

FCC SAR REPORT

APPLICANT: Anker Innovations Limited

PRODUCT NAME: eufy Security SpaceView

MODEL NAME : T8300-M

BRAND NAME: eufy Security

FCC ID : 2AOKB-T8300M

STANDARD(S) : 47 CFR §2.1093

IEEE 1528-2013

TEST DATE : 2018-08-17 to 2018-08-17

ISSUE DATE : 2018-08-17

Tested by:

Gan Yueming(Test engineer)

Gan Yueming

Approved by:

Peng Huarui(Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

DIRECTORY

1. Technical Information	4
1.1. Applicant and Manufacturer Information	4
1.2. Equipment Under Test (EUT) Description	4
1.3. Applied Reference Documents	5
2. Device Category and SAR Limits	6
3. Specific Absorption Rate (SAR)	7
3.1. Introduction	7
3.2. SAR Definition	7
4. SAR Measurement Setup	8
4.1. The Measurement System	8
4.2. Probe	8
4.3. Probe Calibration Process	10
4.4. Phantom	11
4.5. Device Holder	11
5. Test Equipment List	12
6. Tissue Simulating Liquids	13
7. Uncertainty Assessment	15
8. SAR Measurement Evaluation	18
8.1. System Setup	18
8.2. Validation Results	19
9. Operational Conditions During Test	20
9.1. Body-worn Configurations	20
9.2. Hotspot Mode Exposure Position Conditions	20
9.3. USB Connector Orientations Implemented on Laptop Computers	21
9.4. Simple Dongle Test Procedures	21
9.5. Dongles with Swivel or Rotating Connectors	22

Annex E SATIMO Calibration Certificate

REPORT No.: SZ18070269S02

10. SAR Measurement Procedure	23
10.1. General scan Requirements	23
10.2. Measurement procedure	24
10.3. Description of interpolation/extrapolation scheme	24
11. Measurement of Conducted output power	25
12. Antenna Evaluation	26
11.1 EUT Antenna Location	26
11.2 SAR Test Exclusion Consider Table	27
13. SAR Test Results Summary	28
14. Simultaneous transmission	29
Annex A General Information	
Annex B Test Setup Photos	
Annex C Plots of System Performance Check	
Annex D Plots of Maximum SAR Test Results	

Change History					
Issue Date Reason for change					
1.0	2018-08-17	First edition			

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

1. Technical Information

Note: Provide by manufacturer.

1.1. Applicant and Manufacturer Information

Applicant:	Anker Innovations Limited		
Applicant Address	Room 1318-19,Hollywood Plaza,610 Nathan		
Applicant Address:	Road,Mongkok,Kowloon,Hong Kong		
Manufacturer:	Anker Innovations Limited		
Manufactures Address.	Room 1318-19,Hollywood Plaza,610 Nathan		
Manufacturer Address:	Road,Mongkok,Kowloon,Hong Kong		

1.2. Equipment Under Test (EUT) Description

Model Name:	T8300-M		
Hardware Version:	V1.0		
Software Version:	V1.0		
Frequency Bands:	2.4GHz Band: 2410 MHz ~ 2477 MHz		
Modulation Mode:	2.4GHz Band:FHSS,GFSK		
Antenna Type:	PCB Antenna		
Antenna Gain:	1.0 dBi		
Max Scaled SAR10g (W/kg):	Limb: 1.804 W/kg Limit(W/kg) : 4.0 W/kg		

Note: For a more detailed description, please refer to specification or user's manual supplied by the applicant and/or manufacturer.

1.3. Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title
1	47 CFR§2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
2		IEEE Recommended Practice for Determining the Peak
	IEEE 4500 0040	Spatial-Average Specific Absorption Rate (SAR) in the Human Head
	IEEE 1528-2013	from Wireless Communications Devices:
		Measurement Techniques
3	KDB 447498 D01v06	General RF Exposure Guidance
4	KDB 865664 D01v01r04	SAR Measurement 100 MHz to 6 GHz
5	KDB 865664 D02v01r02	SAR Reporting

2. Device Category and SAR Limits

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	nole-Body Partial-Body Hands, Wrists, Feet a			
0.4	8.0	20.0		

Note: This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/controlled exposure should be applied for this device, it is 8.0 W/kg as averaged over any 1 gram of tissue.

3. Specific Absorption Rate (SAR)

3.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are Middle than the limits for general population/uncontrolled.

3.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by(dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \Big(\frac{dW}{dm} \Big) = \frac{d}{dt} \Big(\frac{dW}{\rho dv} \Big)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by,

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where σ is the conductivity of the tissue, ρ is the mass density of the tissue and |E| is the rmselectrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4. SAR Measurement Setup

4.1. The Measurement System

Como SAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Como SAR system consists of the Following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The Following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

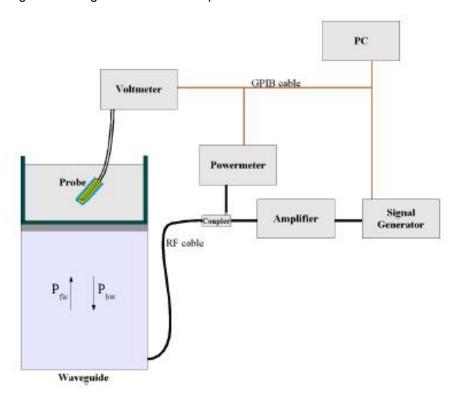
4.2. Probe

For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with Following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 6.5 mm

- Distance between probe tip and sensor center: 2.5mm


- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)

- Probe linearity: <0.25 dB- Axial Isotropy: <0.25 dB- Spherical Isotropy: <0.25 dB

- Calibration range: 835to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annex technique using reference guide at the five frequencies.

$$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta} \cos^2\left(\pi \frac{y}{a}\right) e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power
Pbw = Backward Power

a and b = Waveguide dimensions

i = Skin depth

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO
After each calibration, a SAR measurement is performed on a validation dipole and compared with aNPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are: CF(N)=SAR(N)/Vlin(N) (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

 $Vlin(N)=V(N)^*(1+V(N)/DCP(N)) \qquad (N=1,2,3)$

Where DCP is the diode compression point in mV.

4.3. Probe Calibration Process

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm2) using an with CALISAR, Antenna proprietary calibration system.

Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm2.

Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

 $\delta t = \text{exposure time (30 seconds)},$

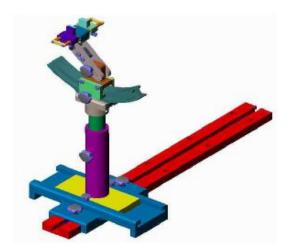
C = heat capacity of tissue (brainor muscle),

 δT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Where:

 σ = simulated tissue conductivity,


 ρ = Tissue density (1.25 g/cm³ for brain tissue)

4.4. Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

4.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is Middle than 1°.

Device Holder:

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

5. Test Equipment List

Manufacturer	Name of Equipment	Type/Model Serial Number		Calibration		
Manufacturer	Name of Equipment	i ype/iviodei	Serial Number	Last Cal.	Due Date	
SATIMO	2450MHz System Validation Kit	D2450V2	30/13 DIP2G450-263	2018.05.10	2019.05.09	
SATIMO	Dosimetric E-Field Probe	N/A	37/08 EP80	2018.05.10	2019.05.09	
Keithley	Voltmeter	2000	1000572	2018.05.10	2019.05.09	
SATIMO	SAM Twin Phantom 2	N/A	SN_36_08_SAM62	NCR	NCR	
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR	
R&S	Network Emulator	CMW500	124534	2018.04.17	2019.04.16	
Agilent	Network Analyzer	E5071B	MY42404762	2018.04.17	2019.04.16	
Agilent	gilent Dielectric Probe Kit 85033E N/A		2018.04.17	2019.04.16		
mini-circuits	i-circuits Amplifier ZHL-42W+ 608501717		NCR	NCR		
Agilent	Signal Generator	N5182B	MY53050509	2018.04.17	2019.04.16	
Agilent	Power Meter	E4416A	MY45102093	2018.04.17	2019.04.16	
Agilent	Power Senor	N8482A	MY41090849	2018.04.17	2019.04.16	
R&S	Power Meter	NRVD	101066	2018.04.17	2019.04.16	
Anritsu	Power Sensor	MA2411B	N/A	2018.04.17	2019.04.16	
Giga-tronics	Directional coupler	N/A	1829112	NA	NA	
R&S	Synthetizer	SML_03	101868	2017.08.24	2018.08.23	
MCL	Attenuation1	6dBm	351-218-010	NA	NA	
N/A	Tissue Simulating Liquids	Вос	dy 2450 MHz	Withi	n 24H	
THERMOMET ER	Thermo meter	Mode-01	N/A	2018.04.25	2019.04.24	

6. Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with Homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing, the liquid height from the ear reference point(ERP) of the phantom to the liquid top surface is larger than 15cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table.

Fig 5.1 Photo of Liquid Height for Head SAR

Fig 5.2 Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquids

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
				Head				
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0

Simulating Liquid for 5GHz

. •	
Ingredients	(% by weight)
Water	64~78%
Mineral oil	11~18%
Emulsifiers	9~15%
Additives and Salt	2~3%

Note: Please refer to the validation results for dielectric parameters of each frequency band.

The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Conductivity Target (σ)	Delta (σ) (%)	Limit (%)	Date
2450	MSL	21.8	1.965	1.95	0.77	±5	2018.08.17

Table 1: Dielectric Performance of Tissue Simulating Liquid

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Permittivity (ϵ_r)	Permittivity Target (ε _r)	Delta (ε _r)(%)	Limit (%)	Date
2450	MSL	21.8	52.888	52.70	0.36	±5	2018.08.17

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Normal		Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a) 1/k ^(b)		1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

(c) Table 6.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which

Tel: 86-755-36698555

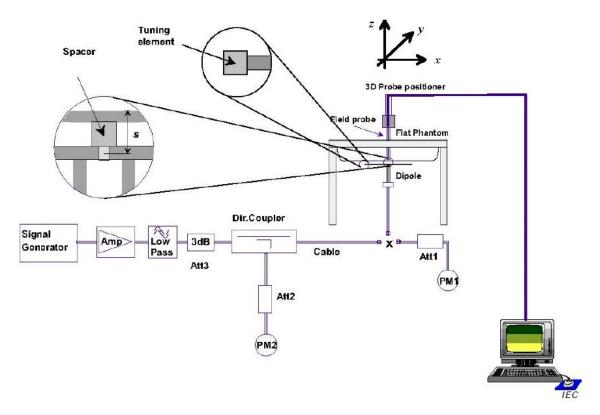
Http://www.morlab.cn

corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

	1	1	1		1	1		_	1
а	b	С	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci	Ci	1g Ui	10g Ui	Vi
		(+- %)	Dist.		(1g)	(10g)	(+-%)	(+-%)	
Measurement System									
Probe calibration	E.2.1	5.83	N	1	1	1	5.83	5.83	∞
Axial Isotropy	E.2.2	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	∞
Hemispherical Isotropy	E.2.2	5.9	R	$\sqrt{3}$	1	1	3.41	3.41	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	E.2.4	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Readout Electronics	E.2.6	0.5	N	1	1	1	0.5	0.5	∞
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	3.0	3.0	∞
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
Probe positioner Mechanical Tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to Phantom Shell	E.6.3	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Test sample Related									
Test sample positioning	E.4.2.1	2.6	N	1	1	1	2.6	2.6	N-1
Device Holder Uncertainty	E.4.1.1	3.0	N	1	1	1	3.0	3.0	N-1
Output power Power drift - SAR drift measurement	6.6.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	8
Phantom and Tissue Parameter	rs				•			•	•
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Liquid conductivity - deviation from target value	E.3.2	2.0	R	$\sqrt{3}$	0.64	0.43	1.69	1.13	∞
Liquid conductivity - measurement uncertainty	E.3.3	2.5	N	1	0.64	0.43	3.20	2.15	M
Liquid permittivity - deviation	E.3.2	2.5	R	$\sqrt{3}$	0.6	0.49	1.28	1.04	∞
	1			<u> </u>		l		<u> </u>	

Tel: 86-755-36698555

Http://www.morlab.cn


from target value									
Liquid permittivity -	E.3.3	5.0	N	1	0.6	0.49	6.00	4.90	М
measurement uncertainty	□.5.5	5.0	IN	ı	0.0	0.49	0.00	4.90	IVI
Liquid conductivity	E.3.4		R	$\sqrt{3}$	0.78	0.41			
-temperature uncertainty	□.3.4		K	ν3	0.76	0.41			~
Liquid permittivity –temperature	E.3.4		R	$\sqrt{3}$	0.23	0.26			8
uncertainty	□.3.4		K	ν3	0.23	0.20			~
Combined Standard Uncertainty			RSS				11.55	12.07	
Expanded Uncertainty			K=2				+23.20	+24.17	
(95% Confidence interval)			N=2				⊥23.20		

8. SAR Measurement Evaluation

8.1. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250mW is used for 700MHz to 3GHz, 100mW is used for 3.5GHz to 6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter.

8.2. Validation Results

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

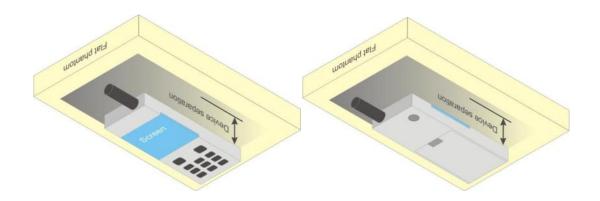
<1g SAR>

Date	Frequency (MHz)2	Tissue Type2	Input Power (mW)	Probe S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2018.08.17	2450	MSL	100	37/08 EP80	5.090	50.93	50.9	0.06

<10g SAR>

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Probe S/N	Measured 10g SAR (W/kg)	Targeted 10g SAR (W/kg)	Normalized 10g SAR (W/kg)	Deviation (%)
2018.08.17	2450	MSL	100	37/08 EP80	2.378	23.26	23.78	-2.19

Note: System checks the specific test data please see Annex C

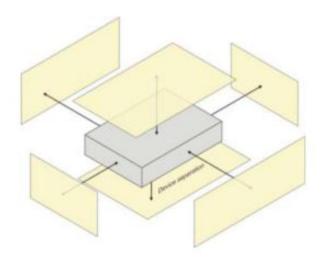

9. Operational Conditions During Test

9.1. Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

Remark: Please refer to Appendix B for the test setup photos.


Illustration for Body-Worn Position

9.2. Hotspot Mode Exposure Position Conditions

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing functions, the relevant hand and body exposure conditions are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surfaces and edges with a transmitting antenna located within 25 mm from that surface or edge. When the form factor of a handset is smaller than 9 cm x 5 cm, a test separation distance of 5 mm (instead of 10 mm) is required for testing hotspot mode. When the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

9.3. USB Connector Orientations Implemented on Laptop Computers

Note: These are USB connector orientations on laptop computers; USB dongles have the reverse configuration for plugging into the corresponding laptop computers.

9.4. Simple Dongle Test Procedures

Test all USB orientations [see figure below: (A) Horizontal-Up, (B) Horizontal-Down, (C) Vertical-Front, and (D) Vertical-Back] with a device-to-phantom separation distance of 10mm as op.des described. These test orientations are intended for the exposure conditions found in typical laptop/notebook/netbook or tablet computers with either horizontal or vertical USB connector configurations at various locations in the keyboard section of the computer. Current generation portable host computers should be used to establish the required SAR measurement separation distance. The same test separation distance must be used to test all frequency bands and modes in each USB orientation. The typical Horizontal-Up USB connection (A), found in the majority of host computers, must be tested using an appropriate host computer. A host computer with either Vertical-Front (C) or Vertical-Back (D) USB connection should be used to test one of the vertical USB orientations. If a suitable host computer is not available for testing the Horizontal-Down (B) or the remaining Vertical USB orientation, a high quality USB cable, 12 inches or less, may be used for testing

Tel: 86-755-36698555

Http://www.morlab.cn

these other orientations. It must be documented that the USB cable does not influence the radiating characteristics and output power of the transmitter.

9.5. Dongles with Swivel or Rotating Connectors

A swivel or rotating USB connector may enable the dongle to connect in different orientations to host computers. When the antenna is built-in within the housing of a dongle, a swivel or rotating connector may allow the antenna to assume different positions. The combination of these possible configurations must be considered to determine the SAR test requirements. When the antenna is located near the tip of a dongle, it may operate at closer proximity to users in certain connector orientations where dongle tip testing may be required.

The 5 mm test separation distance used for testing simple dongles has been established based on the overall host platform (laptop/notebook/netbook) and device variations, and varying user operating configurations and exposure conditions expected for a peripheral device. The same test distance should generally apply to dongles with swivel or rotating connectors. The procedures described for simple dongles should be used to position the four surfaces of the dongle at 5 mm from the phantom to evaluate SAR. At least one of the horizontal and one of the vertical positions should be tested using an applicable host computer. If the antenna is within 1 cm from the tip of the dongle (the end without the USB connector), the tip of the dongle should also be tested at 5 mm perpendicular to the phantom. For antennas located within 2.5 cm from the USB connector and if the dongle can be positioned at 45° to 90° from the horizontal position [(A) or (B)], testing in one or more of these configurations may need to be considered. A KDB inquiry should be submitted to determine the applicable test configurations.

10. SAR Measurement Procedure

10.1. General scan Requirements

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Boththe probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013.

			≤3 GHz	> 3 GHz		
Maximum distance fro (geometric center of p		measurement point rs) to phantom surface	5 mm ± 1 mm	½·δ·ln(2) mm ± 0.5 mm		
Maximum probe angle surface normal at the r			30°±1°	20°±1°		
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 - 4 GHz: ≤ 12 mm 4 - 6 GHz: ≤ 10 mm		
Maximum area scan s	patial reso	lution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device wit at least one measurement point on the test device.			
Maximum zoom scan	spatial res	olution: Δx_{Zoon} , Δy_{Zoon}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 - 4 GHz: ≤ 5 mm* 4 - 6 GHz: ≤ 4 mm*		
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoon} (1): between 1* two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤3 mm 4 – 5 GHz: ≤2.5 mm 5 – 6 GHz: ≤2 mm		
	Δz _{Zzem} (n>1): between subsequent points		≤1.5·Δ z ₂ ,	2000(n-1) mm		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

Tel: 86-755-36698555

Http://www.morlab.cn

When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

10.2. Measurement procedure

The following steps are used for each test position:

- 1. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
- 2. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- 3. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- 4. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

10.3. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

Measurement of Conducted output power

1. 2.4GHz Conducted Average output power

	Modulation	Frequency (MHz)	Average power (dBm)	Tune-Up Limit
2.4GHz Band		2410	13.04	13.50
	GFSK	2441	13.18	13.50
		2477	13.21	13.50

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

12. Antenna Evaluation

11.1 EUT Antenna Location

11.2 SAR Test Exclusion Consider Table

According with FCC KDB 447498 D01, Appendix A, <SAR Test Exclusion Thresholds for 100 MHz −6 GHz and ≤50 mm> Table, this Device SAR test configurations consider as following:

Band	Horizontal-Up	Horizontal-Down	Vertical-Front	Vertical-Back
Distance	<10mm	<10mm	<10mm	<10mm
2.4GHz	Yes	Yes	Yes	Yes

Note:

- 1. Maximum power is the source-based time-average power and represents the maximum RF output power among production units.
- 2. Per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 3. Per KDB 447498 D01, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is < 5mm, 5mm is used to determine SAR exclusion threshold
- 4. Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}]$ ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- a. f(GHz) is the RF channel transmit frequency in GHz
- b. Power and distance are rounded to the nearest mW and mm before calculation
- c. The result is rounded to one decimal place for comparison
- d. For < 50 mm distance, we just calculate mW of the exclusion threshold value (3.0) to do compare.

This formula is [3.0] / [√f(GHz)] · [(min. test separation distance, mm)] = exclusion threshold of mW.

- 5. Per KDB 447498 D01, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following:
- a. [Threshold at 50 mm in step 1) + (test separation distance -50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
- b. [Threshold at 50 mm in step 1) + (test separation distance -50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz

13. SAR Test Results Summary

Standalone Extremity SAR Data (Ant Close)

		onney or at Data (7 a)		- /				
Plot				Ave.	Tune-Up	Tune-up	Meas.	Reported
	Band/Mode	Test Position	Fre.	Power	Limit	Scaling	SAR _{10g}	SAR _{10g}
No.				(dBm)	(dBm)	Factor	(W/kg)	(W/kg)
	2.4GHz	Horizontal Up	2477	13.21	13.50	1.069	0.058	0.062
	2.4GHz	Horizontal Down	2477	13.21	13.50	1.069	1.218	1.302
	2.4GHz	Horizontal Down	2410	13.04	13.50	1.112	1.290	1.434
	2.4GHz	Horizontal Down	2441	13.18	13.50	1.076	1.095	1.179
	2.4GHz	Vertical Front	2477	13.21	13.50	1.069	0.856	0.915
	2.4GHz	Vertical Back	2477	13.21	13.50	1.069	0.056	0.060
	2.4GHz	Vertical Left	2477	13.21	13.50	1.069	0.002	0.002
	2.4GHz	Vertical Right	2477	13.21	13.50	1.069	0.023	0.025

Standalone Extremity SAR Data (Ant Open)

Plot				Ave.	Tune-Up	Tune-up	Meas.	Reported
No.	Band/Mode	Test Position	Fre.	Power	Limit	Scaling	SAR _{10g}	SAR _{10g}
INO.				(dBm)	(dBm)	Factor	(W/kg)	(W/kg)
	2.4GHz	Horizontal Up	2477	13.21	13.50	1.069	0.935	1.000
	2.4GHz	Horizontal Down	2477	13.21	13.50	1.069	1.652	1.766
1#	2.4GHz	Horizontal Down	2410	13.04	13.50	1.112	1.623	1.804
	2.4GHz	Horizontal Down	2441	13.18	13.50	1.076	1.597	1.719
	2.4GHz	Vertical Front	2477	13.21	13.50	1.069	0.030	0.032
	2.4GHz	Vertical Back	2477	13.21	13.50	1.069	0.052	0.056
	2.4GHz	Vertical Left	2477	13.21	13.50	1.069	0.013	0.014
	2.4GHz	Vertical Right	2477	13.21	13.50	1.069	0.238	0.254

14. Simultaneous transmission

This DUT supports 2.4GHz Band according to the network signal condition, therefore, it will not transmit simultaneously.

Annex A General Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Department:	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road,
	Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R.
	China
Responsible Test Lab	Mr. Su Feng
Manager:	
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd. Morlab
	Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road,
	Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R.
	China

Annex B Test Setup Photos

Ant Close:

Horizontal Up (0mm)

Horizontal Down (0mm)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Vertical Front (0mm)

Vertical Back (0mm)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Tel: 86-755-36698555

Vertical Left (0mm)

Vertical Right (0mm)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Ant Open

Horizontal Up (0mm)

Horizontal Down (0mm)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Vertical Front (0mm)

Vertical Back (0mm)

E-mail: service@morlab.cn

Vertical Left (0mm)

Vertical Right (0mm)

Annex C Plots of System Performance Check

System Performance Check Data(2450MHz Body)

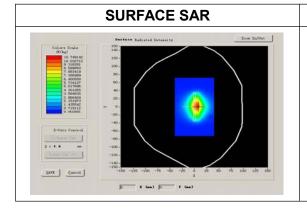
Type: Phone measurement (Complete)

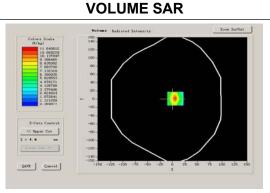
Area scan resolution: dx=12mm,dy=12mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement: 2018.08.17

Measurement duration: 15 minutes 26 seconds

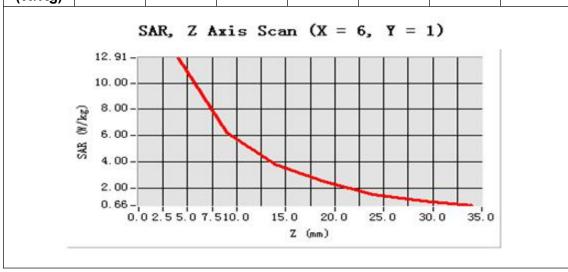

A. Experimental conditions.

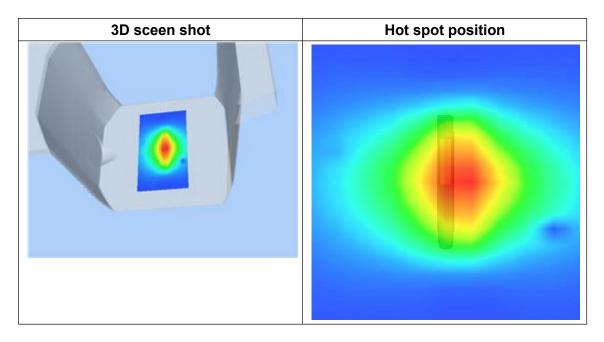

Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	
Band	2450MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	2450.000000
Relative permittivity (real part)	52.887643
Conductivity (S/m)	1.965147
Power Drift (%)	1.080000
Ambient Temperature:	22.4°C
Liquid Temperature:	21.5°C
ConvF:	4.93
Crest factor:	1:1




Maximum location: X=6.00, Y=1.00

SAR 10g (W/Kg)	2.378054
SAR 1g (W/Kg)	5.090178

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	12.9615	6.2096	3.8187	2.4504	1.5036	1.0219
(W/Kg)							

Http://www.morlab.cn E-mail: service@morlab.cn

Annex D Plots of Maximum SAR Test Results

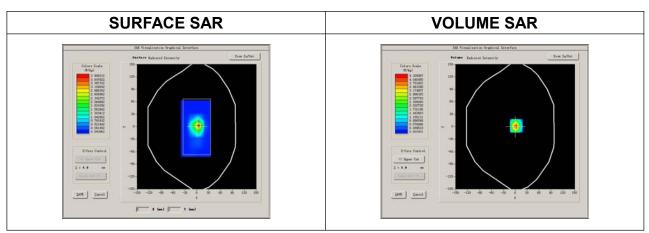
MEASUREMENT 1

Type: Phone measurement (Complete)

Parameter area scan=step 15 mm

Parameter zoom scan=dx=8mm, dy=8mm, dz=5mm.

Date of measurement: 2018.08.17


Measurement duration: 15 minutes 46 seconds

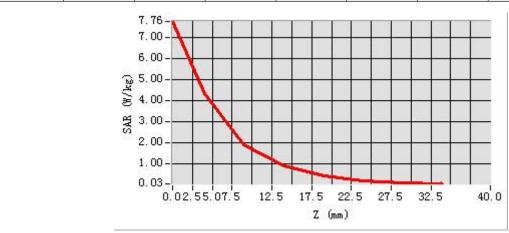
A. Experimental Conditions.

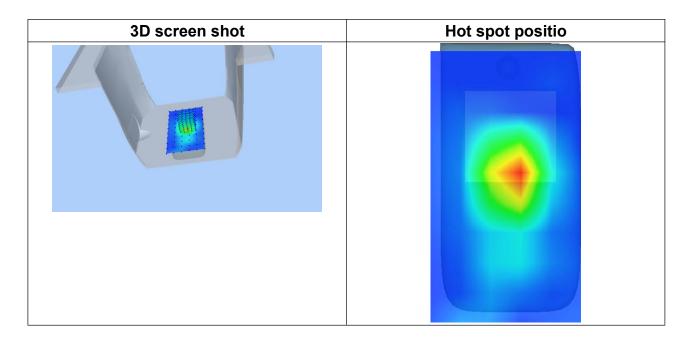
Phantom	Body
Device	Plane
Band	2.4GHz
Channels	LOW
Signal	GFSK

B. SAR Measurement Results.

Frequency (MHz)	2410.0
Relative permittivity (real part)	52.898
Conductivity (S/m)	1.954
Power drift (%)	-2.31
Ambient Temperature:	22.4°C
Liquid Temperature:	21.5°C
ConvF:	4.93
Duty Cycle:	1:1.0

Maximum location: X=3.000000 Y=2.000000





SAR Peak: 7.963700 W/kg

SAR 10g (W/Kg)	1.623047
SAR 1g (W/Kg)	4.103157

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00	34.00
SAR	7.7591	4.3289	1.9120	0.8779	0.4040	0.1794	0.0789	0.0269
(W/Kg)	36	87	16	72	60	56	21	03

Annex E SATIMO Calibration Certificate

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

COMOSAR E-Field Probe Calibration Report

Ref: ACR.189.1.16.SATU.A

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY CO., LTD

FL3, BUILDING A, FEIYANG SCIENCE PARK, NO.8 LONGCHANG ROAD,

BLOCK 67, BAOAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA

MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 37/08 EP80

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 10/05/2018

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	17/5/2018	Jes
Checked by:	Jérôme LUC	Product Manager	17/5/2018	JES
Approved by:	Kim RUTKOWSKI	Quality Manager	17/5/2018	thim Puthowshi

	Customer Name
Distribution:	Shenzhen Morlab Communications Technology Co., Ltd

Issue	Date	Modifications
A	17/5/2018	Initial release

TABLE OF CONTENTS

1	Devi	ce Under Test4					
2	Prod	uct Description4					
	2.1	General Information					
3	Meas	surement Method4					
	3.1	Linearity					
	3.2	Sensitivity					
	3.3	Lower Detection Limit					
	3.4	Isotropy					
	3.5	Boundary Effect					
4	Meas	surement Uncertainty 5					
5	Calil	pration Measurement Results 6					
	5.1	Sensitivity in air	(
	5.2	Linearity					
	5.3	Sensitivity in liquid					
	5.4	Isotropy					
6	List	of Equipment9					

1 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE5	
Serial Number	SN 37/08 EP80	
Product Condition (new / used)	Used	
Frequency Range of Probe	0.7 GHz-3GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=1.445 MΩ	
	Dipole 2: R2=1.467 MΩ	
	Dipole 3: R3=1.477 MΩ	

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

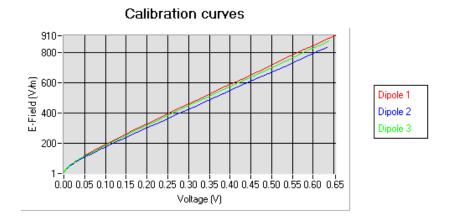
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$-\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$-\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$-\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$-\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

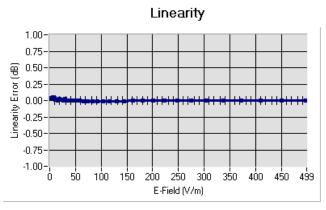
Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	


5.1 <u>SENSITIVITY IN AIR</u>

Normx dipole		
$1 (\mu V/(V/m)^2)$	$2 \left(\mu V / (V/m)^2 \right)$	$3 (\mu V/(V/m)^2)$
5.13	5.62	5.15

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
129	109	123

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

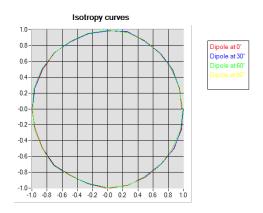

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Page: 6/9

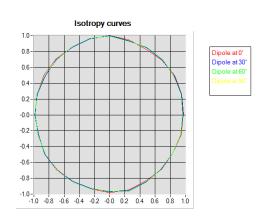
5.2 **LINEARITY**

Linearity: I+/-1.11% (+/-0.05dB)

5.3 <u>SENSITIVITY IN LIQUID</u>


<u>Liquid</u>	Frequency	<u>Permittivity</u>	Epsilon (S/m)	<u>ConvF</u>
	(MHz +/-			
	<u>100MHz)</u>			
HL450	450	42.17	0.86	7.55
BL450	450	57.65	0.95	7.77
HL750	750	40.03	0.93	6.44
BL750	750	56.83	1.00	6.68
HL900	900	42.08	1.01	6.13
BL900	900	55.25	1.08	6.37
HL1800	1800	41.68	1.46	5.21
BL1800	1800	53.86	1.46	5.38
HL1900	1900	38.45	1.45	5.61
BL1900	1900	53.32	1.56	5.71
HL2450	2450	37.50	1.80	4.82
BL2450	2450	53.22	1.89	4.96
HL2600	2600	39.80	1.99	4.74
BL2600	2600	52.52	2.23	4.93

LOWER DETECTION LIMIT: 8mW/kg


5.4 **ISOTROPY**

HL900 MHz
- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.05 dB

HL1800 MHz

- Axial isotropy: 0.04 dB- Hemispherical isotropy: 0.07 dB

6 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71		Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Reference Probe	MVG	EP 94 SN 37/08	04/2018	04/2019
Multimeter	Keithley 2000	1188656	12/2016	12/2019
Signal Generator	Agilent E4438C	MY49070581	12/2016	12/2019
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2016	12/2019
Power Sensor	HP ECP-E26A	US37181460	12/2016	12/2019
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701		Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Control Company	150798832	10/2017	10/2019

SAR Reference Dipole Calibration Report

Ref: ACR.189.9.16.SATU.A

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY CO., LTD

FL3, BUILDING A, FEIYANG SCIENCE PARK, NO.8 LONGCHANG ROAD,

BLOCK 67, BAOAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: SN 30/13 DIP2G450-263

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 10/05/2018

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	17/5/2018	JES
Checked by:	Jérôme LUC	Product Manager	17/5/2018	Jes
Approved by:	Kim RUTKOWSKI	Quality Manager	17/5/2018	Jum Puthowski

	Customer Name
Distribution:	Shenzhen Morlab Communications Technology Co., Ltd

Issue	Date	Modifications
A	17/5/2018	Initial release

TABLE OF CONTENTS

1	Intro	oduction4	
2	Dev	ice Under Test4	
3	Prod	luct Description4	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement	
6	Cali	bration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	
	7.3	Body Liquid Measurement	
	7.4	SAR Measurement Result With Body Liquid	
8	List	of Equipment	

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE			
Manufacturer	MVG			
Model	SID2450			
Serial Number	SN 30/13 DIP2G450-263			
Product Condition (new / used)	Used			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – *MVG COMOSAR Validation Dipole*

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 <u>MECHANICAL REQUIREMENTS</u>

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

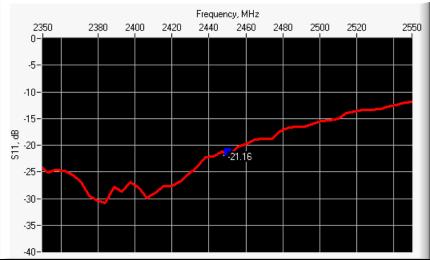
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %


Page: 5/11

10 g	20.1 %


6 CALIBRATION MEASUREMENT RESULTS

6.1 <u>RETURN LOSS AND IMPEDANCE IN HEAD LIQUID</u>

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-23.23	-20	47.7Ω - $6.4 j\Omega$

6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u>

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-21.16	-20	53.7 Ω - 8.3 jΩ

6.3 <u>MECHANICAL DIMENSIONS</u>

Frequency MHz	L mm		h m	m	d n	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 <u>HEAD LIQUID MEASUREMENT</u>

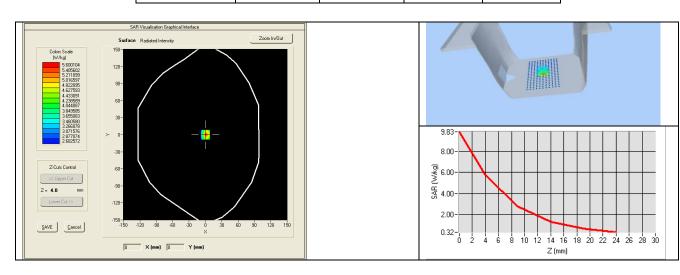
Frequency MHz	Relative permittivity (ϵ_{r}')		Conductiv	ity (σ) S/m
	required measured		required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.


	OPENIGUE VIII
Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 37.5 sigma: 1.80
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR ((W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

Page: 8/11

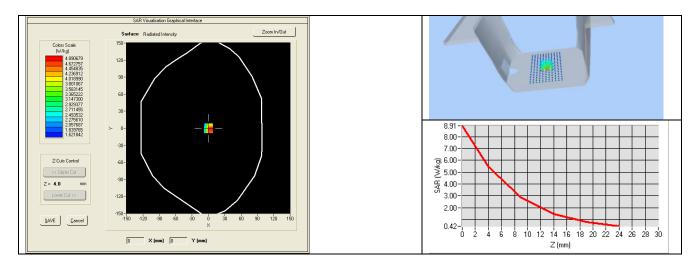
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.34 (5.33)	24	24.22 (2.42)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

7.3 <u>BODY LIQUID MEASUREMENT</u>

Frequency MHz	Relative permittivity (ε _r ')		Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



2600	52.5 ±5 %	2.16 ±5 %	
3000	52.0 ±5 %	2.73 ±5 %	
3500	51.3 ±5 %	3.31 ±5 %	
5200	49.0 ±10 %	5.30 ±10 %	
5300	48.9 ±10 %	5.42 ±10 %	
5400	48.7 ±10 %	5.53 ±10 %	
5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 53.2 sigma: 1.89
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
2450	50.93 (5.09)	23.26 (2.33)	

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Calipers	Carrera	CALIPER-01	12/2016	12/2019
Reference Probe	MVG	EPG122 SN 18/11	10/2016	10/2017
Multimeter	Keithley 2000	1188656	12/2016	12/2019
Signal Generator	Agilent E4438C	MY49070581	12/2016	12/2019
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2016	12/2019
Power Sensor	HP ECP-E26A	US37181460	12/2016	12/2019
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	150798832	10/2015	10/2017