

Table 14-16 LTE700-FDD12 #1 Head

LTE700-FDD12 #1 Head								
Ambient Temperature: 22.5			Liquid Temperature: 22.3					
Mode	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]		
			23130	23095	23060	23130		
			M	M	M	M		
10MHz QPSK1RB	Tune-up		23.50	23.50	23.50	Scaling factor*		
	Measured Power [dBm]		22.72	22.99	22.71	1.20	1.13	1.20
	Left Cheek	1g SAR		0.207			0.23	
		10g SAR		0.153			0.17	
		Deviation		0.03			0.03	
	Left Tilt	1g SAR		0.104			0.12	
		10g SAR		0.059			0.07	
		Deviation		-0.06			-0.06	
	Right Cheek	1g SAR		0.195			0.22	
		10g SAR		0.141			0.16	
		Deviation		0.13			0.13	
	Right Tilt	1g SAR		0.095			0.11	
		10g SAR		0.072			0.08	
		Deviation		0.08			0.08	
TRUE	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]		
			23130	23095	23060	23130	23095	23060
			L	M	H	L	M	H
	Tune-up		22.50	22.50	22.50	Scaling factor*		
	Measured Power [dBm]		21.53	21.47	21.60	1.25	1.27	1.23
	Left Cheek	1g SAR			0.162			0.20
		10g SAR			0.121			0.15
		Deviation			0.05			0.05
10MHz QPSK50% RB	Left Tilt	1g SAR			0.078			0.10
		10g SAR			0.059			0.07
		Deviation			0.03			0.03
	Right Cheek	1g SAR			0.157			0.19
		10g SAR			0.115			0.14
		Deviation			0.04			0.04
	Right Tilt	1g SAR			0.078			0.10
		10g SAR			0.048			0.06
		Deviation			0.13			0.13

Table 14-17 LTE700-FDD12 #1 Body

LTE700-FDD12 #1 Body								
Ambient Temperature: 22.5			Liquid Temperature: 22.3					
Mode	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]		
			23130	23095	23060	23130		
			M	M	M	M		
10MHz QPSK1RB	Tune-up		23.50	23.50	23.50	Scaling factor*		
	Measured Power [dBm]		22.72	22.99	22.71	1.20	1.13	1.20
	Front	1g SAR		0.119			0.13	
		10g SAR		0.08			0.09	
		Deviation		0.02			0.02	
	Rear	1g SAR		0.21			0.24	
		10g SAR		0.129			0.15	
		Deviation		0.06			0.06	
10MHz QPSK50% RB	Mode	Device orientation	Measured SAR [W/kg]			Reported SAR [W/kg]		
			23130	23095	23060	23130	23095	23060
			L	M	H			
	Tune-up		22.50	22.50	22.50	Scaling factor*		
	Measured Power [dBm]		21.53	21.47	21.60	1.25	1.27	1.23
	Front	1g SAR			0.1			0.12
		10g SAR			0.068			0.08
		Deviation			0.03			0.03
	Rear	1g SAR			0.179			0.22
		10g SAR			0.109			0.13
		Deviation			0.02			0.02

Table 14-18 LTE750-FDD13 #1 Head

LTE750-FDD13 #1 Head						
Ambient Temperature: 22.5			Liquid Temperature: 22.3			
Mode	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]
			H	M	23230	H
			H	H	H	H
10MHz QPSK1RB	Left Cheek	Tune-up	24.30	24.30	24.30	Scaling factor*
		Measured Power [dBm]	0.00	0.00	23.12	269.15
		1g SAR			0.396	0.52
	Left Tilt	10g SAR			0.282	0.37
		Deviation			0.03	0.03
		1g SAR			0.107	0.14
	Right Cheek	10g SAR			0.08	0.10
		Deviation			-0.12	-0.12
		1g SAR			0.409	0.54
	Right Tilt	10g SAR			0.29	0.38
		Deviation			-0.16	-0.16
		1g SAR			0.11	0.14
	TRUE	10g SAR			0.085	0.11
		Deviation			0.04	0.04
		Measured SAR [W/kg]	H	M	23230	Reported SAR [W/kg]
10MHz QPSK50% RB	Left Cheek	H	H	L	H	23230
		Tune-up	23.30	23.30	23.30	Scaling factor*
		Measured Power [dBm]	0.00	0.00	21.98	213.80
	Left Tilt	1g SAR			0.359	0.49
		10g SAR			0.257	0.35
		Deviation			0.07	0.07
	Right Cheek	1g SAR			0.143	0.19
		10g SAR			0.077	0.10
		Deviation			0.09	0.09
	Right Tilt	1g SAR			0.352	0.48
		10g SAR			0.252	0.34
		Deviation			0.02	0.02

Table 14-19 LTE750-FDD13 #1 Body

LTE750-FDD13 #1 Body								
Ambient Temperature: 22.5				Liquid Temperature: 22.3				
Mode	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]		
			H	M	23230	H		
			H	H	H	H		
10MHz QPSK1RB	Tune-up		24.30	24.30	24.30	Scaling factor*		
	Measured Power [dBm]		0.00	0.00	23.12	269.15	269.15	1.31
	Front	1g SAR			0.121			0.16
		10g SAR			0.08			0.10
		Deviation			-0.06			-0.06
	Rear	1g SAR			0.291			0.38
		10g SAR			0.188			0.25
		Deviation			-0.11			-0.11
10MHz QPSK50% RB	Mode	Device orientation	Measured SAR [W/kg]			Reported SAR [W/kg]		
			H	M	23230	H	M	23230
			H	H	L			
	Tune-up		23.30	23.30	23.30	Scaling factor*		
	Measured Power [dBm]		0.00	0.00	21.98	213.80	213.80	1.36
	Front	1g SAR			0.187			0.25
		10g SAR			0.128			0.17
		Deviation			-0.03			-0.03
	Rear	1g SAR			0.262			0.36
		10g SAR			0.171			0.23
		Deviation			-0.05			-0.05

Table 14-20 LTE700-FDD17 #1 Head

LTE700-FDD17 #1 Head						
Ambient Temperature: 22.5			Liquid Temperature: 22.3			
Mode	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]
			23800	23790	23780	23800
10MHz QPSK1RB	Left Cheek	M	M	L	M	L
		Tune-up	23.50	23.50	23.50	Scaling factor*
		Measured Power [dBm]	22.61	22.80	22.72	1.23
	Left Tilt	1g SAR		0.245		0.29
		10g SAR		0.178		0.21
		Deviation		0.13		0.13
	Right Cheek	1g SAR		0.131		0.15
		10g SAR		0.072		0.08
		Deviation		-0.05		-0.05
	Right Tilt	1g SAR		0.239		0.28
		10g SAR		0.171		0.20
		Deviation		0.01		0.01
TRUE	Left Cheek	1g SAR		0.119		0.14
		10g SAR		0.088		0.10
		Deviation		0.05		0.05
	Left Tilt	Measured SAR [W/kg]			Reported SAR [W/kg]	
		23800	23790	23780	23800	23790
		M	M	M	M	M
	Right Cheek	Tune-up	22.50	22.50	22.50	Scaling factor*
		Measured Power [dBm]	21.68	21.86	21.68	1.21
		1g SAR		0.189		0.22
	Right Tilt	10g SAR		0.137		0.16
		Deviation		0.14		0.14
		1g SAR		0.099		0.11

Table 14-21 LTE700-FDD17 #1 Body

LTE700-FDD17 #1 Body								
Ambient Temperature: 22.5			Liquid Temperature: 22.3					
Mode	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]		
			23800	23790	23780	23800		
			M	M	L	M		
10MHz QPSK1RB	Tune-up		23.50	23.50	23.50	Scaling factor*		
	Measured Power [dBm]		22.61	22.80	22.72	1.23	1.18	1.20
	Front	1g SAR		0.127			0.15	
		10g SAR		0.088			0.10	
		Deviation		0.07			0.07	
	Rear	1g SAR		0.217			0.26	
		10g SAR		0.136			0.16	
		Deviation		0.13			0.13	
10MHz QPSK50% RB	Mode	Device orientation	Measured SAR [W/kg]			Reported SAR [W/kg]		
			23800	23790	23780	23800	23790	23780
			M	M	M			
	Tune-up		22.50	22.50	22.50	Scaling factor*		
	Measured Power [dBm]		21.68	21.86	21.68	1.21	1.16	1.21
	Front	1g SAR		0.103			0.12	
		10g SAR		0.071			0.08	
		Deviation		0.04			0.04	
	Rear	1g SAR		0.169			0.20	
		10g SAR		0.106			0.12	
		Deviation		0.01			0.01	

Table 14-22 LTE1700-FDD66 #1 Head Low Power

LTE1700-FDD66 #1 Head								
Ambient Temperature: 22.5			Liquid Temperature: 22.3					
Mode	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]		
			132572	132322	132072	132572	132322	132072
20MHz QPSK1RB	Left Cheek	H	M	H	H	M	H	
		Tune-up	21.00	21.00	21.00	Scaling factor*		
		Measured Power [dBm]	20.32	20.25	20.30	1.17	1.19	1.17
	Left Tilt	1g SAR	0.599			0.70		
		10g SAR	0.353			0.41		
		Deviation	0.03			0.03		
	Right Cheek	1g SAR	0.155			0.18		
		10g SAR	0.089			0.10		
		Deviation	0.06			0.06		
	Right Tilt	1g SAR	0.584			0.68		
		10g SAR	0.34			0.40		
		Deviation	-0.02			-0.02		
TRUE	Left Cheek	1g SAR	0.136			0.16		
		10g SAR	0.081			0.09		
		Deviation	-0.01			-0.01		
	Left Tilt	Measured SAR [W/kg]			Reported SAR [W/kg]			
		132572	132322	132072	132572	132322	132072	
		M	L	M	M	L	M	
	Right Cheek	Tune-up	21.00	21.00	21.00	Scaling factor*		
		Measured Power [dBm]	20.16	20.41	20.32	1.21	1.15	1.17
		1g SAR		0.535			0.61	
	Right Tilt	10g SAR		0.322			0.37	
		Deviation		0.06			0.06	
		1g SAR		0.11			0.13	
	Left Tilt	10g SAR		0.07			0.08	
		Deviation		-0.04			-0.04	
		1g SAR		0.484			0.55	
	Left Cheek	10g SAR		0.283			0.32	
		Deviation		-0.01			-0.01	
		1g SAR		0.11			0.13	
	Left Tilt	10g SAR		0.068			0.08	
		Deviation		0.02			0.02	

Table 14-23 LTE1700-FDD66 #2 Head Normal Power

LTE1700-FDD66 #2 Head								
Ambient Temperature: 22.5				Liquid Temperature: 22.3				
Mode	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]		
			132572	132322	132072	132572	132322	
20MHz QPSK1RB	Tune-up		23.00	23.00	23.00	Scaling factor*		
	Measured Power [dBm]		21.95	21.97	22.04	1.27	1.27	
	Left Cheek	1g SAR	0.814	0.85	0.866	1.04	1.08	
		10g SAR	0.452	0.467	0.579	0.58	0.59	
		Deviation	0.04	0.02	0.03	0.04	0.02	
	Left Tilt	1g SAR			0.462		0.58	
		10g SAR			0.233		0.29	
		Deviation			-0.05		-0.05	
	Right Cheek	1g SAR	0.53	0.617	0.843	0.68	0.78	
		10g SAR	0.3	0.35	0.557	0.38	0.44	
		Deviation	0.01	-0.08	0.09	0.01	-0.08	
	Right Tilt	1g SAR			0.422		0.53	
		10g SAR			0.285		0.36	
		Deviation			0.03		0.03	
FALSE	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]		
			132572	132322	132072	132572	132322	
		M	H	H	M	H	H	
20MHz QPSK50% RB	Tune-up		22.00	22.00	22.00	Scaling factor*		
	Measured Power [dBm]		20.90	20.99	21.15	1.29	1.26	
	Left Cheek	1g SAR	0.567	0.609	0.667	0.73	0.77	
		10g SAR	0.376	0.412	0.445	0.48	0.52	
		Deviation	0.07	-0.06	0.13	0.07	-0.06	
	Left Tilt	1g SAR			0.349		0.42	
		10g SAR			0.186		0.23	
		Deviation			0.14		0.14	
	Right Cheek	1g SAR	0.61	0.653	0.676	0.79	0.82	
		10g SAR	0.421	0.437	0.445	0.54	0.55	
		Deviation	0.06	-0.05	0.09	0.06	-0.05	
	Right Tilt	1g SAR			0.331		0.40	
		10g SAR			0.225		0.27	
		Deviation			0.04		0.04	
Mode	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]		
			132572	132322	132072	132572	132322	
20MHz QPSK100% RB	Tune-up		22.00	22.00	22.00	Scaling factor*		
	Measured Power [dBm]		20.79	20.98	20.94	1.32	1.26	
	Left Cheek	1g SAR		0.631		0.80		
		10g SAR		0.372		0.47		
		Deviation		-0.07		-0.07		
20MHz QPSK100% RB	Right Cheek	1g SAR		0.582		0.74		
		10g SAR		0.332		0.42		
		Deviation		-0.07		-0.07		

Table 14-24 LTE1700-FDD66 #2 Body

LTE1700-FDD66 #2 Body									
Ambient Temperature: 22.5		Liquid Temperature: 22.3							
Mode	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]			
			132572	132322	132072	132572	132322	132072	
20MHz QPSK1RB	Tune-up		23.00	23.00	23.00	Scaling factor*			
	Measured Power [dBm]		21.95	21.97	22.04	1.27	1.27	1.25	
	Front	1g SAR			0.418			0.52	
		10g SAR			0.281			0.35	
		Deviation			0.13			0.13	
	Rear	1g SAR	0.687	0.699	0.715	0.88	0.89	0.89	
		10g SAR	0.401	0.428	0.434	0.51	0.54	0.54	
		Deviation	-0.08	-0.06	0.05	-0.08	-0.06	0.05	
Mode	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]			
			132572	132322	132072	132572	132322	132072	
		M	H	H					
20MHz QPSK50% RB	Tune-up		22.00	22.00	22.00	Scaling factor*			
	Measured Power [dBm]		20.90	20.99	21.15	1.29	1.26	1.22	
	Front	1g SAR			0.338			0.41	
		10g SAR			0.228			0.28	
		Deviation			0.05			0.05	
	Rear	1g SAR			0.557			0.68	
		10g SAR			0.339			0.41	
		Deviation			-0.03			-0.03	
Mode	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]			
			132572	132322	132072	132572	132322	132072	
		M	H	H					
20MHz QPSK100% RB	Tune-up		22.00	22.00	22.00	Scaling factor*			
	Measured Power [dBm]		20.79	20.98	20.94	1.32	1.26	1.28	
	Rear	1g SAR			0.433			0.55	
		10g SAR			0.291			0.37	
		Deviation			0.07			0.07	

14.2 Full SAR

Test Band	Channel	Frequency	Tune-Up	Measured Power	Test Position	Measured 10g SAR	Measured 1g SAR	Reported 10g SAR	Reported 1g SAR	Power Drift	Figure
GSM850	128	824.2 MHz	29	28.67	Right Cheek	0.506	0.721	0.55	0.78	-0.13	Fig. A.1
GSM850	128	824.2 MHz	29	28.67	Rear	0.329	0.491	0.35	0.53	-0.1	Fig. A.2
PCS1900	661	1880 MHz	28.5	28.13	Left Cheek	0.268	0.504	0.29	0.55	-0.07	Fig. A.3
PCS1900	661	1880 MHz	28.5	28.13	Rear	0.242	0.388	0.26	0.42	-0.14	Fig. A.4
WCDMA1900-BII	9400	1880 MHz	22.3	20.69	Left Cheek	0.332	0.59	0.48	0.85	0.09	Fig. A.5
WCDMA1900-BII	9400	1880 MHz	22.3	20.69	Rear	0.405	0.662	0.59	0.96	-0.05	Fig. A.6
WCDMA1700-BIV	1513	1752.6 MHz	23	22.48	Left Cheek	0.298	0.541	0.34	0.61	0.08	Fig. A.7
WCDMA1700-BIV	1312	1712.4 MHz	23	22.67	Front	0.334	0.536	0.36	0.58	-0.05	Fig. A.8
WCDMA850-BV	4132	826.4 MHz	23	22.67	Left Cheek	0.311	0.467	0.34	0.50	0.02	Fig. A.9
WCDMA850-BV	4132	826.4 MHz	23	22.67	Rear	0.217	0.324	0.23	0.35	-0.04	Fig. A.10
LTE1900-FDD2	18700	1860 MHz	21	20.52	Left Cheek	0.386	0.715	0.43	0.79	0.05	Fig. A.11
LTE1900-FDD2	18700	1860 MHz	23	21.59	Left Cheek	0.483	0.913	0.67	1.26	0.04	Fig. A.12
LTE1900-FDD2	19100	1900 MHz	23	21.69	Rear	0.443	0.752	0.60	1.02	-0.12	Fig. A.13
LTE850-FDD5	20600	844 MHz	24.3	23.59	Left Cheek	0.336	0.505	0.40	0.59	0	Fig. A.14
LTE850-FDD5	20600	844 MHz	24.3	23.59	Rear	0.233	0.354	0.27	0.42	-0.03	Fig. A.15
LTE700-FDD12	23095	707.5 MHz	23.5	22.99	Left Cheek	0.153	0.207	0.17	0.23	0.03	Fig. A.16
LTE700-FDD12	23095	707.5 MHz	23.5	22.99	Rear	0.129	0.21	0.15	0.24	0.06	Fig. A.17
LTE750-FDD13	23230	782 MHz	24.3	23.12	Right Cheek	0.29	0.409	0.38	0.54	-0.16	Fig. A.18
LTE750-FDD13	23230	782 MHz	24.3	23.12	Rear	0.188	0.291	0.25	0.38	-0.11	Fig. A.19
LTE700-FDD17	23790	710 MHz	23.5	22.80	Left Cheek	0.178	0.245	0.21	0.29	0.13	Fig. A.20
LTE700-FDD17	23790	710 MHz	23.5	22.80	Rear	0.136	0.217	0.16	0.26	0.13	Fig. A.21
LTE1700-FDD66	132572	710 MHz	21	20.32	Left Cheek	0.353	0.599	0.41	0.70	0.03	Fig. A.22
LTE1700-FDD66	132072	710 MHz	23	22.04	Left Cheek	0.579	0.866	0.72	1.08	0.03	Fig. A.23
LTE1700-FDD66	132072	710 MHz	23	22.04	Rear	0.434	0.715	0.54	0.89	0.05	Fig. A.24

14.3 WLAN Evaluation

According to the KDB248227 D01, SAR is measured for 802.11b DSSS using the initial test position procedure.

Note1: When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg.

Note2: For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

Note3: According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

Table 14-25 WLAN2450 #1 Head Fast SAR Low Power

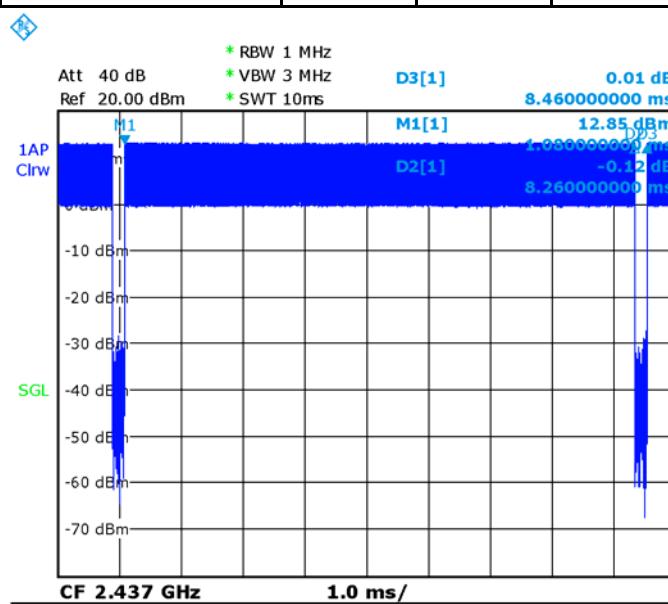
WLAN2450 #1 Head Fast SAR								
Ambient Temperature: 22.5			Liquid Temperature: 22.3					
Rate	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]		
			11	6	1			
802.11b 1Mbps	2462 MHz		2437 MHz	2412 MHz				
	Tune up		17	17	17	Scaling factor*		
	Slot Average Power [dBm]		16.76	16.92	15.97	1.06	1.02	1.27
	Left Cheek	1g Fast SAR		0.273			0.28	
		10g SAR		0.143			0.15	
		Deviation		0.06			0.06	
	Left Tilt	1g Fast SAR		0.388			0.40	
		10g SAR		0.19			0.19	
		Deviation		0.14			0.14	
	Right Cheek	1g Fast SAR		0.764			0.78	
		10g SAR		0.341			0.35	
		Deviation		0.1			0.10	
	Right Tilt	1g Fast SAR		0.669			0.68	
		10g SAR		0.336			0.34	
		Deviation		-0.06			-0.06	

Table 14-26 WLAN2450 #1 Head Full SAR Low Power

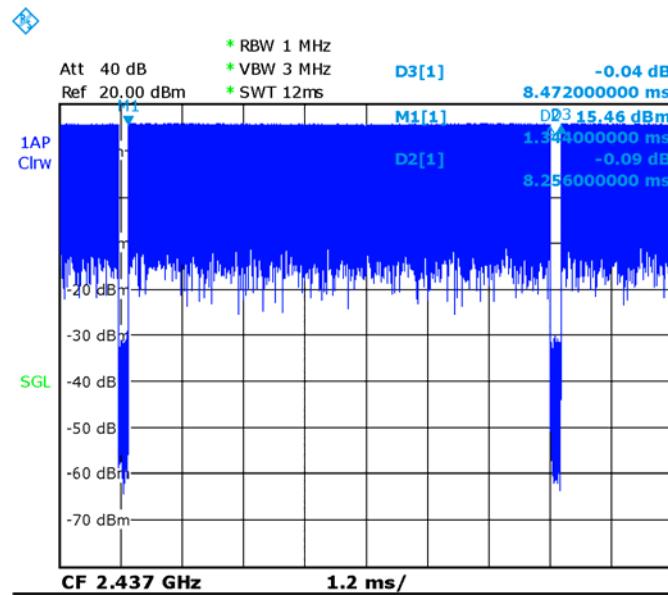
WLAN2450 #1 Head Full SAR								
Ambient Temperature: 22.5			Liquid Temperature: 22.3					
Rate	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]		
			11	6	1			
802.11b 1Mbps	2462 MHz		2437 MHz	2412 MHz				
	Tune up		17	17	17	Scaling factor*		
	Slot Average Power [dBm]		16.76	16.92	15.97	1.06	1.02	1.27
	Left Cheek	1g Full SAR						
		10g SAR						
		Deviation						
	Left Tilt	1g Full SAR						
		10g SAR						
		Deviation						
	Right Cheek	1g Full SAR		0.747			0.76	
		10g SAR		0.291			0.30	
		Deviation		0.1			0.10	
	Right Tilt	1g Full SAR		0.706			0.72	
		10g SAR		0.299			0.30	
		Deviation		-0.06			-0.06	

Table 14-27 WLAN2450 #2 Body Fast SAR Normal Power

WLAN2450 #2 Body Fast SAR									
Ambient Temperature: 22.5			Measured SAR [W/kg]			Liquid Temperature: 22.3			
Rate	Device orientation	SAR measurement	11	6	1	11	6	1	
			2462 MHz	2437 MHz	2412 MHz				
802.11b 1Mbps	Tune up		20.5	20.5	20.5	Scaling factor*			
	Slot Average Power [dBm]		19.99	20.38	19.32	1.12	1.03	1.31	
	Front	1g Fast SAR		0.338			0.35		
		10g SAR		0.153			0.16		
		Deviation		0.09			0.09		
	Rear	1g Fast SAR		0.259			0.27		
		10g SAR		0.136			0.14		
		Deviation		0.07			0.07		


Table 14-28 WLAN2450 #2 Body Full SAR Normal Power

WLAN2450 #2 Body Full SAR									
Ambient Temperature: 22.5			Measured SAR [W/kg]			Liquid Temperature: 22.3			
Rate	Device orientation	SAR measurement	11	6	1	11	6	1	
			2462 MHz	2437 MHz	2412 MHz				
802.11b 1Mbps	Tune up		20.5	20.5	20.5	Scaling factor*			
	Slot Average Power [dBm]		19.99	20.38	19.32	1.12	1.03	1.31	
	Front	1g Full SAR		0.355			0.36		
		10g SAR		0.164			0.17		
		Deviation		0.09			0.09		
	Rear	1g Full SAR							
		10g SAR							
		Deviation							
	Left edge	1g Full SAR							
		10g SAR							
		Deviation							
	Right edge	1g Full SAR							
		10g SAR							
		Deviation							
	Bottom edge	1g Full SAR							
		10g SAR							
		Deviation							
	Top edge	1g Full SAR							
		10g SAR							
		Deviation							


SAR is not required for OFDM because the 802.11b adjusted SAR ≤ 1.2 W/kg.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below							
Frequency		Test Position	Actual duty factor	maximum duty factor	Reported SAR(1g)(W/kg)	Scaled reported SAR(1g)(W/kg)	Figure
MHz	Ch.						
2437 MHz	6	Right Cheek	97.64%	100%	0.76	0.78	Fig A.25

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below							
Frequency		Test Position	Actual duty factor	maximum duty factor	Reported SAR(1g)(W/kg)	Scaled reported SAR(1g)(W/kg)	Figure
MHz	Ch.						
2437	6	Front	97.45%	100%	0.36	0.37	Fig A.26

Picture 14.1 Duty factor plot Low Power

Picture 14.2 Duty factor plot Normal Power

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is $< 0.80 \text{ W/kg}$; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is $\geq 0.80 \text{ W/kg}$, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is $\geq 1.45 \text{ W/kg}$ ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is $\geq 1.5 \text{ W/kg}$ and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .

Mode	CH	Freq	Test Position	Original SAR (W/kg)	First Repeated SAR(W/kg)	The Ratio
LTE1900-FDD2	18700	1860 MHz	Left Cheek	0.913	0.911	1.00
LTE1700-FDD66	132072	710 MHz	Left Cheek	0.866	0.861	1.01

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

No.	Error Description	Type	Uncertainty value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measurement system										
1	Probe calibration	B	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	B	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	B	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	B	1.0	N	1	1	1	0.6	0.6	∞
6	Readout electronics	B	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	B	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	B	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	B	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	B	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. restrictions	B	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
12	Probe positioning with respect to phantom shell	B	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Post-processing	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Test sample related										
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	B	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and set-up										
17	Phantom uncertainty	B	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	B	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	B	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521

Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$					19.1	18.9	

16.2 Measurement Uncertainty for Normal SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measurement system										
1	Probe calibration	B	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	B	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	B	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	B	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	B	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	B	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	B	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	B	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	B	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. restrictions	B	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
12	Probe positioning with respect to phantom shell	B	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞
13	Post-processing	B	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Test sample related										
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	B	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and set-up										
17	Phantom uncertainty	B	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	B	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity	B	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞

	(target)									
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
	Combined standard uncertainty		$u_c = \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					21.4	21.1	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

No.	Error Description	Type	Uncertainty value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measurement system										
1	Probe calibration	B	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	B	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	B	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	B	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	B	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	B	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	B	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	B	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. Restrictions	B	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
12	Probe positioning with respect to phantom shell	B	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Post-processing	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z- Approximation	B	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	∞
Test sample related										
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	B	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and set-up										
18	Phantom uncertainty	B	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞

19	Liquid conductivity (target)	B	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	B	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$						10.4	10.3	257
Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$						20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
-----	-------------------	------	-------------------	-----------------------	------	------------	-------------	----------------------	-----------------------	-------------------

Measurement system

1	Probe calibration	B	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	B	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	B	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	B	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	B	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	B	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	B	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	B	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	B	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. Restrictions	B	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
12	Probe positioning with respect to phantom shell	B	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞
13	Post-processing	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z- Approximation	B	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	∞

Test sample related

15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
----	-------------------------	---	-----	---	---	---	---	-----	-----	----

16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	B	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and set-up										
18	Phantom uncertainty	B	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	B	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	B	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$						13.5	13.4	257
Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$						27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Type	Serial Number	Calibration Date	Valid Period
01	Network analyzer	E5071C	MY46110673	January 24, 2018	One year
02	Power meter	NRVD	102083	November 01, 2017	One year
03	Power sensor	NRV-Z5	100542		
04	Signal Generator	E4438C	MY49071430	January 2,2018	One Year
05	Amplifier	60S1G4	0331848	No Calibration Requested	
06	BTS	E5515C	MY50263375	January 23, 2018	One year
07	BTS	CMW500	149646	October 31, 2017	One year
08	E-field Probe	SPEAG EX3DV4	7464	September 12,2017	One year
09	DAE	SPEAG DAE4	1525	October 2, 2017	One year
10	Dipole Validation Kit	SPEAG D750V3	1017	July 19, 2017	One year
11	Dipole Validation Kit	SPEAG D835V2	4d069	July 19, 2017	One year
12	Dipole Validation Kit	SPEAG D1750V2	1003	July 21, 2017	One year
13	Dipole Validation Kit	SPEAG D1900V2	5d101	July 26, 2017	One year
14	Dipole Validation Kit	SPEAG D2450V2	853	July 21, 2017	One year

END OF REPORT BODY

ANNEX A Graph Results

GSM850_CH128 Right Cheek

Date: 6/13/2018

Electronics: DAE4 Sn1525

Medium: Head 835 MHz

Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.886$ mho/m; $\epsilon_r = 41.8$; $\rho = 1000$ kg/m³

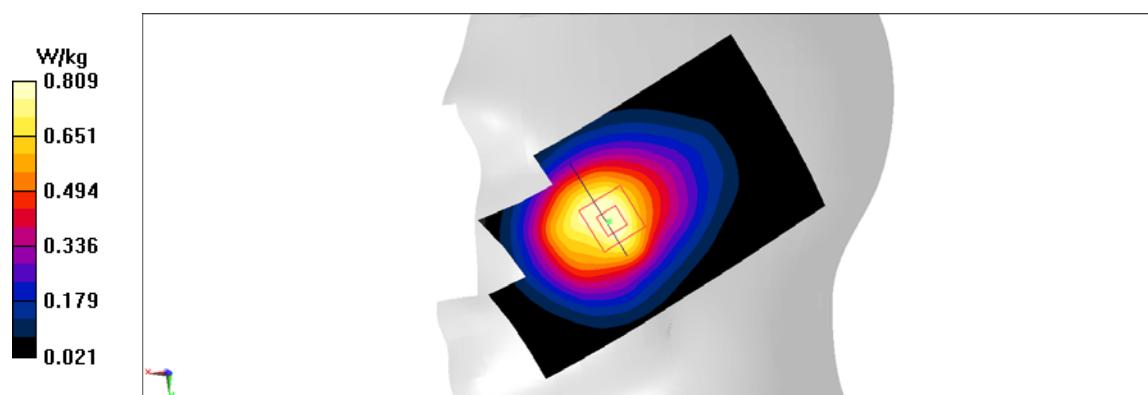
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: GSM850 824.2 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.842 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.25 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.981 W/kg

SAR(1 g) = 0.721 W/kg; SAR(10 g) = 0.506 W/kg

Maximum value of SAR (measured) = 0.809 W/kg

Fig A.1

GSM850_CH128 Rear

Date: 6/13/2018

Electronics: DAE4 Sn1525

Medium: Head 835 MHz

Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.952$ mho/m; $\epsilon_r = 54.62$; $\rho = 1000$ kg/m 3

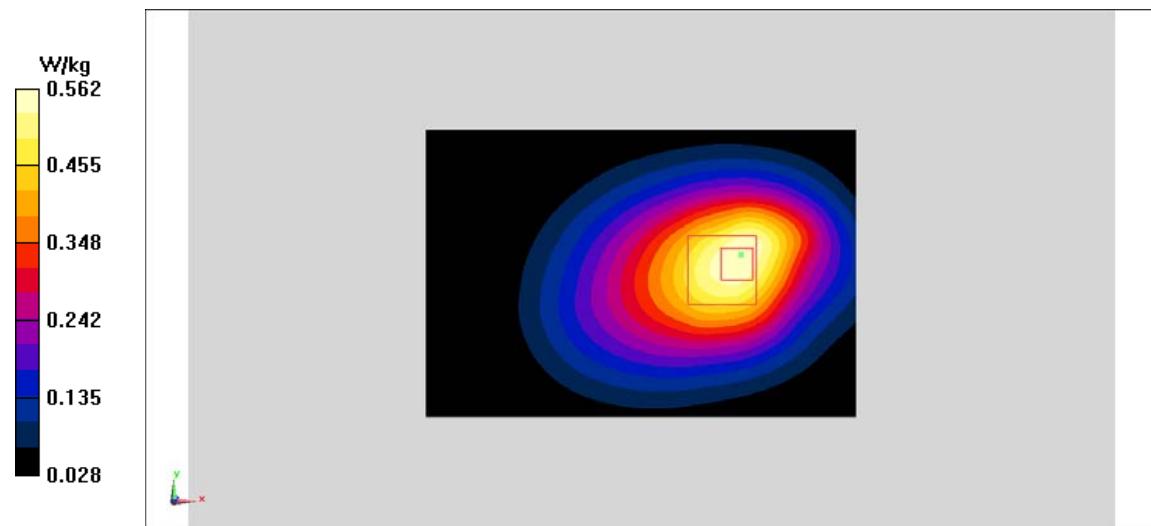
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: GSM850 824.2 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.564 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.38 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 0.744 W/kg

SAR(1 g) = 0.491 W/kg; SAR(10 g) = 0.329 W/kg

Maximum value of SAR (measured) = 0.562 W/kg

Fig A.2

PCS1900_CH661 Left Cheek

Date: 6/15/2018

Electronics: DAE4 Sn1525

Medium: Head 1900 MHz

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 39.48$; $\rho = 1000$ kg/m³

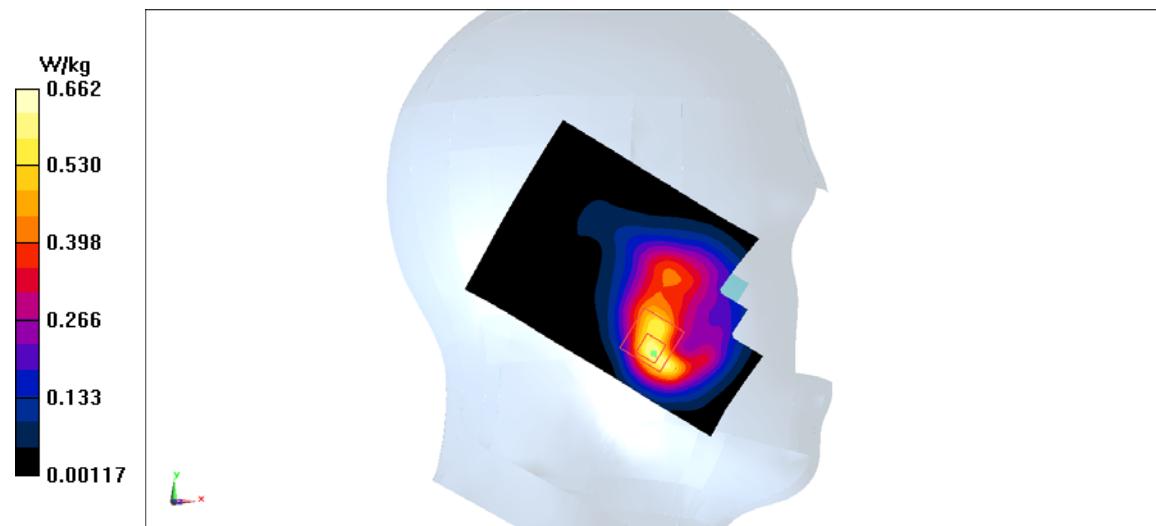
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: PCS1900 1880 MHz Duty Cycle: 1:4

Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.621 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.426 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.967 W/kg

SAR(1 g) = 0.504 W/kg; SAR(10 g) = 0.268 W/kg

Maximum value of SAR (measured) = 0.662 W/kg

Fig A.3

PCS1900_CH661 Rear

Date: 6/15/2018

Electronics: DAE4 Sn1525

Medium: Head 1900 MHz

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 54.13$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: PCS1900 1880 MHz Duty Cycle: 1:4

Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.477 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.15 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.595 W/kg

SAR(1 g) = 0.388 W/kg; SAR(10 g) = 0.242 W/kg

Maximum value of SAR (measured) = 0.458 W/kg

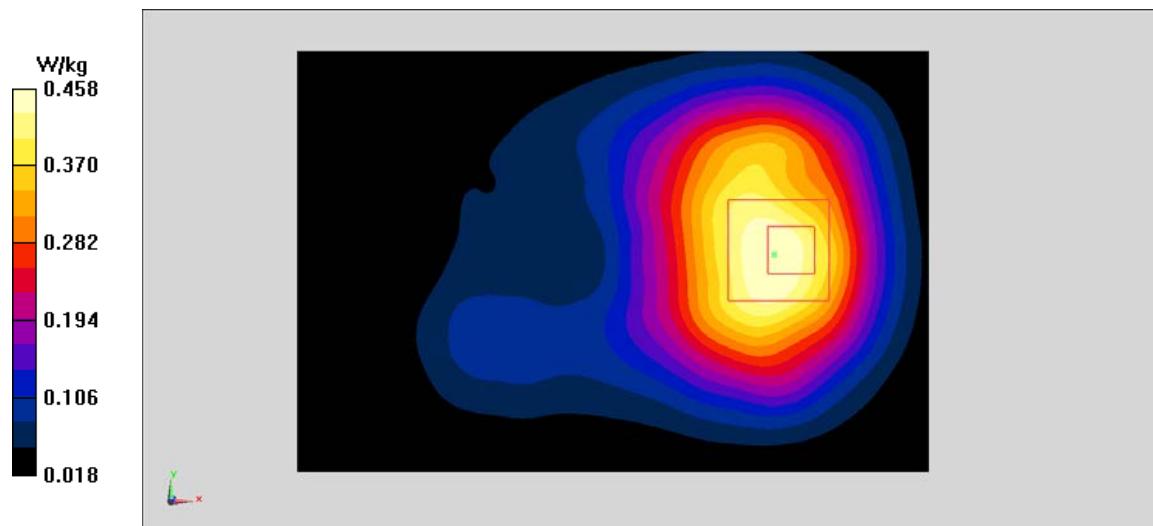


Fig A.4

WCDMA1900-BII_CH9400 Left Cheek

Date: 6/15/2018

Electronics: DAE4 Sn1525

Medium: Head 1900 MHz

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 39.48$; $\rho = 1000$ kg/m³

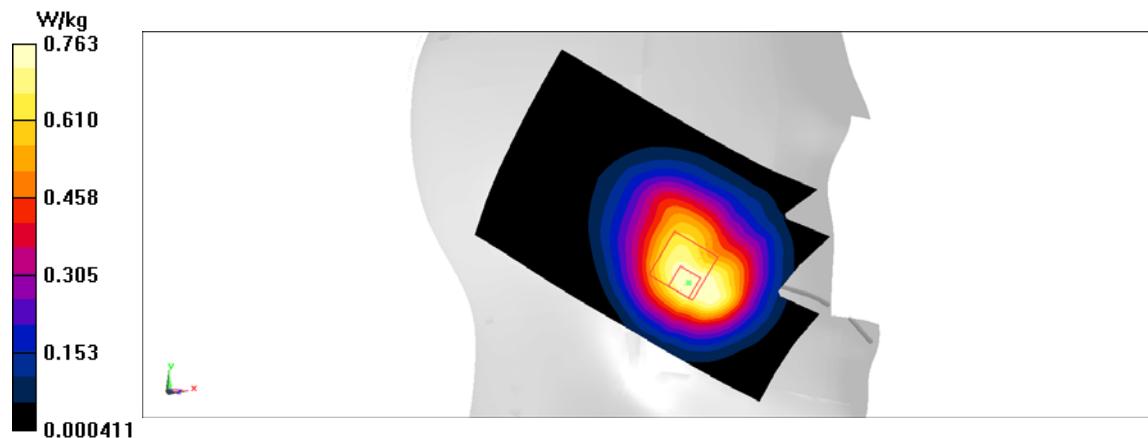
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.781 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.558 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.59 W/kg; SAR(10 g) = 0.332 W/kg

Maximum value of SAR (measured) = 0.763 W/kg

Fig A.5

WCDMA1900-BII_CH9400 Rear

Date: 6/15/2018

Electronics: DAE4 Sn1525

Medium: Head 1900 MHz

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 54.13$; $\rho = 1000$ kg/m³

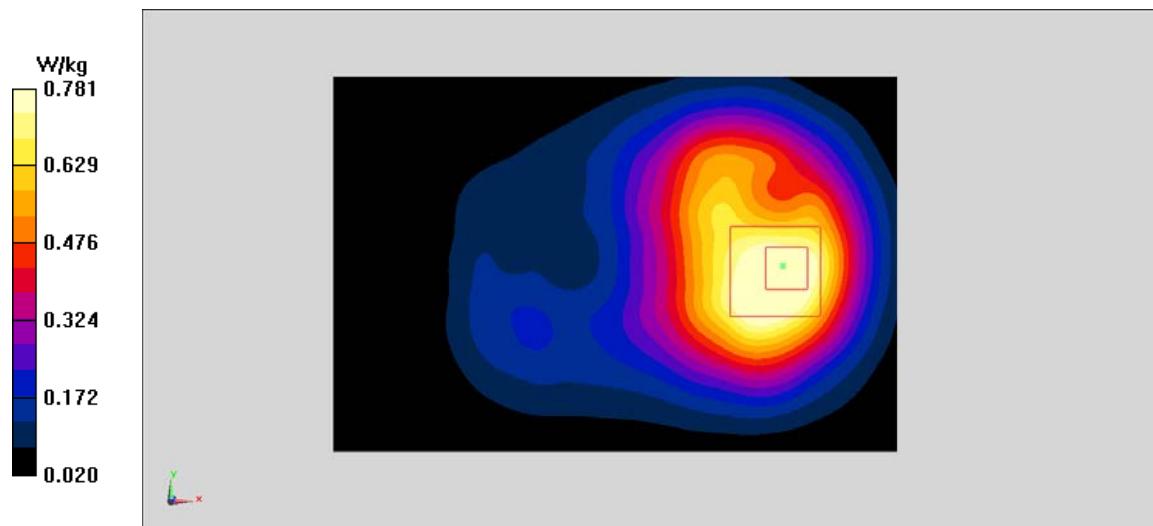
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.849 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.75 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.662 W/kg; SAR(10 g) = 0.405 W/kg

Maximum value of SAR (measured) = 0.781 W/kg

Fig A.6

WCDMA1700-BIV_CH1513 Left Cheek

Date: 6/14/2018

Electronics: DAE4 Sn1525

Medium: Head 1750 MHz

Medium parameters used: $f = 1752.6$ MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39.8$; $\rho = 1000$ kg/m³

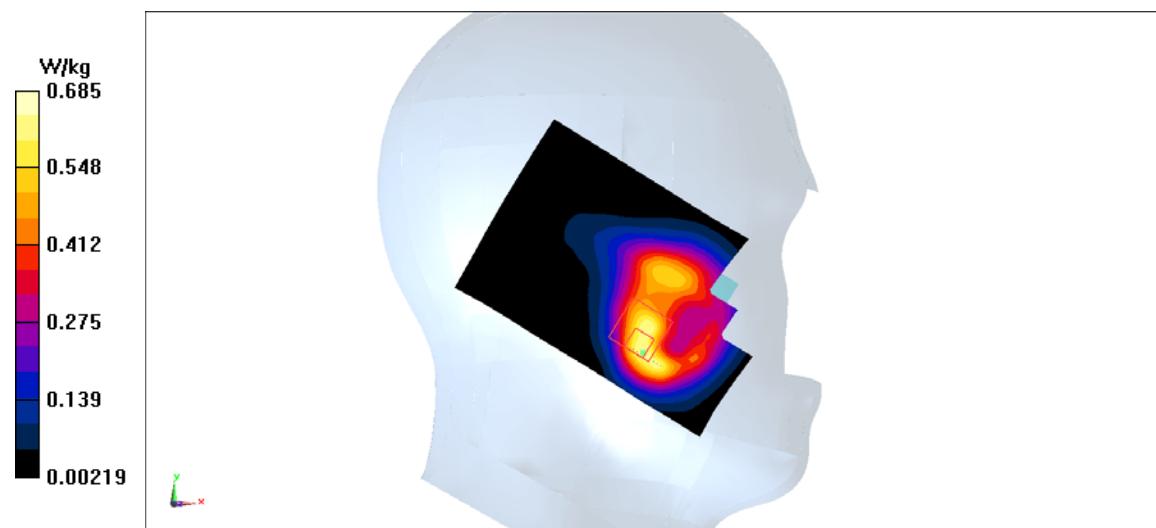
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.70,8.70,8.70)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.644 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.283 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.982 W/kg

SAR(1 g) = 0.541 W/kg; SAR(10 g) = 0.298 W/kg

Maximum value of SAR (measured) = 0.685 W/kg

Fig A.7

WCDMA1700-BIV_CH1312 Front

Date: 6/14/2018

Electronics: DAE4 Sn1525

Medium: Head 1750 MHz

Medium parameters used: $f = 1712.4$ MHz; $\sigma = 1.425$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m 3

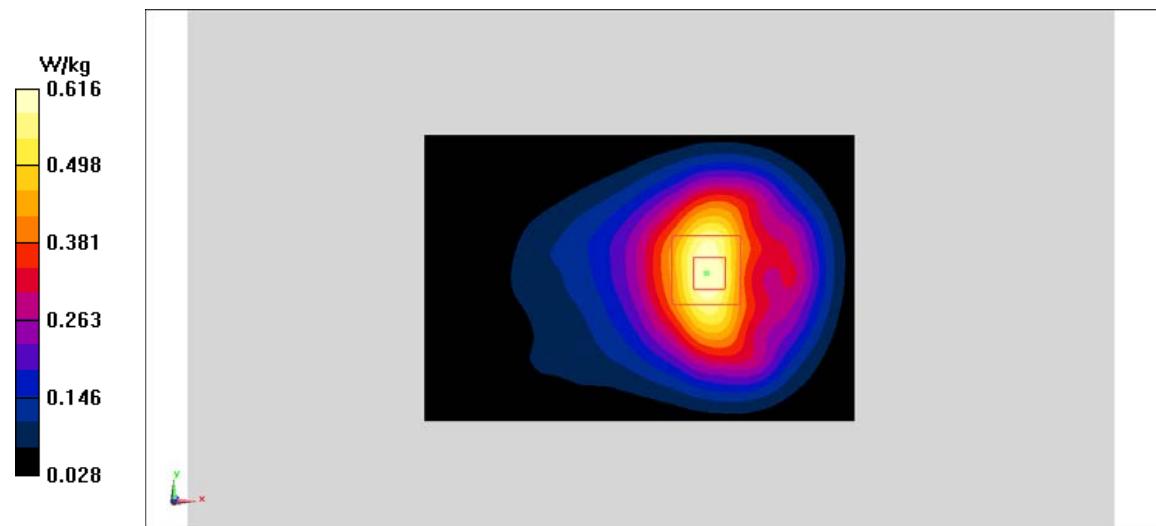
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1712.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.60,8.60,8.60)

Area Scan (71x121x1): Interpolated grid: $dx=1.000$ mm, $dy=1.000$ mm

Maximum value of SAR (interpolated) = 0.629 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 14.9 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.821 W/kg

SAR(1 g) = 0.536 W/kg; SAR(10 g) = 0.334 W/kg

Maximum value of SAR (measured) = 0.616 W/kg

Fig A.8

WCDMA850-BV_CH4132 Left Cheek

Date: 6/13/2018

Electronics: DAE4 Sn1525

Medium: Head 835 MHz

Medium parameters used: $f = 826.4$ MHz; $\sigma = 0.887$ mho/m; $\epsilon_r = 41.8$; $\rho = 1000$ kg/m³

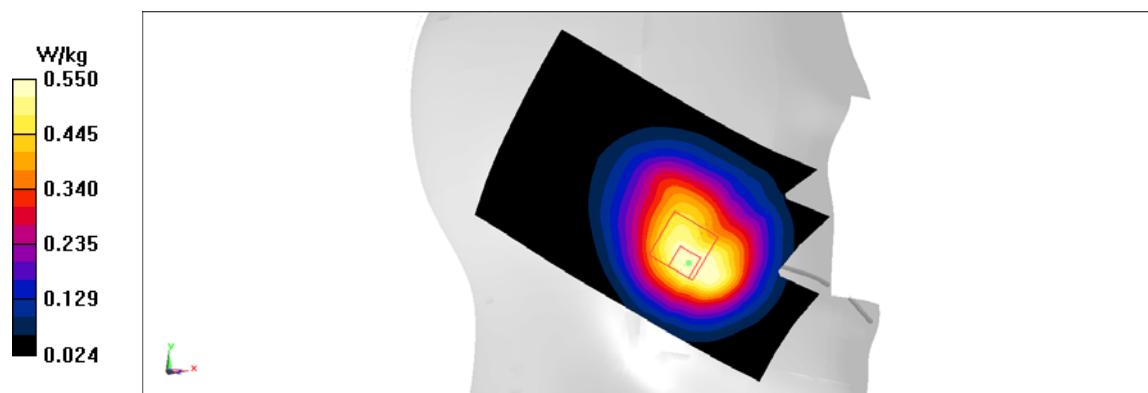
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 826.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.568 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.52 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.753 W/kg

SAR(1 g) = 0.467 W/kg; SAR(10 g) = 0.311 W/kg

Maximum value of SAR (measured) = 0.55 W/kg

Fig A.9

WCDMA850-BV_CH4132 Rear

Date: 6/13/2018

Electronics: DAE4 Sn1525

Medium: Head 835 MHz

Medium parameters used: $f = 826.4$ MHz; $\sigma = 0.953$ mho/m; $\epsilon_r = 54.62$; $\rho = 1000$ kg/m³

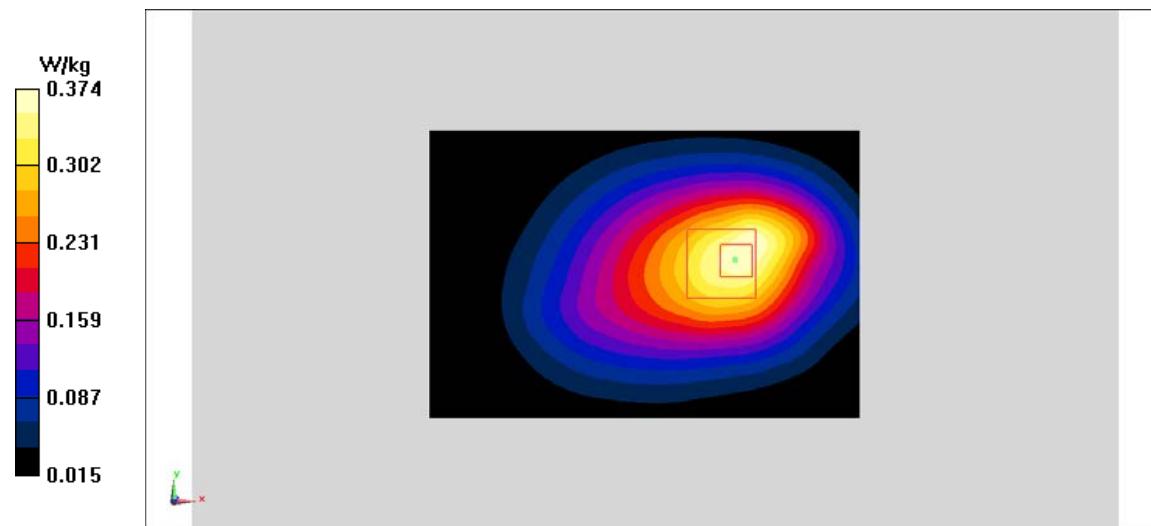
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 826.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.371 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.23 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.486 W/kg

SAR(1 g) = 0.324 W/kg; SAR(10 g) = 0.217 W/kg

Maximum value of SAR (measured) = 0.374 W/kg

Fig A.10

LTE1900-FDD2_CH18700 Left Cheek

Date: 6/15/2018

Electronics: DAE4 Sn1525

Medium: Head 1900 MHz

Medium parameters used: $f = 1860$ MHz; $\sigma = 1.351$ mho/m; $\epsilon_r = 39.51$; $\rho = 1000$ kg/m 3

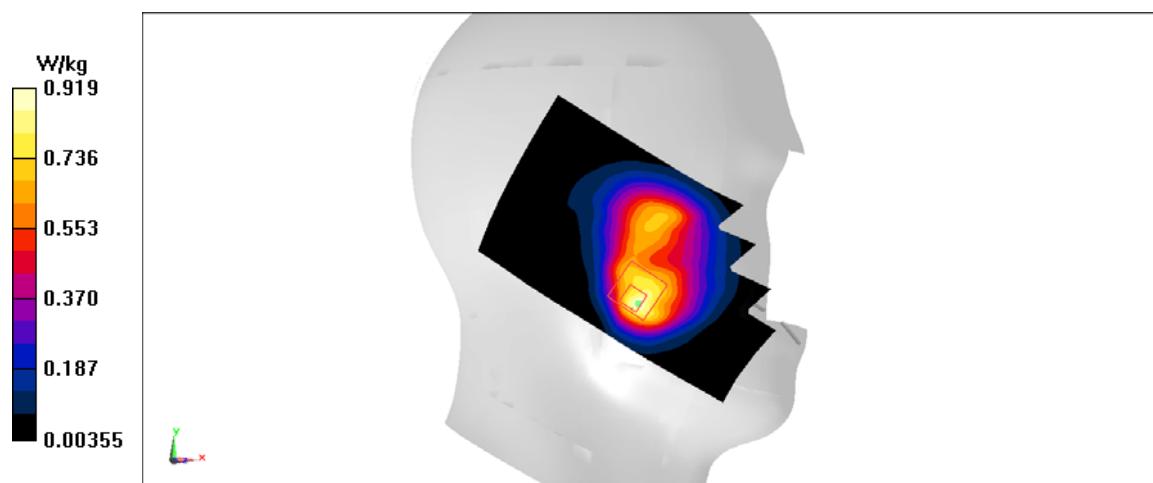
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1900-FDD2 1860 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: $dx=1.000$ mm, $dy=1.000$ mm

Maximum value of SAR (interpolated) = 0.903 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 4.634 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.715 W/kg; SAR(10 g) = 0.386 W/kg

Maximum value of SAR (measured) = 0.919 W/kg

Fig A.11

LTE1900-FDD2_CH18700 Left Cheek

Date: 6/15/2018

Electronics: DAE4 Sn1525

Medium: Head 1900 MHz

Medium parameters used: $f = 1860$ MHz; $\sigma = 1.351$ mho/m; $\epsilon_r = 39.51$; $\rho = 1000$ kg/m 3

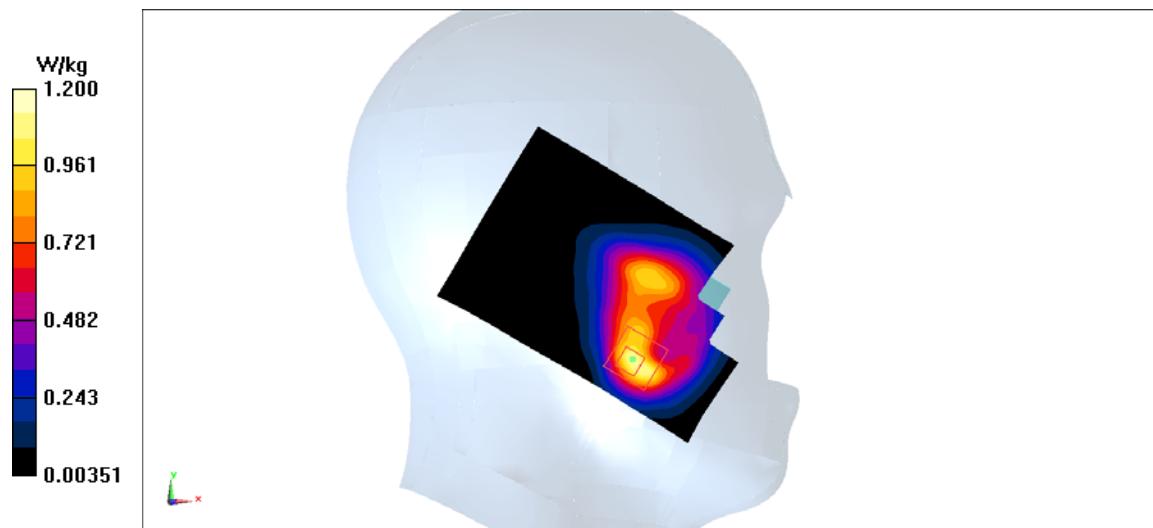
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1900-FDD2 1860 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: $dx=1.000$ mm, $dy=1.000$ mm

Maximum value of SAR (interpolated) = 1.13 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 4.011 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.76 W/kg

SAR(1 g) = 0.913 W/kg; SAR(10 g) = 0.483 W/kg

Maximum value of SAR (measured) = 1.2 W/kg

Fig A.12

LTE1900-FDD2_CH19100 Rear

Date: 6/15/2018

Electronics: DAE4 Sn1525

Medium: Head 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.529$ mho/m; $\epsilon_r = 54.11$; $\rho = 1000$ kg/m 3

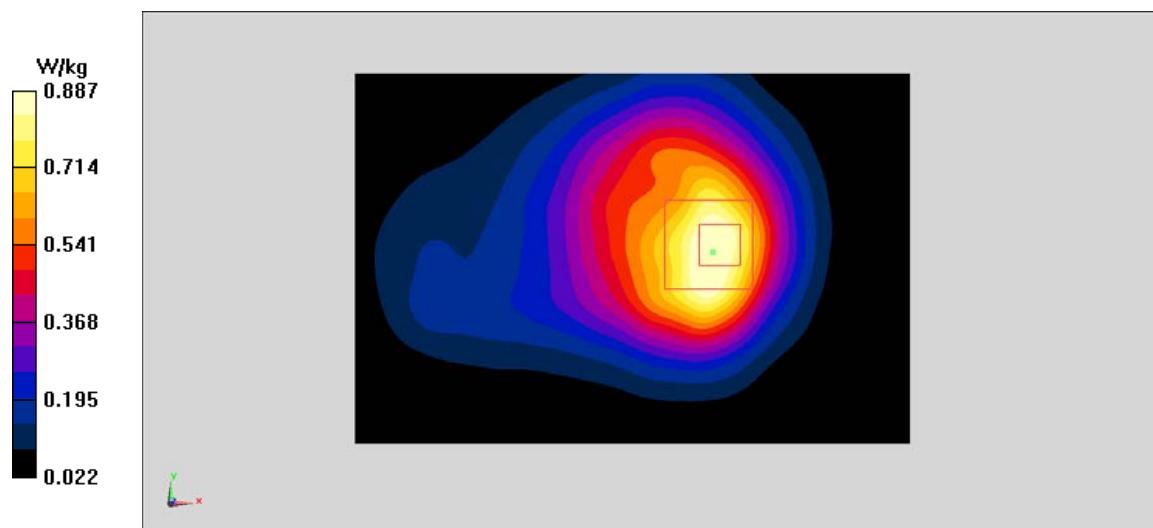
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1900-FDD2 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (71x121x1): Interpolated grid: $dx=1.000$ mm, $dy=1.000$ mm

Maximum value of SAR (interpolated) = 0.96 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 19.21 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.752 W/kg; SAR(10 g) = 0.443 W/kg

Maximum value of SAR (measured) = 0.887 W/kg

Fig A.13

LTE850-FDD5_CH20600 Left Cheek

Date: 6/13/2018

Electronics: DAE4 Sn1525

Medium: Head 835 MHz

Medium parameters used: $f = 844$ MHz; $\sigma = 0.905$ mho/m; $\epsilon_r = 41.78$; $\rho = 1000$ kg/m³

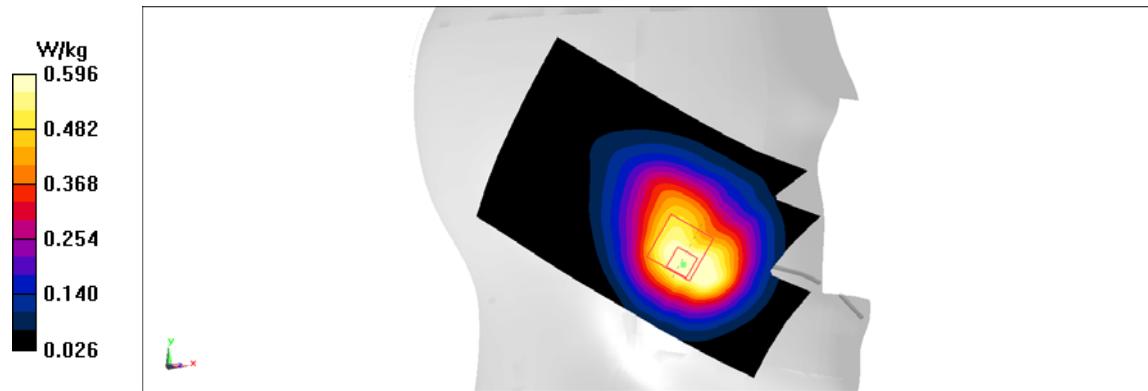
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE850-FDD5 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.631 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.832 V/m; Power Drift = 0 dB

Peak SAR (extrapolated) = 0.814 W/kg

SAR(1 g) = 0.505 W/kg; SAR(10 g) = 0.336 W/kg

Maximum value of SAR (measured) = 0.596 W/kg

Fig A.14

LTE850-FDD5_CH20600 Rear

Date: 6/13/2018

Electronics: DAE4 Sn1525

Medium: Head 835 MHz

Medium parameters used: $f = 844$ MHz; $\sigma = 0.971$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³

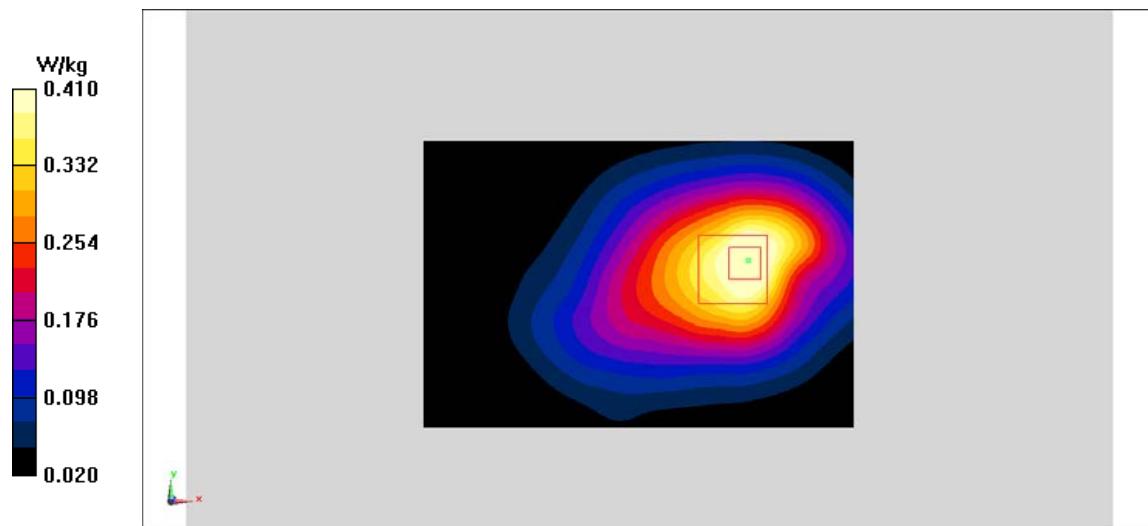
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE850-FDD5 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.448 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.11 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.544 W/kg

SAR(1 g) = 0.354 W/kg; SAR(10 g) = 0.233 W/kg

Maximum value of SAR (measured) = 0.41 W/kg

Fig A.15

LTE700-FDD12_CH23095 Left Cheek

Date: 6/12/2018

Electronics: DAE4 Sn1525

Medium: Head 750 MHz

Medium parameters used: $f = 707.5$ MHz; $\sigma = 0.858$ mho/m; $\epsilon_r = 41.69$; $\rho = 1000$ kg/m³

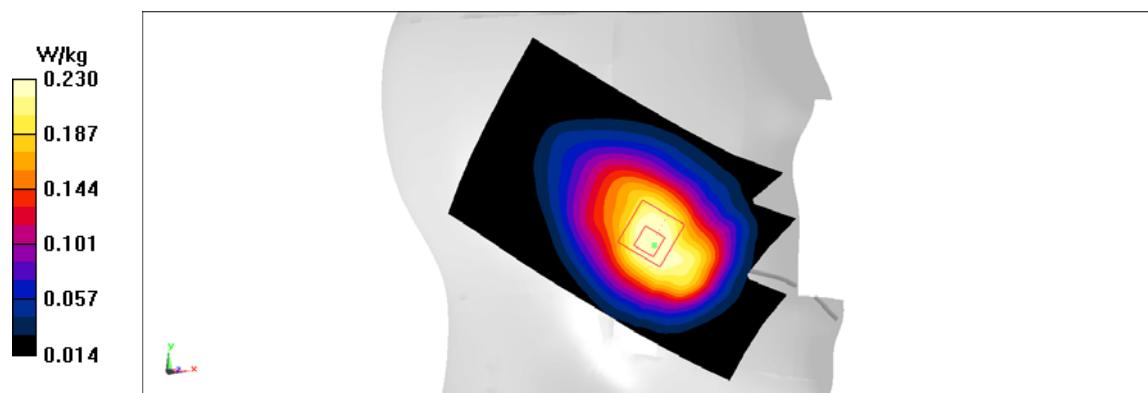
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD12 707.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.57,10.57,10.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.239 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.627 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.271 W/kg

SAR(1 g) = 0.207 W/kg; SAR(10 g) = 0.153 W/kg

Maximum value of SAR (measured) = 0.23 W/kg

Fig A.16

LTE700-FDD12_CH23095 Rear

Date: 6/12/2018

Electronics: DAE4 Sn1525

Medium: Head 750 MHz

Medium parameters used: $f = 707.5$ MHz; $\sigma = 0.932$ mho/m; $\epsilon_r = 56.33$; $\rho = 1000$ kg/m 3

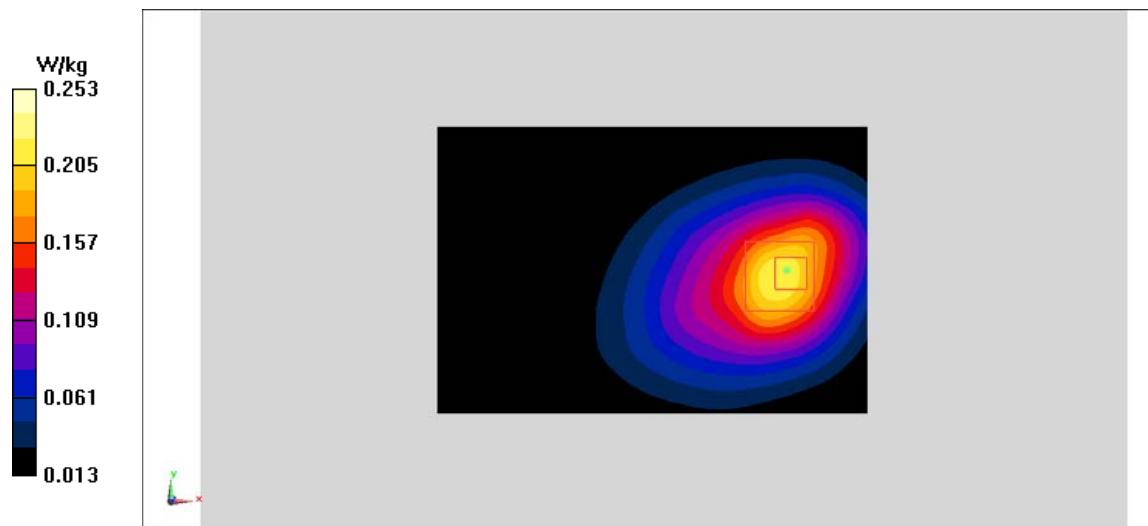
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD12 707.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.63,10.63,10.63)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.221 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.772 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.358 W/kg

SAR(1 g) = 0.21 W/kg; SAR(10 g) = 0.129 W/kg

Maximum value of SAR (measured) = 0.253 W/kg

Fig A.17

LTE750-FDD13_CH23230 Right Cheek

Date: 6/12/2018

Electronics: DAE4 Sn1525

Medium: Head 750 MHz

Medium parameters used: $f = 782$ MHz; $\sigma = 0.928$ mho/m; $\epsilon_r = 41.6$; $\rho = 1000$ kg/m³

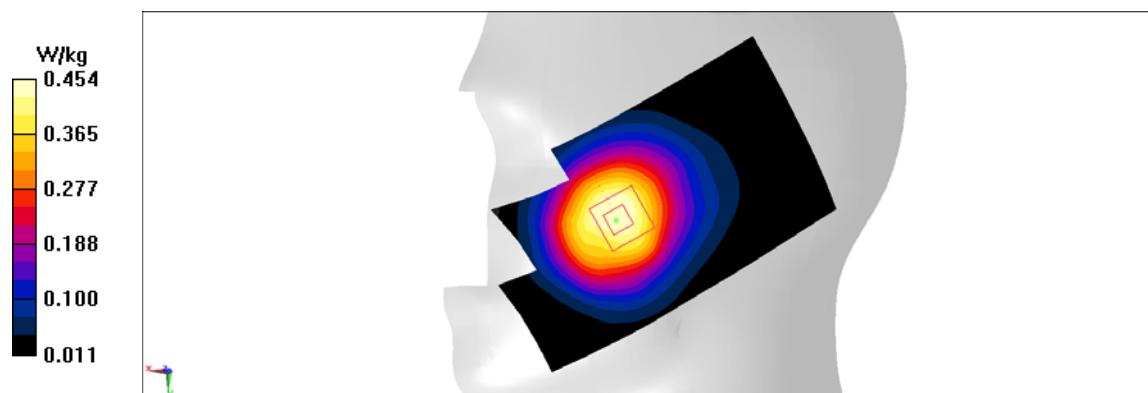
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE750-FDD13 782 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.57,10.57,10.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.47 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.103 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.575 W/kg

SAR(1 g) = 0.409 W/kg; SAR(10 g) = 0.29 W/kg

Maximum value of SAR (measured) = 0.454 W/kg

Fig A.18

LTE750-FDD13_CH23230 Rear

Date: 6/12/2018

Electronics: DAE4 Sn1525

Medium: Head 750 MHz

Medium parameters used: $f = 782$ MHz; $\sigma = 1.002$ mho/m; $\epsilon_r = 56.24$; $\rho = 1000$ kg/m³

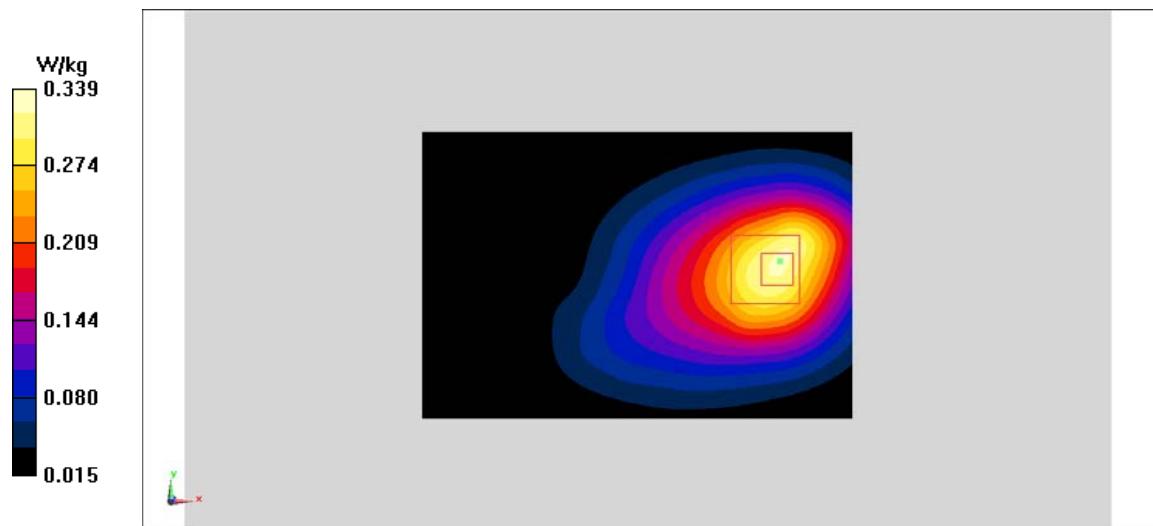
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE750-FDD13 782 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.63,10.63,10.63)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.322 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.13 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.46 W/kg

SAR(1 g) = 0.291 W/kg; SAR(10 g) = 0.188 W/kg

Maximum value of SAR (measured) = 0.339 W/kg

Fig A.19

LTE700-FDD17_CH23790 Left Cheek

Date: 6/12/2018

Electronics: DAE4 Sn1525

Medium: Head 750 MHz

Medium parameters used: $f = 710$ MHz; $\sigma = 0.86$ mho/m; $\epsilon_r = 41.69$; $\rho = 1000$ kg/m³

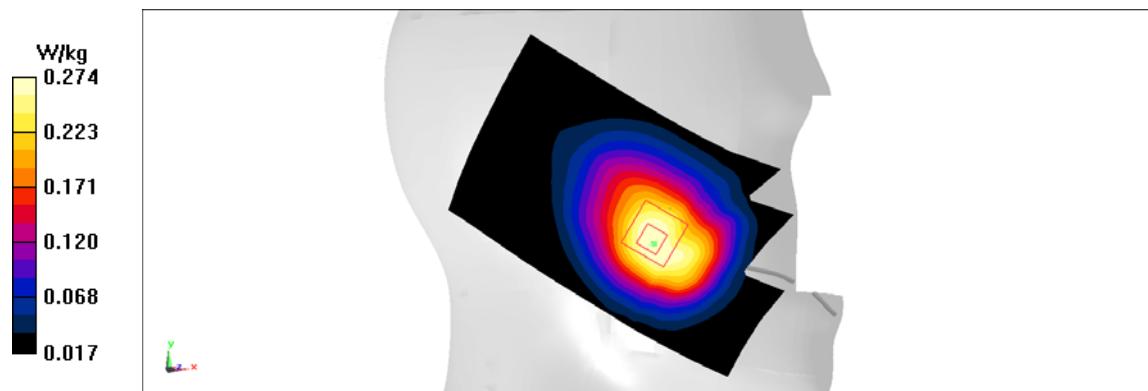
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD17 710 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.57,10.57,10.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.28 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.346 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.329 W/kg

SAR(1 g) = 0.245 W/kg; SAR(10 g) = 0.178 W/kg

Maximum value of SAR (measured) = 0.274 W/kg

Fig A.20

LTE700-FDD17_CH23790 Rear

Date: 6/12/2018

Electronics: DAE4 Sn1525

Medium: Head 750 MHz

Medium parameters used: $f = 710$ MHz; $\sigma = 0.934$ mho/m; $\epsilon_r = 56.33$; $\rho = 1000$ kg/m³

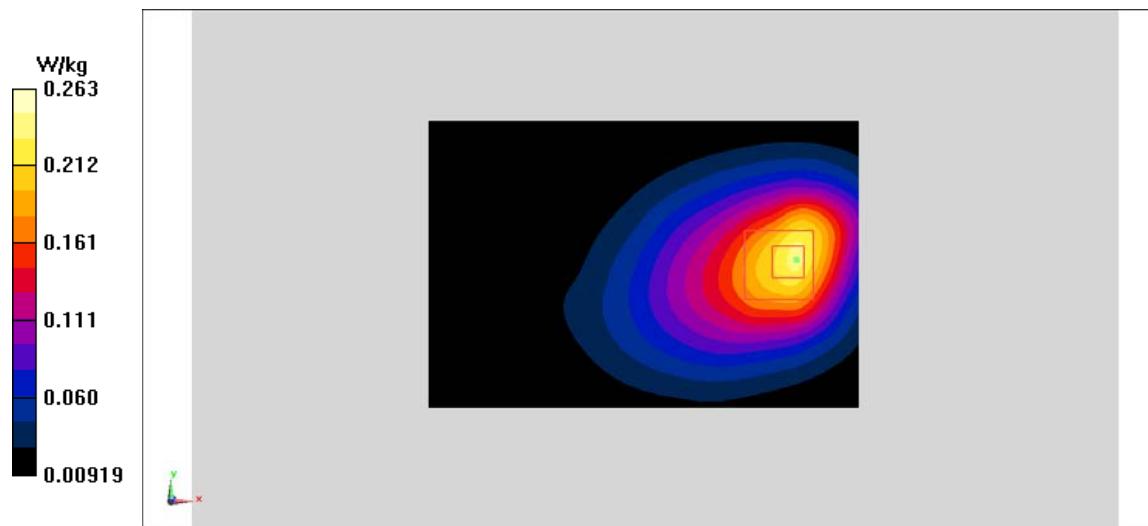
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD17 710 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.63,10.63,10.63)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.236 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.103 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.349 W/kg

SAR(1 g) = 0.217 W/kg; SAR(10 g) = 0.136 W/kg

Maximum value of SAR (measured) = 0.263 W/kg

Fig A.21

LTE1700-FDD66_CH132572 Left Cheek

Date: 6/14/2018

Electronics: DAE4 Sn1525

Medium: Head 1750 MHz

Medium parameters used: $f = 710$ MHz; $\sigma = 0.409$ mho/m; $\epsilon_r = 41.05$; $\rho = 1000$ kg/m³

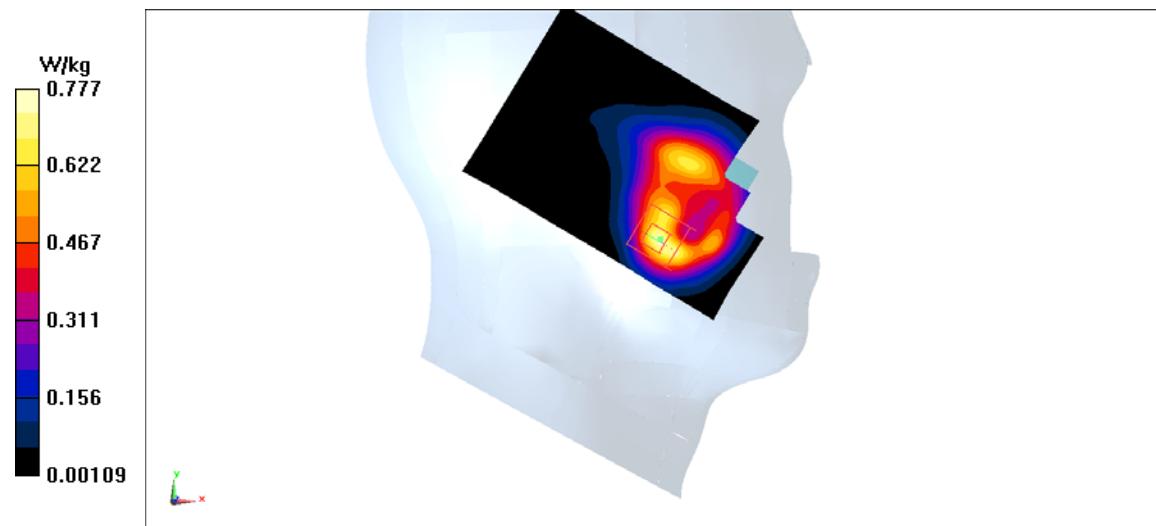
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1700-FDD66 710 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.70,8.70,8.70)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.729 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.039 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.599 W/kg; SAR(10 g) = 0.353 W/kg

Maximum value of SAR (measured) = 0.777 W/kg

Fig A.22

LTE1700-FDD66_CH132072 Left Cheek

Date: 6/14/2018

Electronics: DAE4 Sn1525

Medium: Head 1750 MHz

Medium parameters used: $f = 710$ MHz; $\sigma = 0.409$ mho/m; $\epsilon_r = 41.05$; $\rho = 1000$ kg/m³

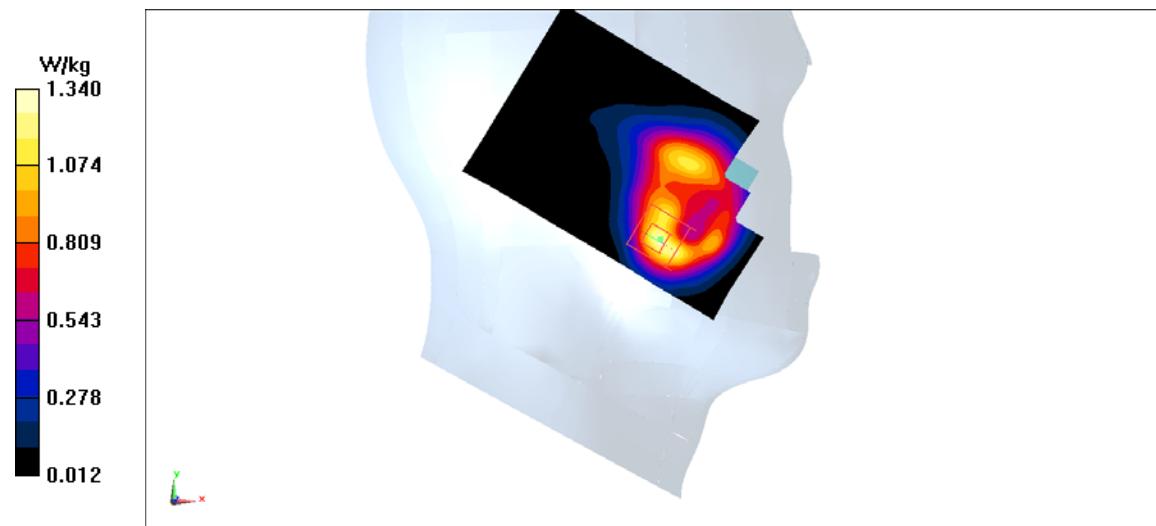
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1700-FDD66 710 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.70,8.70,8.70)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.29 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.316 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 g) = 0.866 W/kg; SAR(10 g) = 0.579 W/kg

Maximum value of SAR (measured) = 1.34 W/kg

Fig A.23

LTE1700-FDD66_CH132072 Rear

Date: 6/14/2018

Electronics: DAE4 Sn1525

Medium: Head 1750 MHz

Medium parameters used: $f = 710$ MHz; $\sigma = 0.473$ mho/m; $\epsilon_r = 55.1$; $\rho = 1000$ kg/m³

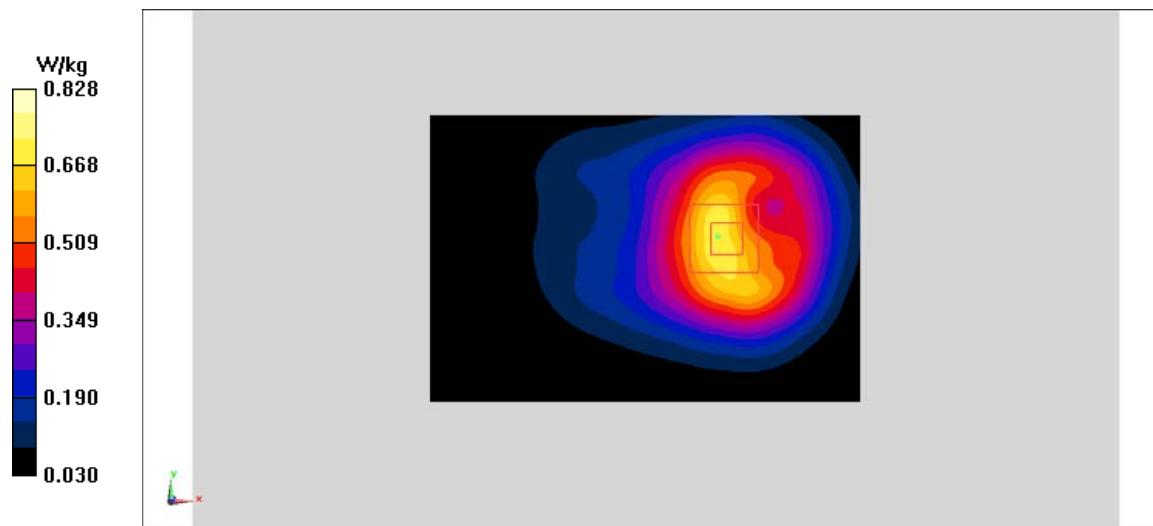
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1700-FDD66 710 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.60,8.60,8.60)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.715 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.42 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.715 W/kg; SAR(10 g) = 0.434 W/kg

Maximum value of SAR (measured) = 0.828 W/kg

Fig A.24

WLAN2450_CH6 Right Cheek

Date: 6/16/2018

Electronics: DAE4 Sn1525

Medium: Head 2450 MHz

Medium parameters used: $f = 2437$ MHz; $\sigma = 1.802$ mho/m; $\epsilon_r = 38.73$; $\rho = 1000$ kg/m³

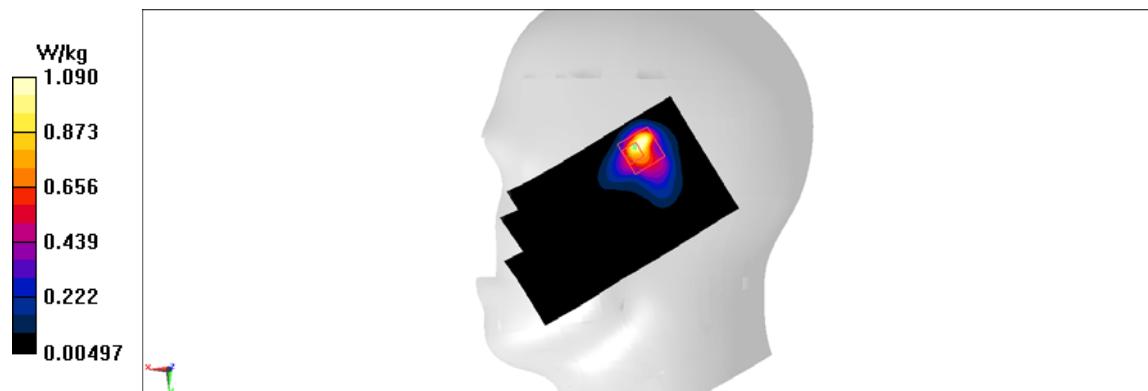
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WLAN2450 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.89,7.89,7.89)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.14 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.11 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 2.32 W/kg

SAR(1 g) = 0.747 W/kg; SAR(10 g) = 0.291 W/kg

Maximum value of SAR (measured) = 1.09 W/kg

Fig A.25

WLAN2450_CH6 Front

Date: 6/16/2018

Electronics: DAE4 Sn1525

Medium: Head 2450 MHz

Medium parameters used: $f = 2437$ MHz; $\sigma = 1.947$ mho/m; $\epsilon_r = 53.69$; $\rho = 1000$ kg/m³

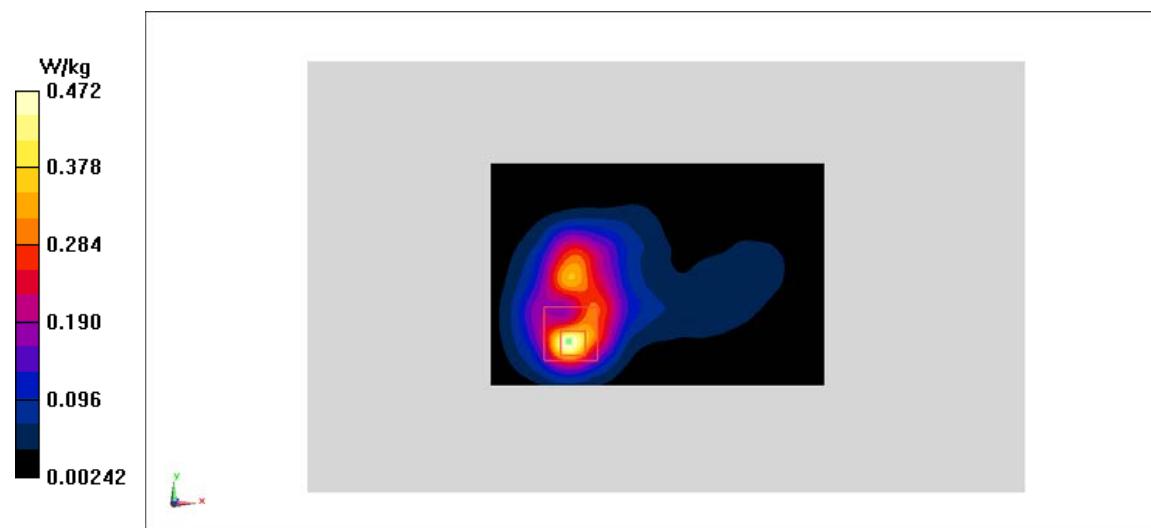
Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WLAN2450 2437 MHz Duty Cycle: 1:1

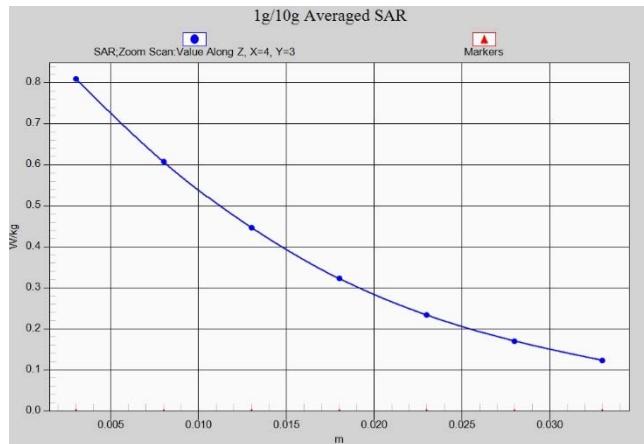
Probe: EX3DV4 – SN7464 ConvF(8.09,8.09,8.09)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

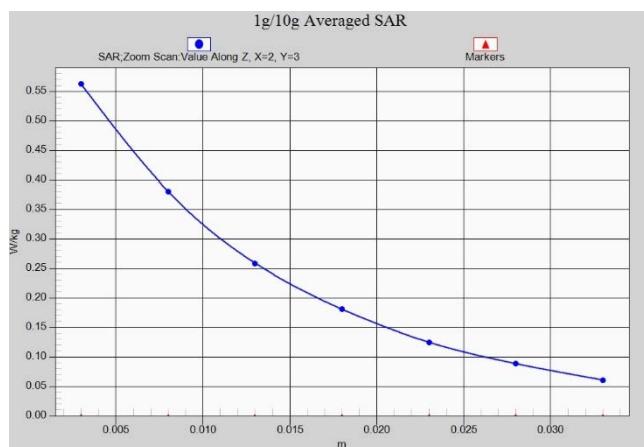
Maximum value of SAR (interpolated) = 0.493 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.275 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 0.732 W/kg

SAR(1 g) = 0.355 W/kg; SAR(10 g) = 0.164 W/kg


Maximum value of SAR (measured) = 0.472 W/kg

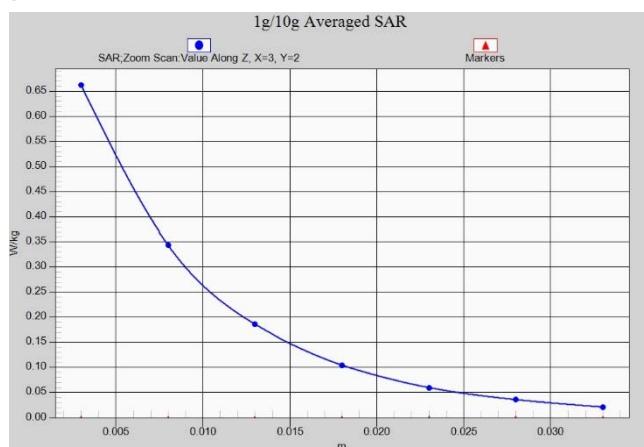

Fig A.26

Fig.A.1- 1 Z-Scan at power reference point (GSM850)

Fig.A.1- 2 Z-Scan at power reference point (GSM850)

Fig.A.1- 3 Z-Scan at power reference point (PCS1900)

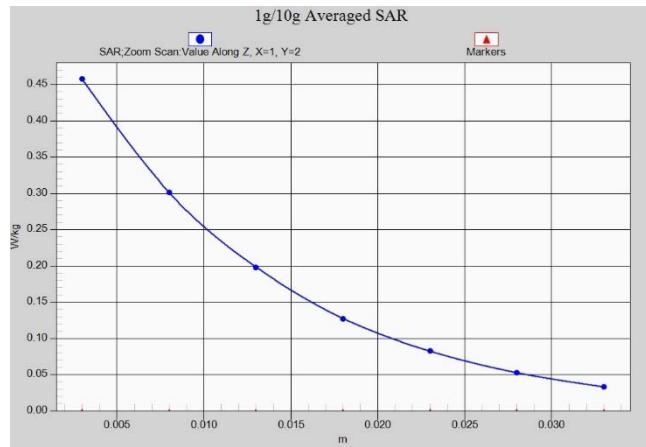


Fig.A.1- 4 Z-Scan at power reference point (PCS1900)

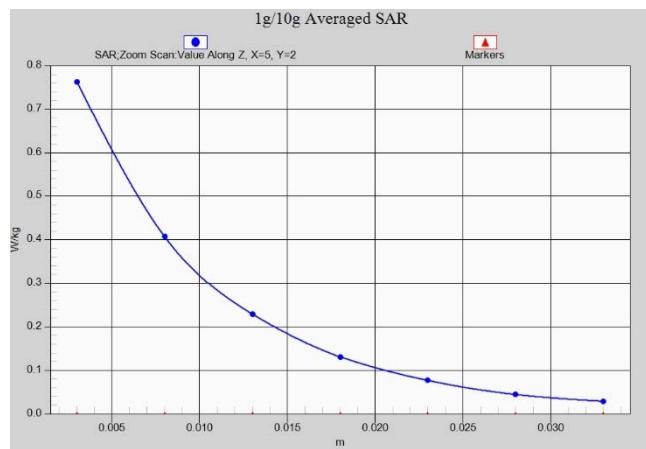
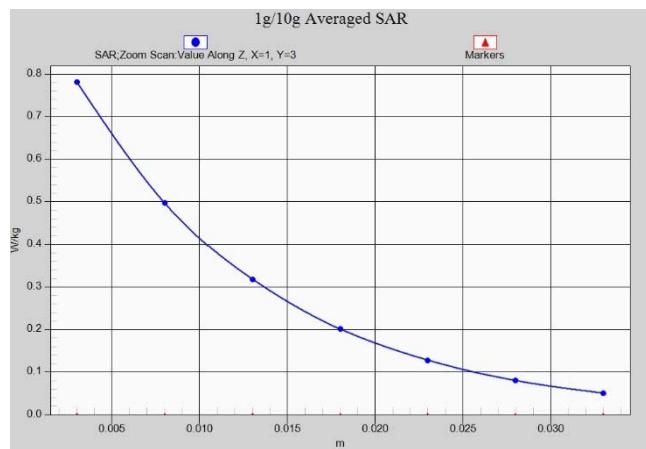
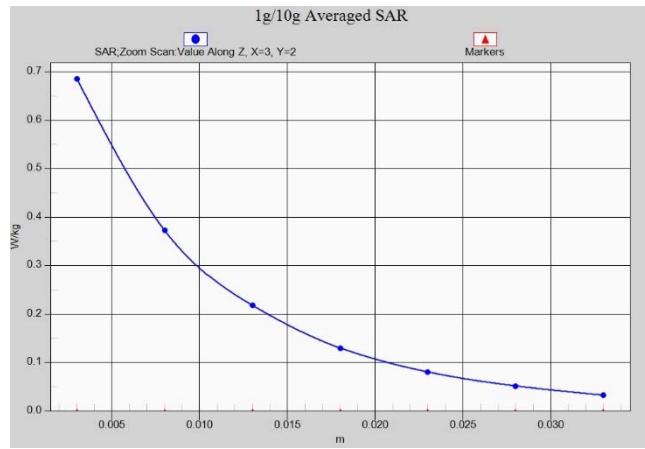
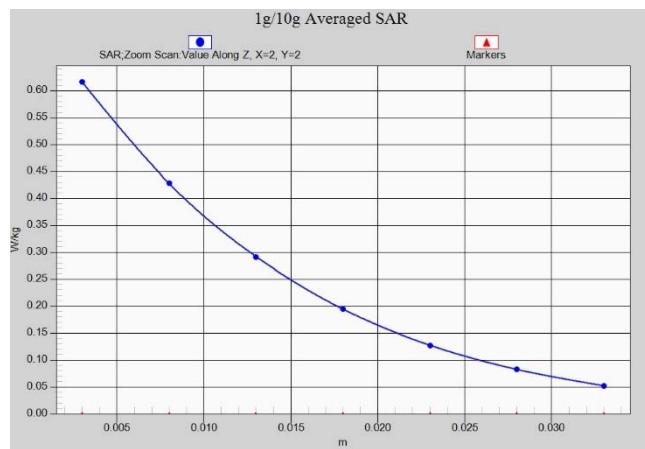
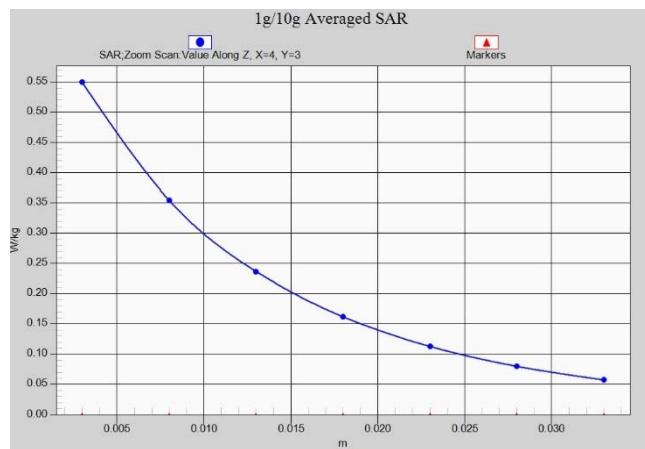
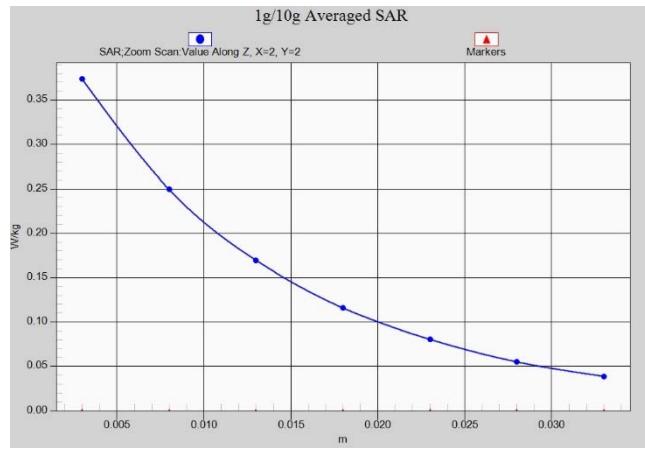
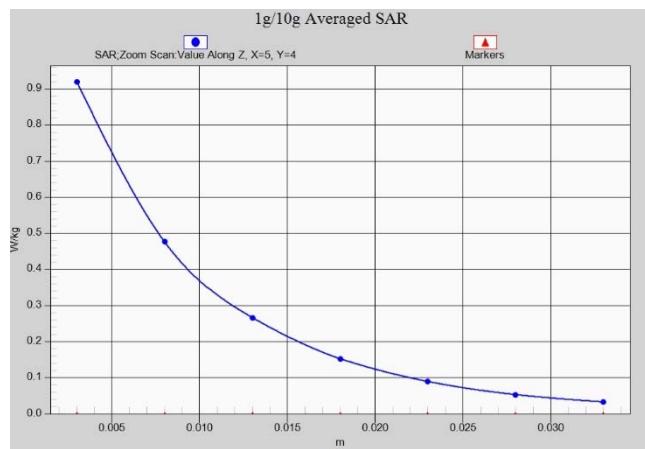


Fig.A.1- 5 Z-Scan at power reference point (W1900)


Fig.A.1- 6 Z-Scan at power reference point (W1900)


Fig.A.1- 7 Z-Scan at power reference point (W1700)


Fig.A.1- 8 Z-Scan at power reference point (W1700)

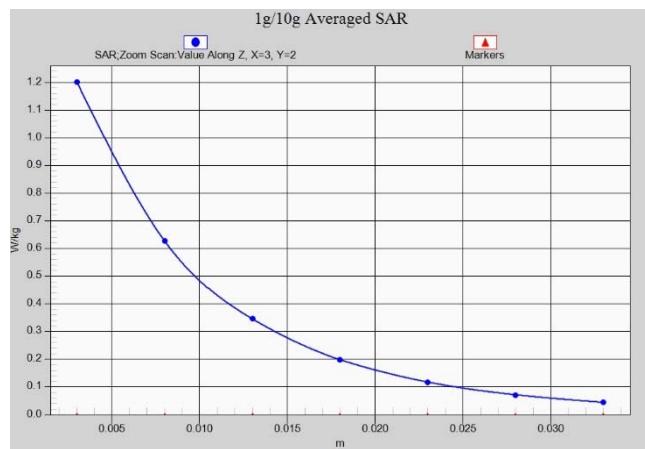

Fig.A.1- 9 Z-Scan at power reference point (W850)

Fig.A.1- 10 Z-Scan at power reference point (W850)

Fig.A.1- 11 Z-Scan at power reference point (LTE band2) Low Power

Fig.A.1- 12 Z-Scan at power reference point (LTE band2) Normal Power

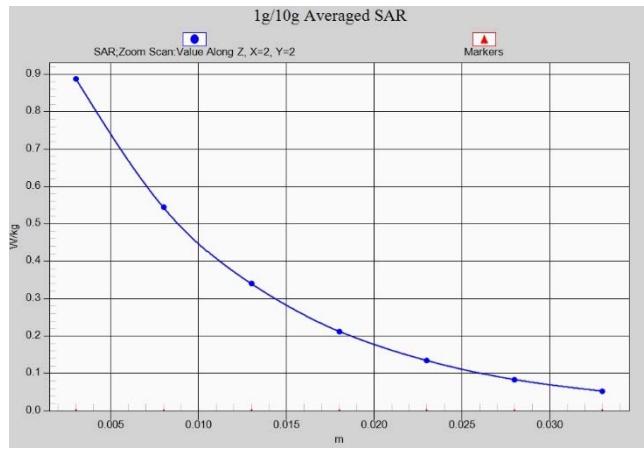


Fig.A.1- 13 Z-Scan at power reference point (LTE band2)

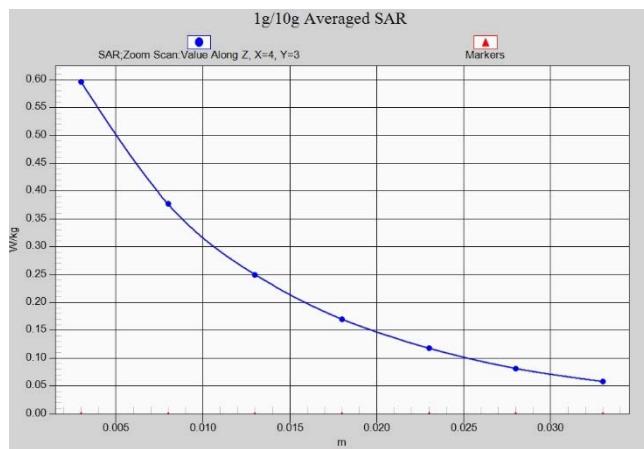


Fig.A.1- 14 Z-Scan at power reference point (LTE band5)

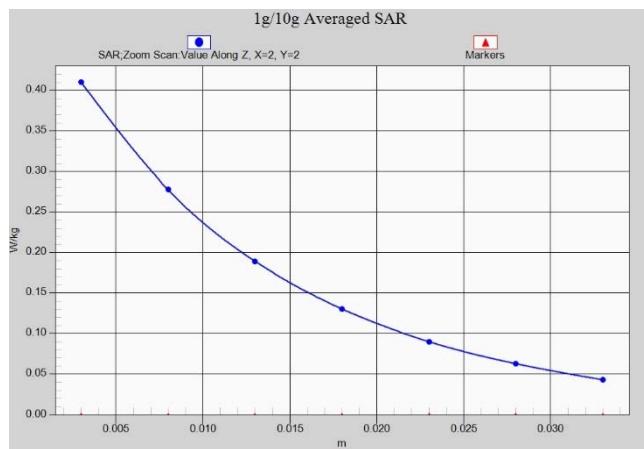


Fig.A.1- 15 Z-Scan at power reference point (LTE band5)

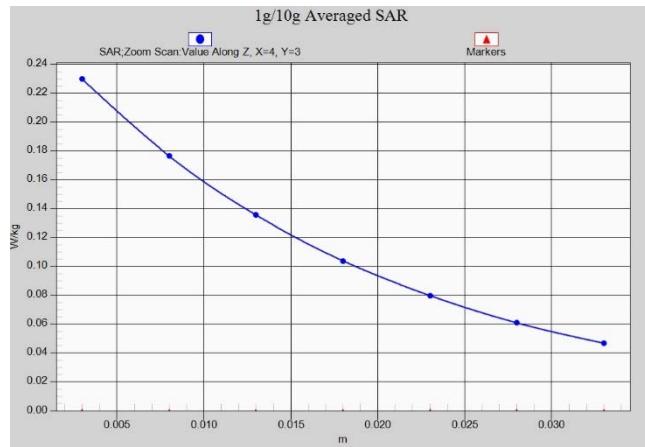


Fig.A.1- 16 Z-Scan at power reference point (LTE band12)

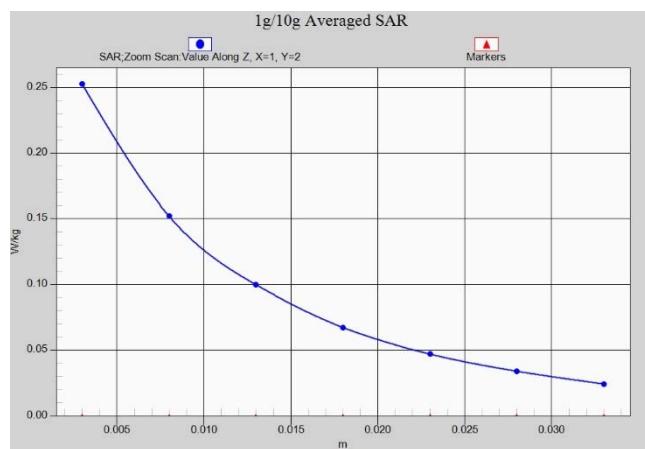


Fig.A.1- 17 Z-Scan at power reference point (LTE band12)

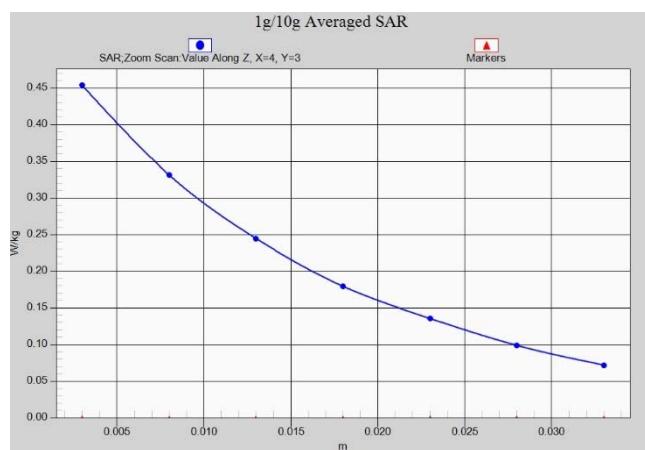


Fig.A.1- 18 Z-Scan at power reference point (LTE band13)

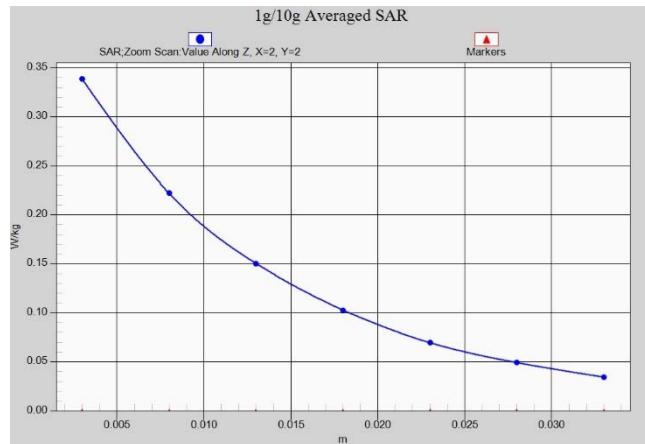
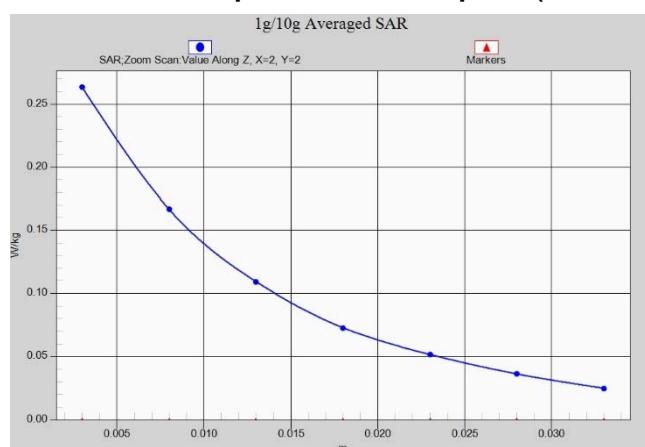
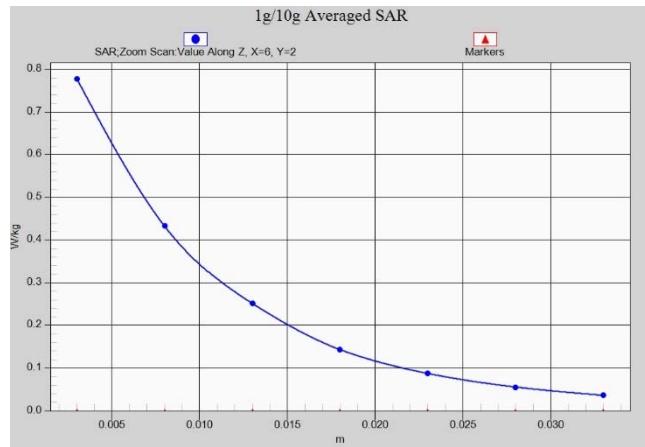
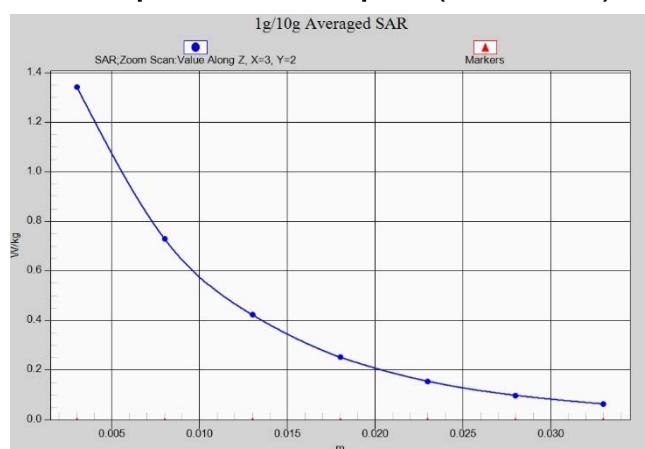


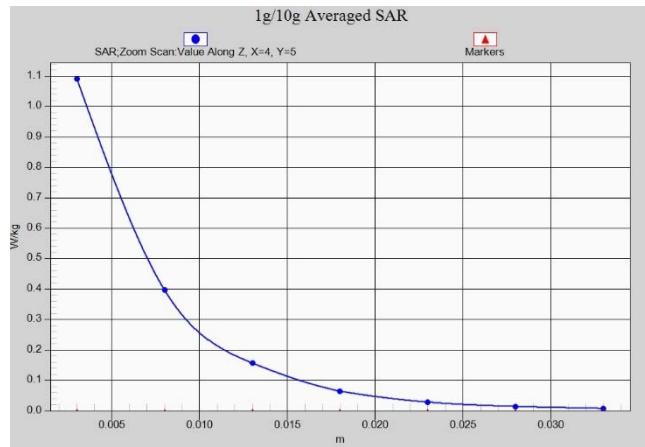
Fig.A.1- 19 Z-Scan at power reference point (LTE band13)



Fig.A.1- 20 Z-Scan at power reference point (LTE band17)


Fig.A.1- 21 Z-Scan at power reference point (LTE band17)


Fig.A.1- 22 Z-Scan at power reference point (LTE band66) Low Power

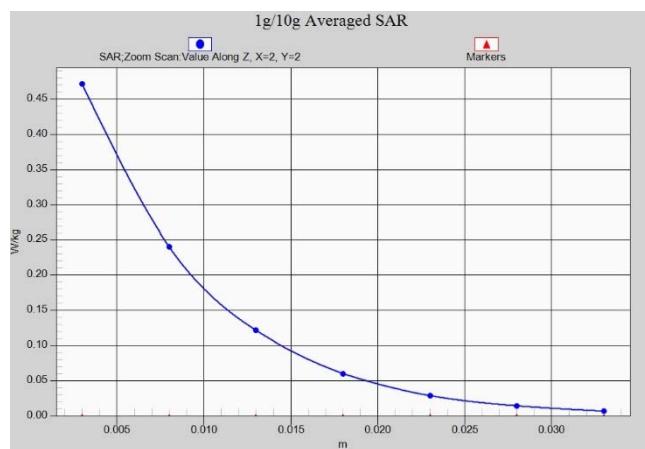

Fig.A.1- 23 Z-Scan at power reference point (LTE band66) Normal Power

Fig.A.1- 24 Z-Scan at power reference point (LTE band66)

Fig.A.1- 25 Z-Scan at power reference point (Wifi2450)

Fig.A.1- 26 Z-Scan at power reference point (Wifi2450)

ANNEX B System Verification Results

750 MHz

Date: 6/12/2018

Electronics: DAE4 Sn1525

Medium: Head 750 MHz

Medium parameters used: $f = 750$ MHz; $\sigma = 0.898$ mho/m; $\epsilon_r = 41.64$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1

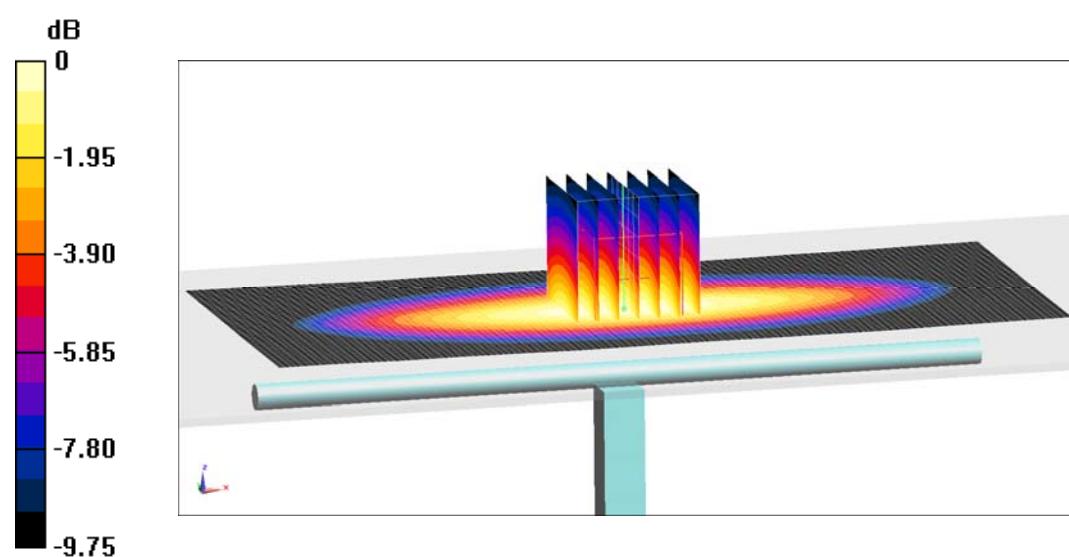
Probe: EX3DV4 – SN7464 ConvF(10.57,10.57,10.57)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 59.5 V/m; Power Drift = 0.02

Fast SAR: SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.35 W/kg

Maximum value of SAR (interpolated) = 2.75 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.5 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.22 W/kg

SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.34 W/kg

Maximum value of SAR (measured) = 2.8 W/kg

0 dB = 2.8 W/kg = 4.47 dB W/kg

Fig.B.1 validation 750 MHz 250mW

750 MHz

Date: 6/12/2018

Electronics: DAE4 Sn1525

Medium: Body 750 MHz

Medium parameters used: $f = 750 \text{ MHz}$; $\sigma = 0.972 \text{ mho/m}$; $\epsilon_r = 56.28$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1

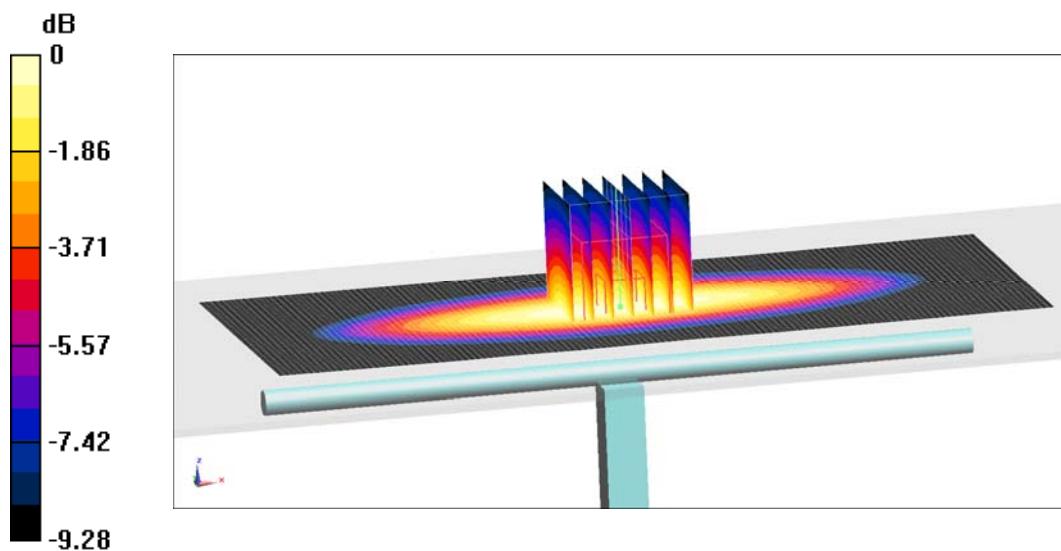
Probe: EX3DV4 – SN7464 ConvF(10.63,10.63,10.63)

System Validation /Area Scan (81x191x1): Interpolated grid: $dx=1.000 \text{ mm}$, $dy=1.000 \text{ mm}$

Reference Value = 57.4 V/m; Power Drift = -0.03

Fast SAR: SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.41 W/kg

Maximum value of SAR (interpolated) = 3.34 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 57.4 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.4 W/kg

Maximum value of SAR (measured) = 2.89 W/kg

0 dB = 2.89 W/kg = 4.61 dB W/kg

Fig.B.2 validation 750 MHz 250mW

835 MHz

Date: 6/13/2018

Electronics: DAE4 Sn1525

Medium: Head 835 MHz

Medium parameters used: $f = 835 \text{ MHz}$; $\sigma = 0.896 \text{ mho/m}$; $\epsilon_r = 41.79$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

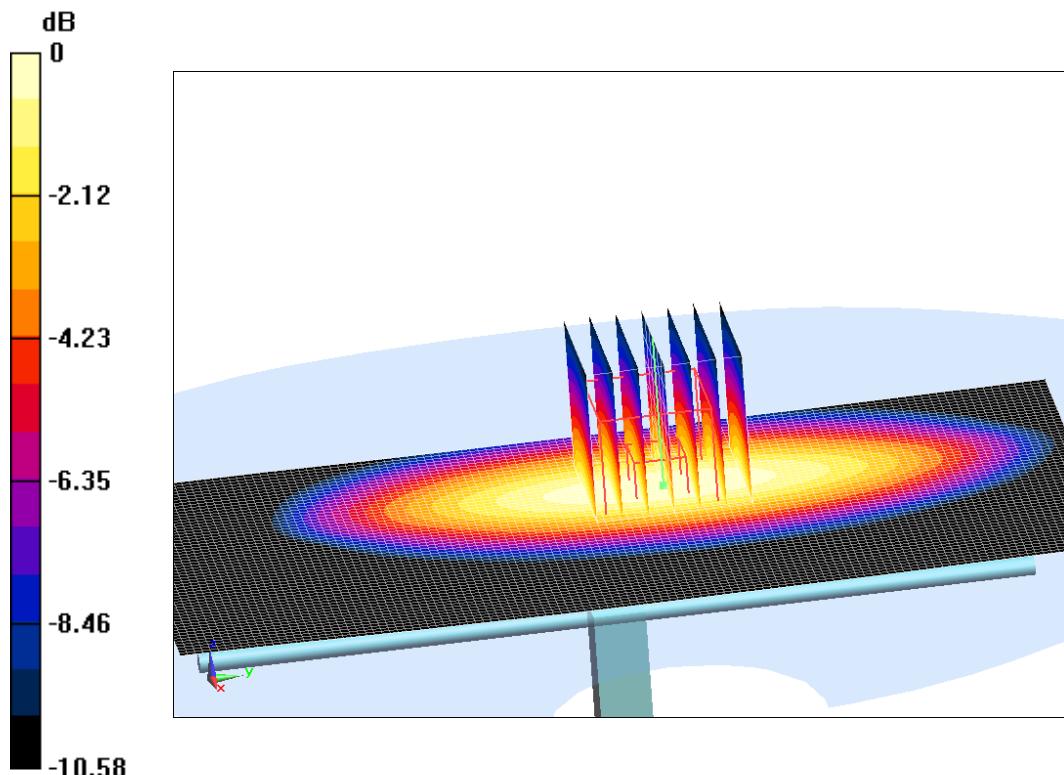
Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

System Validation /Area Scan (81x191x1): Interpolated grid: $dx=1.000 \text{ mm}$, $dy=1.000 \text{ mm}$

Reference Value = 64.9 V/m; Power Drift = -0.09

Fast SAR: SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.51 W/kg

Maximum value of SAR (interpolated) = 3.69 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 64.9 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 4.04 W/kg

SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 3.58 W/kg

0 dB = 3.58 W/kg = 5.54 dB W/kg

Fig.B.3 validation 835 MHz 250mW

835 MHz

Date: 6/13/2018

Electronics: DAE4 Sn1525

Medium: Body 835 MHz

Medium parameters used: $f = 835 \text{ MHz}$; $\sigma = 0.962 \text{ mho/m}$; $\epsilon_r = 54.61$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

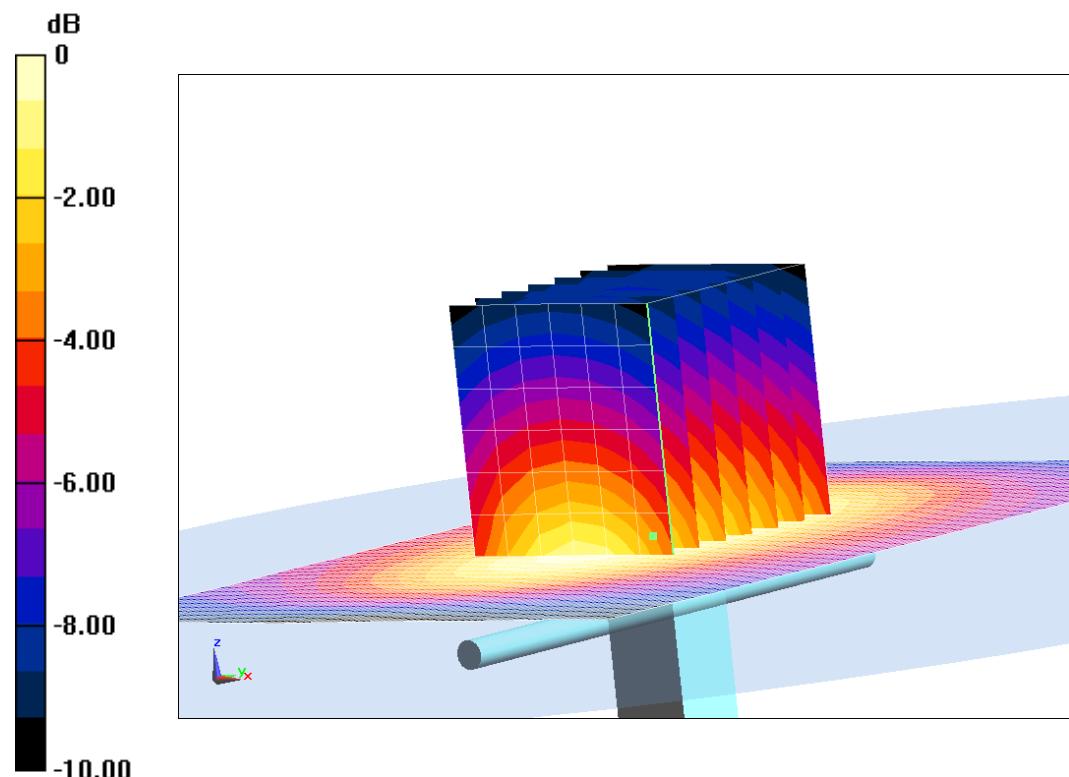
Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

System Validation /Area Scan (81x191x1): Interpolated grid: $dx=1.000 \text{ mm}$, $dy=1.000 \text{ mm}$

Reference Value = 58.94 V/m; Power Drift = 0.09

Fast SAR: SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (interpolated) = 3.5 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 58.94 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 3.7 W/kg

SAR(1 g) = 2.33 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 3.17 W/kg

0 dB = 3.17 W/kg = 5.01 dB W/kg

Fig.B.4 validation 835 MHz 250mW

1750 MHz

Date: 6/14/2018

Electronics: DAE4 Sn1525

Medium: Head 1750 MHz

Medium parameters used: $f = 1750 \text{ MHz}$; $\sigma = 1.397 \text{ mho/m}$; $\epsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1

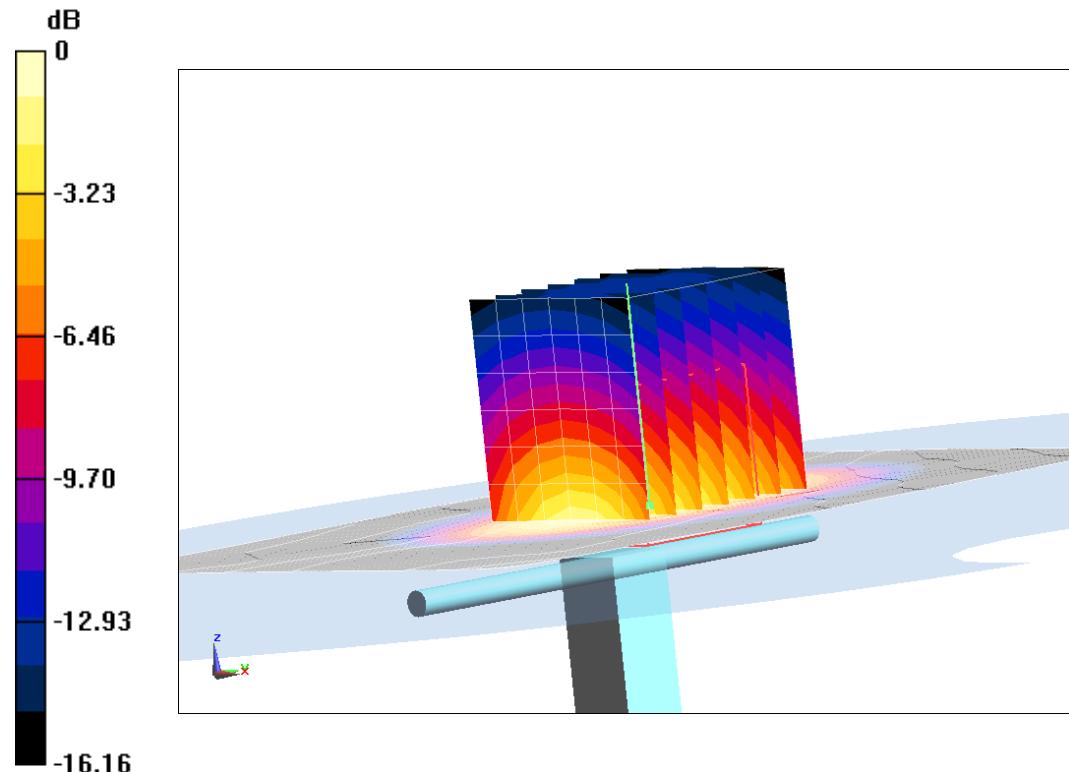
Probe: EX3DV4 – SN7464 ConvF(8.70,8.70,8.70)

System Validation /Area Scan (81x191x1): Interpolated grid: $dx=1.000 \text{ mm}$, $dy=1.000 \text{ mm}$

Reference Value = 105.19 V/m; Power Drift = -0.07

Fast SAR: SAR(1 g) = 9.01 W/kg; SAR(10 g) = 4.77 W/kg

Maximum value of SAR (interpolated) = 14.57 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 105.19 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 17.98 W/kg

SAR(1 g) = 9.24 W/kg; SAR(10 g) = 4.83 W/kg

Maximum value of SAR (measured) = 14.31 W/kg

0 dB = 14.31 W/kg = 11.56 dB W/kg

Fig.B.5 validation 1750 MHz 250mW

1750 MHz

Date: 6/14/2018

Electronics: DAE4 Sn1525

Medium: Body 1750 MHz

Medium parameters used: $f = 1750 \text{ MHz}$; $\sigma = 1.461 \text{ mho/m}$; $\epsilon_r = 53.85$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1

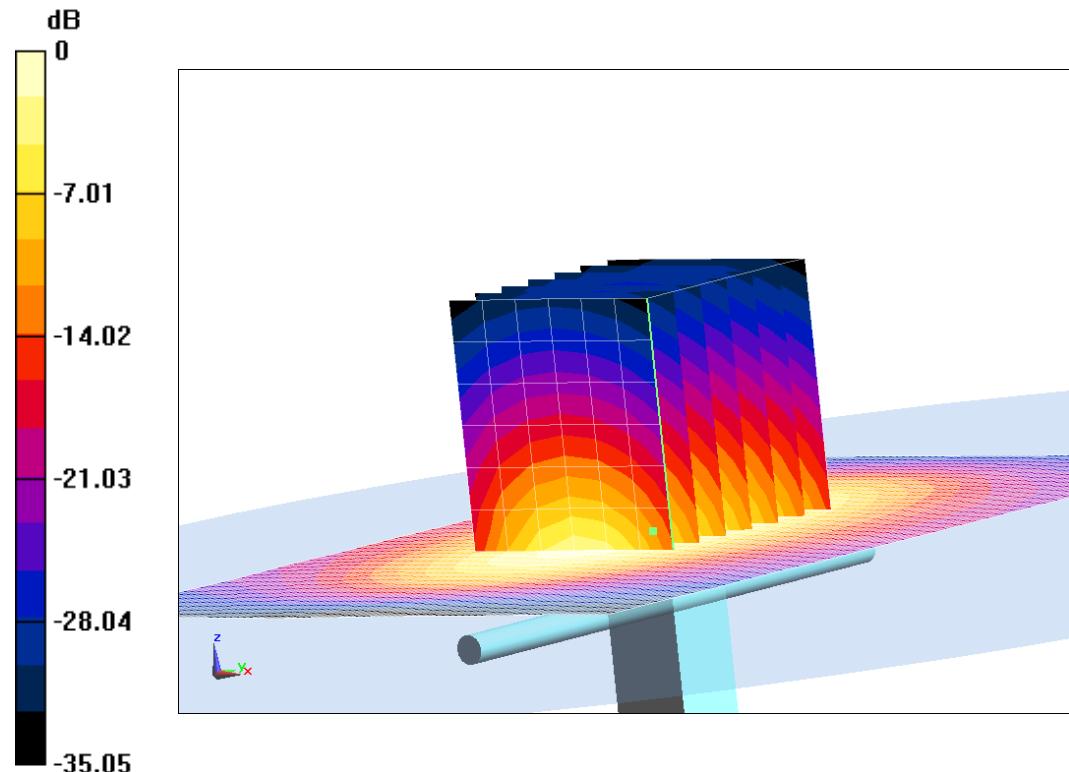
Probe: EX3DV4 – SN7464 ConvF(8.60,8.60,8.60)

System Validation /Area Scan (81x191x1): Interpolated grid: $dx=1.000 \text{ mm}$, $dy=1.000 \text{ mm}$

Reference Value = 98.61 V/m; Power Drift = -0.04

Fast SAR: SAR(1 g) = 9.37 W/kg; SAR(10 g) = 4.98 W/kg

Maximum value of SAR (interpolated) = 16.03 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 98.61 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 16.68 W/kg

SAR(1 g) = 9.38 W/kg; SAR(10 g) = 5 W/kg

Maximum value of SAR (measured) = 13.63 W/kg

0 dB = 13.63 W/kg = 11.34 dB W/kg

Fig.B.6 validation 1750 MHz 250mW

1900 MHz

Date: 6/15/2018

Electronics: DAE4 Sn1525

Medium: Head 1900 MHz

Medium parameters used: $f = 1900 \text{ MHz}$; $\sigma = 1.389 \text{ mho/m}$; $\epsilon_r = 39.46$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

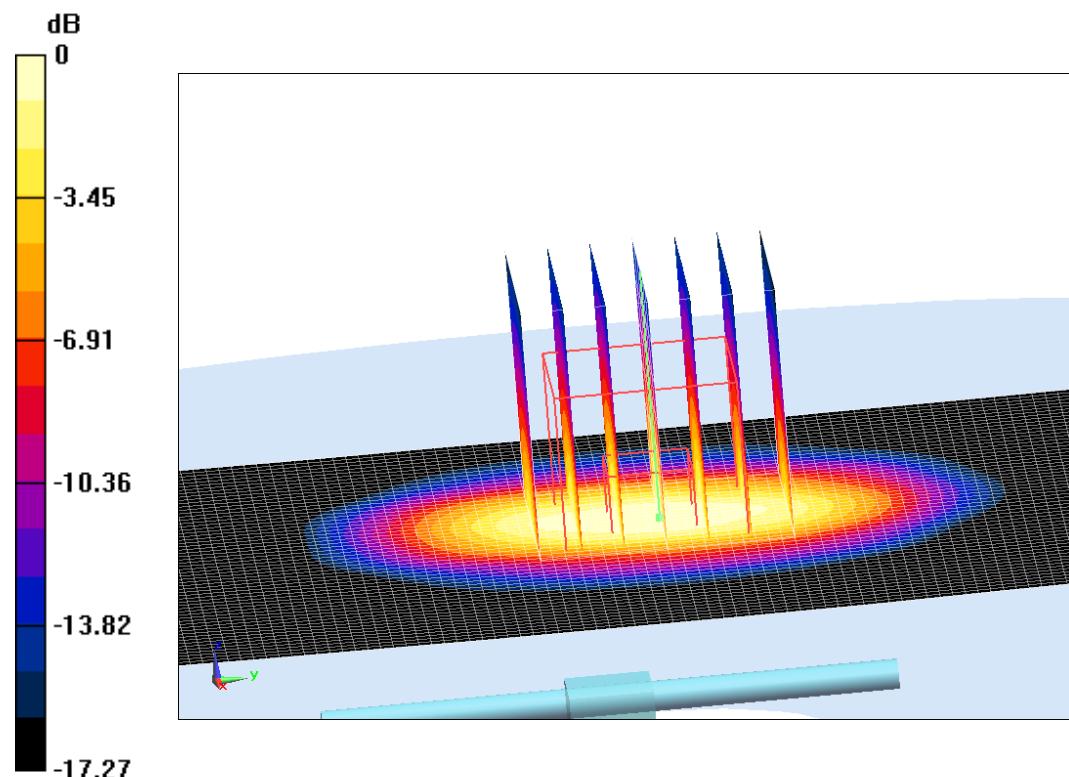
Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

System Validation /Area Scan (81x191x1): Interpolated grid: $dx=1.000 \text{ mm}$, $dy=1.000 \text{ mm}$

Reference Value = 104.87 V/m; Power Drift = 0.09

Fast SAR: SAR(1 g) = 10.11 W/kg; SAR(10 g) = 5.19 W/kg

Maximum value of SAR (interpolated) = 14.97 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 104.87 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 18.76 W/kg

SAR(1 g) = 10.06 W/kg; SAR(10 g) = 5.31 W/kg

Maximum value of SAR (measured) = 14.83 W/kg

0 dB = 14.83 W/kg = 11.71 dB W/kg

Fig.B.7 validation 1900 MHz 250mW

1900 MHz

Date: 6/15/2018

Electronics: DAE4 Sn1525

Medium: Body 1900 MHz

Medium parameters used: $f = 1900 \text{ MHz}$; $\sigma = 1.529 \text{ mho/m}$; $\epsilon_r = 54.11$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

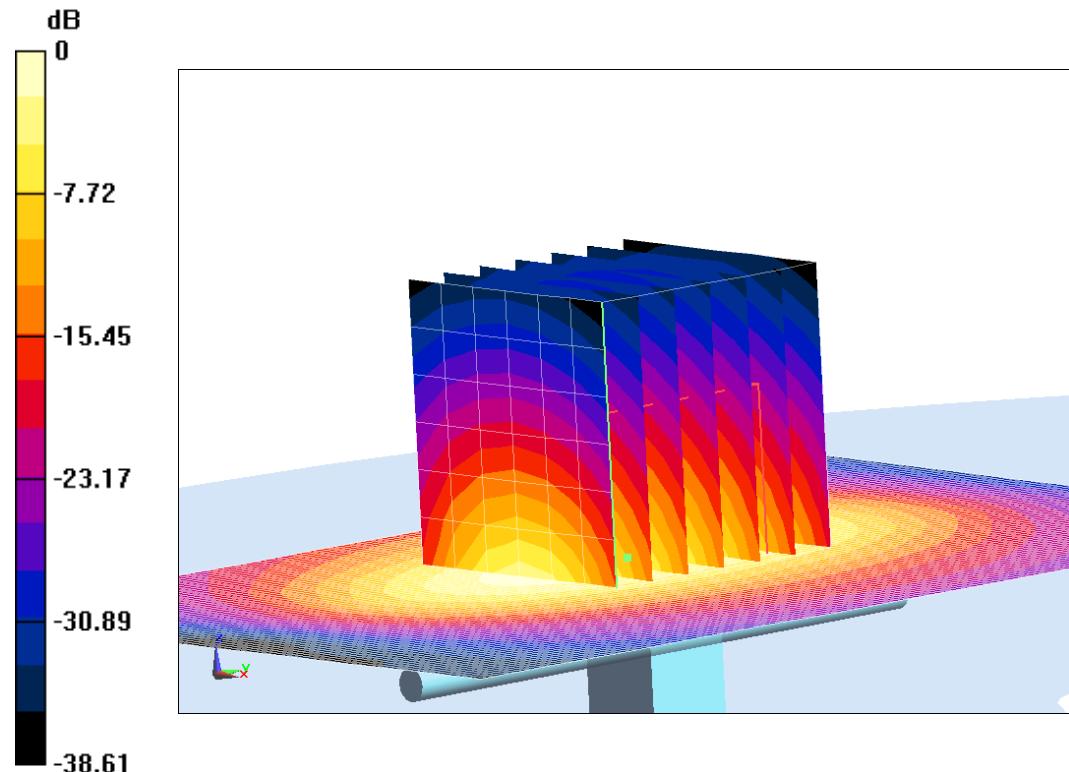
Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

System Validation /Area Scan (81x191x1): Interpolated grid: $dx=1.000 \text{ mm}$, $dy=1.000 \text{ mm}$

Reference Value = 101.54 V/m; Power Drift = -0.01

Fast SAR: SAR(1 g) = 10.21 W/kg; SAR(10 g) = 5.3 W/kg

Maximum value of SAR (interpolated) = 17.36 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 101.54 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 17.55 W/kg

SAR(1 g) = 10.32 W/kg; SAR(10 g) = 5.39 W/kg

Maximum value of SAR (measured) = 14.27 W/kg

0 dB = 14.27 W/kg = 11.54 dB W/kg

Fig.B.8 validation 1900 MHz 250mW

2450 MHz

Date: 6/16/2018

Electronics: DAE4 Sn1525

Medium: Head 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.814$ mho/m; $\epsilon_r = 38.71$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

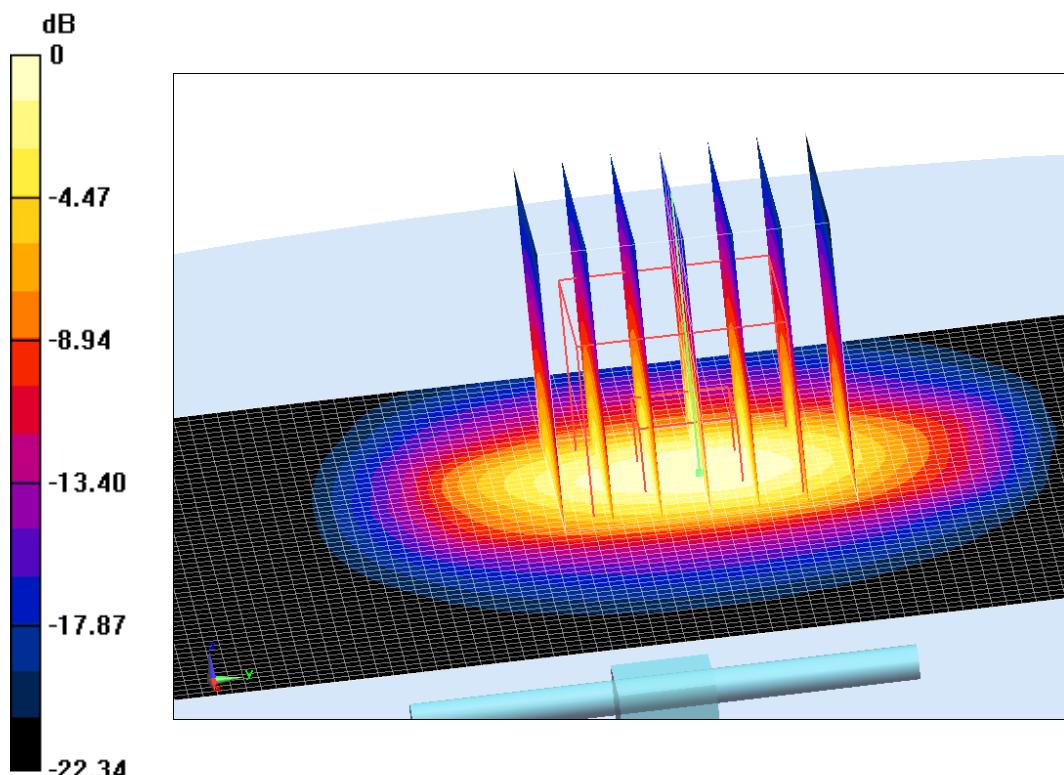
Probe: EX3DV4 – SN7464 ConvF(7.89,7.89,7.89)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 114.13 V/m; Power Drift = -0.09

Fast SAR: SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.05 W/kg

Maximum value of SAR (interpolated) = 21.36 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 114.13 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 26.57 W/kg

SAR(1 g) = 13.11 W/kg; SAR(10 g) = 6.13 W/kg

Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 21.6 W/kg = 13.34 dB W/kg

Fig.B.9 validation 2450 MHz 250mW

2450 MHz

Date: 6/16/2018

Electronics: DAE4 Sn1525

Medium: Body 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.959$ mho/m; $\epsilon_r = 53.67$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

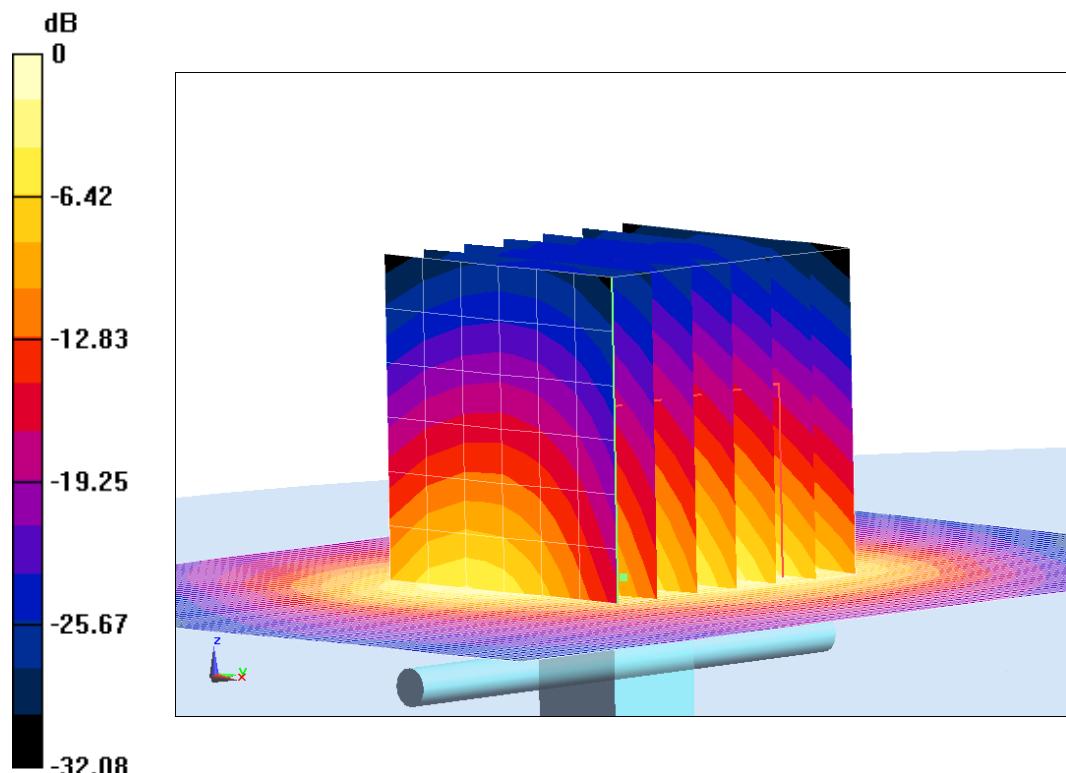
Probe: EX3DV4 – SN7464 ConvF(8.09,8.09,8.09)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 104.77 V/m; Power Drift = -0.01

Fast SAR: SAR(1 g) = 12.58 W/kg; SAR(10 g) = 5.96 W/kg

Maximum value of SAR (interpolated) = 25.61 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.77 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 25.66 W/kg

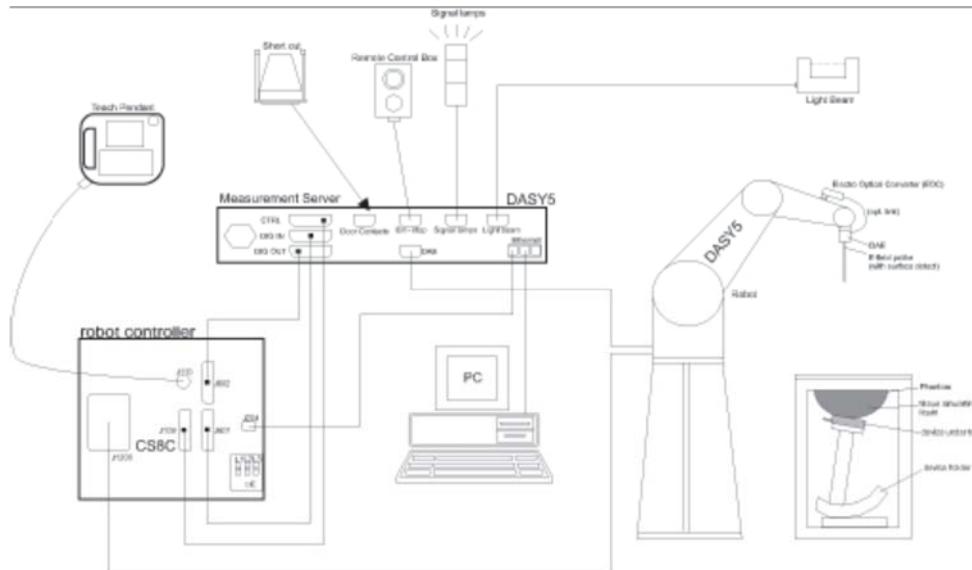
SAR(1 g) = 12.78 W/kg; SAR(10 g) = 5.9 W/kg

Maximum value of SAR (measured) = 19.89 W/kg

0 dB = 19.89 W/kg = 12.99 dB W/kg

Fig.B.10 validation 2450 MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.


Table B.1 Comparison between area scan and zoom scan for system verification

Date	Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
2018-6-12	750	Head	2.09	2.11	-0.95
	750	Body	2.19	2.14	2.34
2018-6-13	835	Head	2.39	2.36	1.27
	835	Body	2.34	2.33	0.43
2018-6-14	1750	Head	9.01	9.24	-2.49
	1750	Body	9.37	9.38	-0.11
2018-6-15	1900	Head	10.11	10.06	0.50
	1900	Body	10.21	10.32	-1.07
2018-6-16	2450	Head	13.2	13.11	0.69
	2450	Body	12.58	12.78	-1.56

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection during a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model:	ES3DV3, EX3DV4
Frequency	10MHz — 6.0GHz(EX3DV4)
Range:	10MHz — 4GHz(ES3DV3)
Calibration:	In head and body simulating tissue at Frequencies from 835 up to 5800MHz
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4 ± 0.2 dB(30 MHz to 4 GHz) for ES3DV3
Dynamic Range:	10 mW/kg — 100W/kg
Probe Length:	330 mm
Probe Tip	
Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)
Tip-Center:	1 mm (2.0mm for ES3DV3)
Application:	SAR Dosimetry Testing Compliance tests of mobile phones Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{|E|^2 \cdot \sigma}{\rho}$$

Where:

σ = Simulated tissue conductivity,

ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 M Ω ; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 4

Picture C.6 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.7 Server for DASY 4

Picture C.8 Server for DASY 5

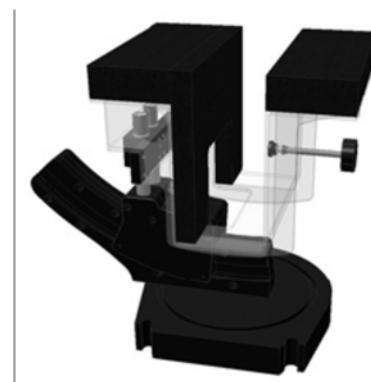
C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of $\pm 0.5\text{mm}$ would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric parameters: relative permittivity $\epsilon=3$ and loss


tangent $\delta =0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.9-1: Device Holder

Picture C.9-2: Laptop Extension Kit

C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: $2 \pm 0.2 \text{ mm}$

Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special