

EMC TEST REPORT

Applicant Daiichi Elektronik San. ve Tic. A.Ş.

FCC ID 2AOI6-MY846

Product Car Audio

Brand DAIICHI

Model MY 846

Report No. RXA1710-0347EMC01

Issue Date December 13, 2017

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC Code CFR47 Part15B (2017)/ ANSI C63.4 (2014)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Wei Liu

Performed by: Wei Liu/ Manager

Guangchang Fan

Approved by: Guangchang Fan/ Director

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Test Laboratory.....	4
1.1	Notes of the Test Report	4
1.2	Test facility	4
1.3	Testing Location.....	5
2	General Description of Equipment under Test.....	6
2.1	Client Information	6
2.2	General information.....	6
2.3	Applied Standards	7
2.4	Test Mode.....	8
3	Test Case Results	9
3.1	Radiated Emission	9
3.2	Conducted Emission	15
4	Main Test Instrument	17
ANNEX A: The EUT Appearance and Test Configuration.....		18
A.1	EUT Appearance	18
A.2	Test Setup.....	19
A.3	Auxiliary test equipment.....	20

Summary of measurement results

Number	Test Case	Clause in FCC Rules	Conclusion
1	Radiated Emission	15.109, ANSI C63.4-2014	PASS
2	Conducted Emission	15.107, ANSI C63.4-2014	NA
Note: NA = Not Apply			
The equipment doesn't connected to public network, therefore this requirement do not apply.			
Test Date: November 28, 2017~ December 13, 2017			

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology (shanghai) co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test facility

CNAS (accreditation number: L2264)

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-10766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.
Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City: Shanghai
Post code: 201201
Country: P. R. China
Contact: Xu Kai
Telephone: +86-021-50791141/2/3
Fax: +86-021-50791141/2/3-8000
Website: <http://www.ta-shanghai.com>
E-mail: xukai@ta-shanghai.com

2 General Description of Equipment under Test

2.1 Client Information

Applicant	Daiichi Elektronik San. ve Tic. A.Ş.
Applicant address	Aşır Efendi Caddesi İmar Han Kat:4 Sirkeci / Fatih / İstanbul / Turkey
Manufacturer	Shenzhen Soling Industrial
Manufacturer address	28/F, Block B, Dachong Business Center, Nanshan District, Shenzhen, China

2.2 General information

EUT Description	
Device Type:	Car Audio ASSY
Product Name:	Car Audio
Model Number:	MY 846
IMEI:	/
HW Version:	1.2.0
SW Version:	1.2.1
Antenna Type:	Internal Antenna
Test Mode:	Transfer Data Mode
Auxiliary test equipment	
PC	PC Manufacturer: Dell Model: E5450 (SN : P48G001)
Remark: The information of the EUT is declared by the manufacturer.	

2.3 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards

FCC Code CFR47 Part15B (2017)

ANSI C63.4 (2014)

2.4 Test Mode

Test Mode	
Mode 1:	MP3 +Idle
Mode 2:	FM radio+ Idle
Mode 3:	USB Copy(EUT with PC) + MP3 + FM radio+Idle

During the test, the preliminary test was performed in all modes MP3/ FM radio) with all frequency bands (BT), mode 3 (with USB Copy(EUT with PC) + MP3 + FM radio+ BT idle) selected as the worst condition. The test data of the worst-case condition was recorded in this report.

3 Test Case Results

3.1 Radiated Emission

Ambient condition

Temperature	Relative humidity	Pressure
24°C~26°C	45%~50%	102.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level.

The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

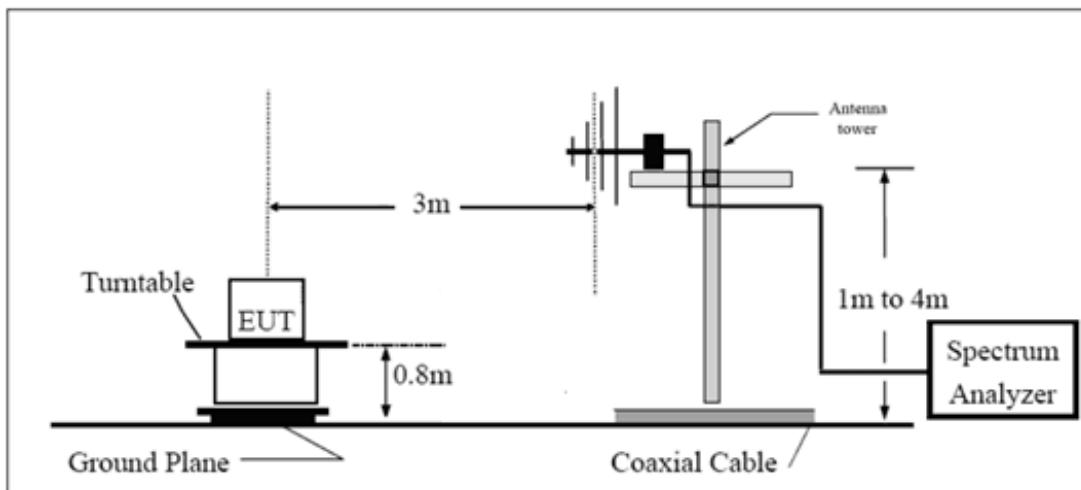
Set the spectrum analyzer in the following:

Below 1GHz:

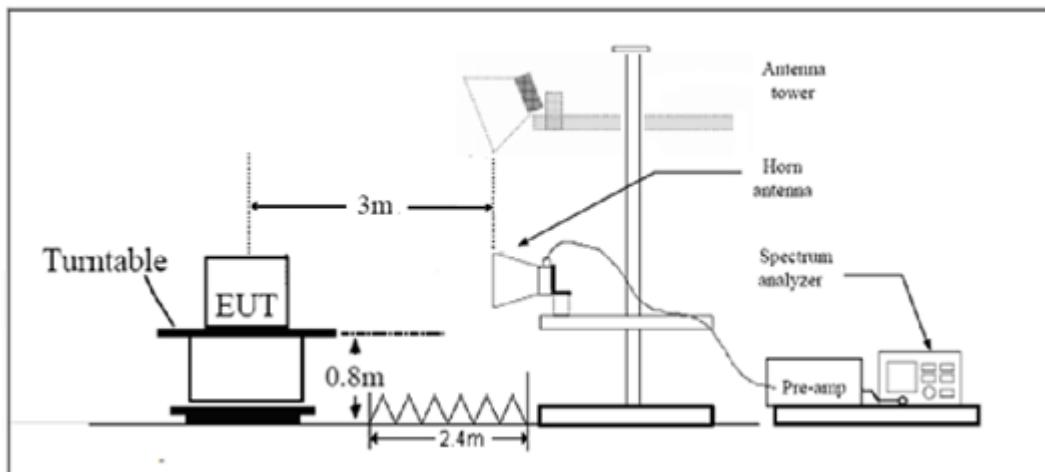
RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

Above 1GHz:

(a) PEAK: RBW=1MHz / VBW=3MHz/ Sweep=AUTO


(b) AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded.


During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; PC is connected to server via a long LAN cable.

Test Setup

Below 1GHz

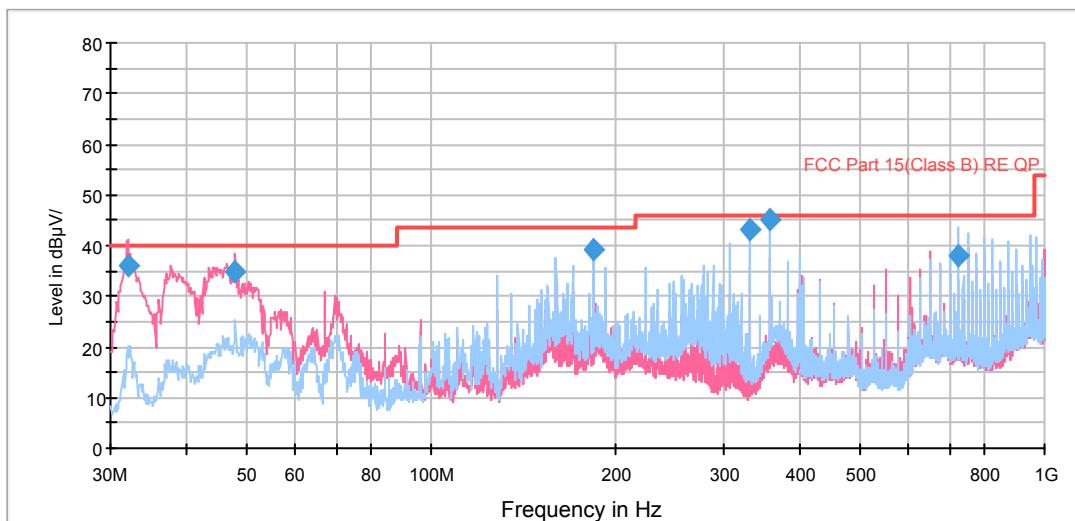
Above 1GHz

Note: Area side:2.4mX3.6m

Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.

Limits

Frequency (MHz)	Field Strength (dB μ V/m)	Detector
30 -88	40.0	Quasi-peak
88-216	43.5	Quasi-peak
216 – 960	46.0	Quasi-peak
960-1000	54.0	Quasi-peak
1000-5 th harmonic of the highest frequency or 40GHz,which is lower	54 74	Average Peak


Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 1.96$. $U = 3.704$ dB.

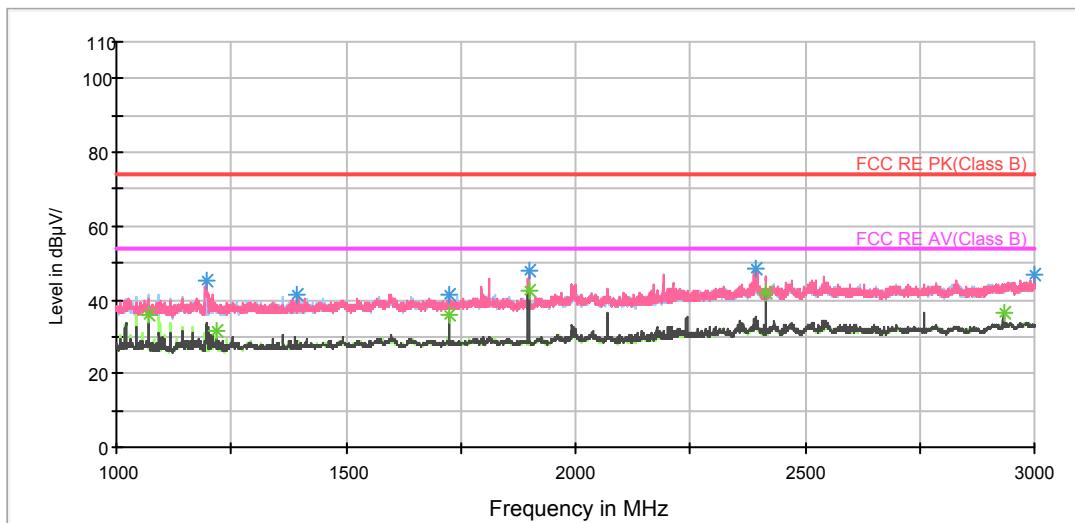
Test Results

The following graphs display the maximum values of horizontal and vertical by software.
For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.

RE 0.03-1GHz QP Class B

Radiated Emission from 30MHz to 1GHz

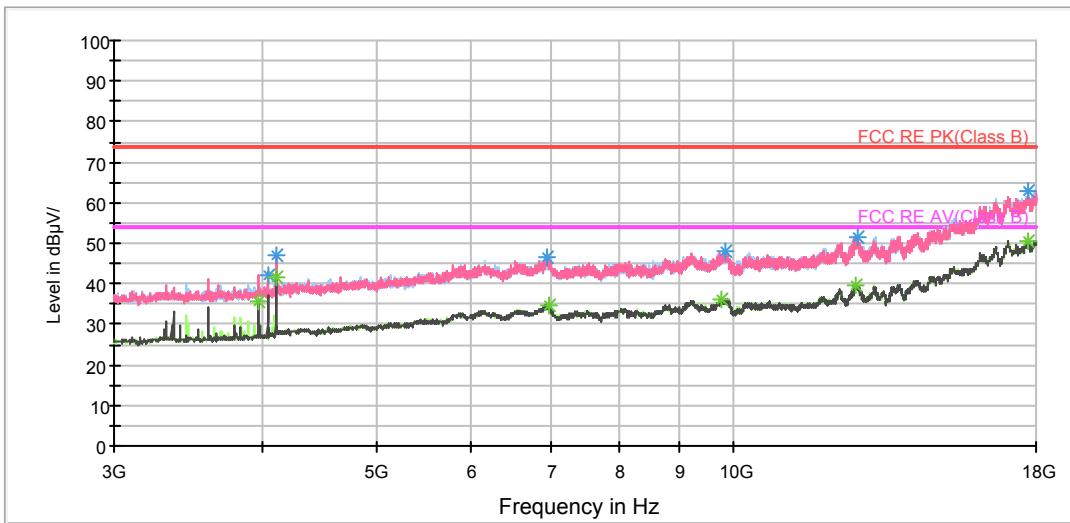
Frequency (MHz)	Quasi-Peak (dBuV/m)	Reading value (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
32.001250	36.1	55.1	100.0	V	227.0	-19.0	3.9	40.0
48.005000	35.0	53.1	100.0	V	339.0	-18.1	5.0	40.0
184.331250	39.3	65.9	125.0	H	135.0	-26.6	4.2	43.5
331.771250	43.3	67.1	100.0	H	241.0	-23.8	2.7	46.0
356.343750	45.0	64.5	120.0	H	144.0	-19.5	1.0	46.0
725.066250	38.2	53.4	100.0	H	345.0	-15.2	7.8	46.0


Remark: 1. Quasi-Peak = Reading value + Correction factor

2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)

3. Margin = Limit – Quasi-Peak

RE 1G-6GHz PK+AV


Radiated Emission from 1GHz to 3GHz

Frequency (MHz)	Peak (dB μ V/m)	Reading value (dB μ V/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dB μ V/m)
1195.500000	45.3	53.3	100.0	V	0.0	-8.0	28.7	74
1395.000000	41.4	48.9	200.0	V	24.0	-7.5	32.6	74
1724.250000	41.4	47.4	100.0	V	85.0	-6.0	32.6	74
1897.750000	47.9	53.7	100.0	V	85.0	-5.8	26.1	74
2394.750000	48.7	50.9	100.0	V	0.0	-2.2	25.3	74
2999.000000	46.7	47.9	200.0	V	144.0	-1.2	27.3	74

Frequency (MHz)	Average (dB μ V/m)	Reading value (dB μ V/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dB μ V/m)
1068.750000	35.8	43.9	100.0	H	155.0	-8.1	18.2	54
1216.250000	31.4	39.6	200.0	H	126.0	-8.2	22.6	54
1725.000000	36.1	42.1	200.0	V	144.0	-6.0	17.9	54
1897.500000	42.6	48.5	100.0	V	85.0	-5.9	11.4	54
2415.000000	41.8	43.9	100.0	V	98.0	-2.1	12.2	54
2932.750000	36.5	38.1	100.0	V	98.0	-1.6	17.5	54

RE 3-18GHz PK+AV

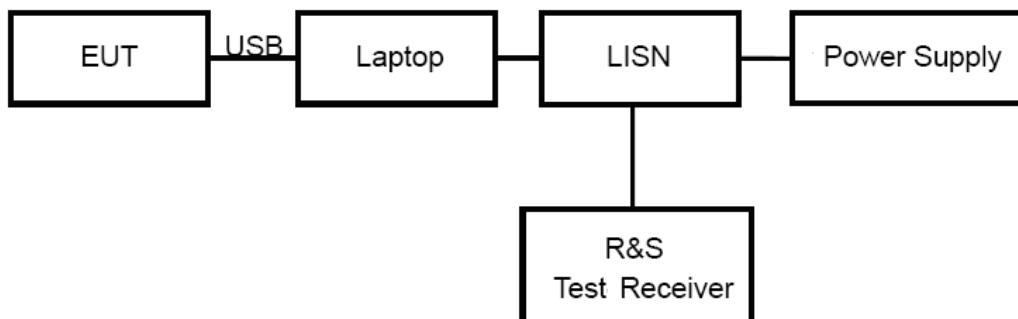
Radiated Emission from 3GHz to 18GHz

Frequency (MHz)	Peak (dB μ V/m)	Reading value (dB μ V/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dB μ V/m)
4042.500000	42.3	43.3	100.0	V	199.0	-1.0	31.7	74
4108.125000	46.8	47.6	100.0	V	222.0	-0.8	27.2	74
6971.250000	46.6	40.3	100.0	H	0.0	6.3	27.4	74
9858.750000	48.0	37.6	100.0	V	0.0	10.4	26.0	74
12731.250000	51.7	37.7	100.0	V	199.0	14.0	22.3	74
17724.375000	62.7	38.2	100.0	H	39.0	24.5	11.3	74

Frequency (MHz)	Average (dB μ V/m)	Reading value (dB μ V/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dB μ V/m)
3967.500000	35.7	36.6	100.0	V	175.0	-0.9	18.3	54
4108.125000	41.6	42.4	100.0	V	222.0	-0.8	12.4	54
6997.500000	34.8	28.3	100.0	V	92.0	6.5	19.2	54
9748.125000	36.1	26.3	100.0	V	284.0	9.8	17.9	54
12675.000000	39.7	25.6	100.0	V	68.0	14.1	14.3	54
17694.375000	50.7	26.1	100.0	V	33.0	24.6	3.3	54

3.2 Conducted Emission

Ambient condition


Temperature	Relative humidity	Pressure
24°C ~26°C	50%~55%	102.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; PC is connected to server via a long LAN cable.

Test Setup

Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz.

Limits

Frequency (MHz)	Conducted Limits(dB μ V)	
	Quasi-peak	Average
0.15 - 0.5	66 to 56 [*]	56 to 46 [*]
0.5 - 5	56	46
5 - 30	60	50

^{*}: Decreases with the logarithm of the frequency.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 1.96$. $U = 2.57$ dB.

Test Results

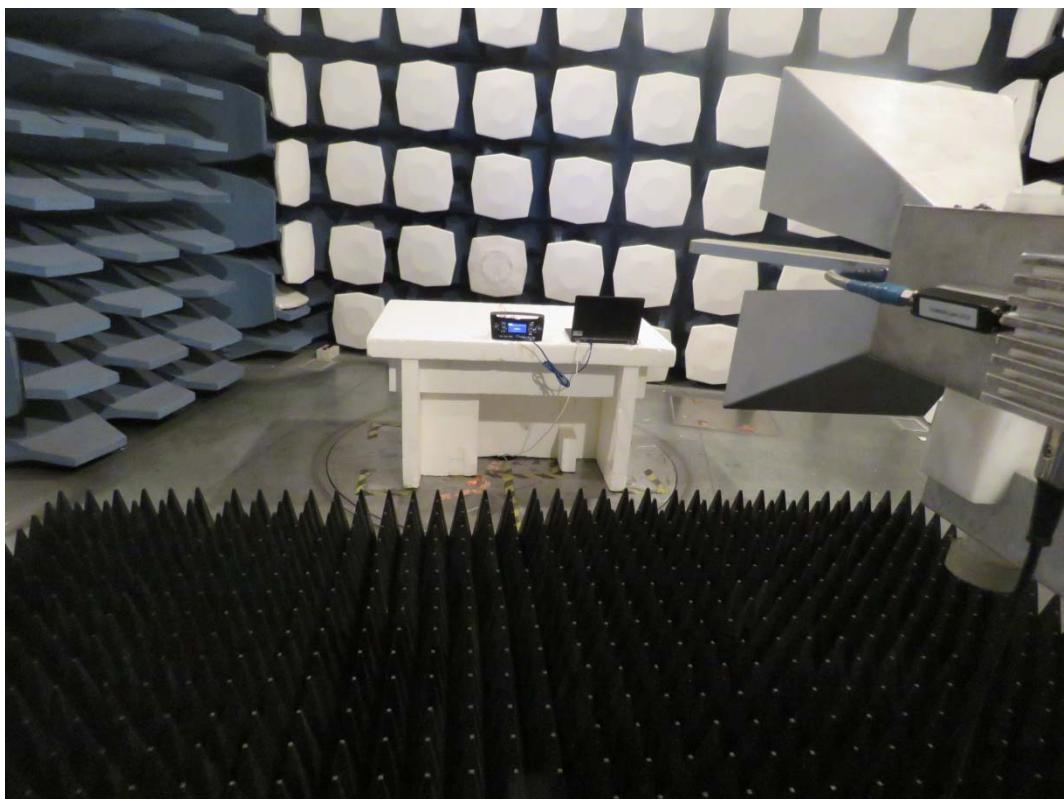
The equipment doesn't connected to public network, therefore this requirement do not apply.

4 Main Test Instrument

Name	Manufacturer	Type	Serial Number	Last Cal.	Cal. Due Date
Signal Analyzer	R&S	FSV30	100815	2016-12-16	2017-12-15
EMI Test Receiver	R&S	ESCI	100948	2017-05-20	2018-05-19
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2017-02-18	2019-02-17
Trilog Antenna	SCHWARZBECK	VULB 9163	9163-201	2017-11-18	2020-11-17
Horn Antenna	R&S	HF907	100126	2014-12-06	2019-12-05
Horn Antenna	ETS-Lindgren	3160-09	00102643	2015-01-30	2018-01-29
EMI Test Receiver	R&S	ESCS30	100138	2016-12-16	2017-12-15
LISN	R&S	ENV216	101171	2016-12-16	2019-12-15
Bore Sight Antenna mast	ETS	2171B	00058752	NA	NA
Test software	EMC32	R&S	V9.26.0	NA	NA

ANNEX A: The EUT Appearance and Test Configuration

A.1 EUT Appearance


a: EUT

Picture 1 EUT

A.2 Test Setup

a: Below 1GHz

b: Above 1GHz

Picture 2 Radiated Emission Test Setup

A.3 Auxiliary test equipment

