TEMPERATURE/ HUMIDITY SENSOR | EDS                       | OW-ENV-TH, K5 SAC    | inv:10517     | 2019-11-07 | 2020-11-07 |
| TURNTABLE                    | MATURO                    | DS430 UPGRADED       | inv:10182     | NCR        | NCR        |
| MAST & TURNTABLE CONTROLLER  | MATURO<br>ROHDE & SCHWARZ | NCD                  | inv:10183     | NCR        | NCR        |
| TEST SOFTWARE                | ROHDE & SCHWARZ           | EMC-32               | -             | NCR        | NCR        |
| EMI TEST RECEIVER            | ROHDE & SCHWARZ           | ESW26                | inv:10679     | 2019-06-28 | 2020-06-27 |
| ANTENNA                      | SCHWARZ                   | HFH2-Z2, 335.4711.52 | inv:8013      | 2018-10-30 | 2020-10-30 |

**RF-Test Equipment 30 MHz – 2000 MHz measured 14 November 2017**

| Equipment                   | Manufacturer              | Type           | Inv or serial | Prev Calib | Next Calib |
|-----------------------------|---------------------------|----------------|---------------|------------|------------|
| ANTENNA                     | A.H. SYSTEMS              | SAS-200/518    | inv:7873      | NCR        | NCR        |
| SPECTRUM ANALYZER           | AGILENT                   | E7405A         | inv:9746      | 2016-01-07 | 2018-01-07 |
| PREAMPLIFIER                | CIAO                      | CA118-3123     | inv:10278     | 2016-11-28 | 2017-11-28 |
| ANTENNA                     | EMCO                      | 3117           | inv:7293      | 2016-03-16 | 2018-03-06 |
| TURNTABLE                   | MATURO                    | DS430 UPGRADED | inv:10182     | NCR        | NCR        |
| MAST & TURNTABLE CONTROLLER | MATURO                    | NCD            | inv:10183     | NCR        | NCR        |
| ANTENNA MAST                | MATURO<br>ROHDE & SCHWARZ | TAM 4.0E       | inv:10181     | NCR        | NCR        |
| TEST SOFTWARE               | ROHDE & SCHWARZ           | EMC-32         | -             | NCR        | NCR        |
| EMI TEST RECEIVER           | ROHDE & SCHWARZ           | ESU 26         | inv:8453      | 2017-07-10 | 2018-07-10 |
| ANTENNA                     | SCHWARZBECK               | VULB 9168      | inv:8911      | 2016-10-25 | 2018-10-25 |
| TEMPERATURE/ HUMIDITY METER | VAISALA                   | HMT 333        | inv:8638      | 2017-02-21 | 2018-02-21 |

NCR = No calibration required

**END OF REPORT**