

TEST REPORT

FCC Part 27/ RSS-199

Report Reference No	C1L1/08188063-WF05

Compiled by: (position+printed name+signature)

Tested by: (position+printed name+signature)

Approved by: (position+printed name+signature)

Allen Wang (File administrators)

Nice Nong (Test Engineer)

> Ivan Xie (Manager)

Allen Wang
Nice Nong

1. Nie

Product Name: Vehicle Communicator

Model/Type reference: UV350 List Model(s)..... N/A Trade Mark.....: Uniden

FCC ID...... 2AOCX-UV350 IC 23378-UV350

Applicant's name Siyata Mobile Inc.

Address of applicant...... 1001 Lenoir St Suite A, Montreal, Quebec H4C 2Z6 Canada

Test Firm..... Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Address of Test Firm

Nanshan District, Shenzhen, China 518055

Test specification

FCC CFR Title 47 Part 2, Part 27 Standard::

EIA/TIA 603-D: 2010 KDB 971168 D01 RSS-199 Issue 3

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF.....: Dated 2011-01

Date of Receipt.....: Sep. 27, 2017

Date of Test Date...... Sep. 28, 2017 –Nov. 24, 2017

Data of Issue.....: Nov. 25, 2017

Result....: Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

V1.0 Page 2 of 49 Report No.: CTL1708188063-WF05

TEST REPORT

Test Report No. :	CTL1708188063-WF05	Nov. 25, 2017	
rest Report No. :	C1L1700100003-WF03	Date of issue	

Equipment under Test : Vehicle Communicator

Model /Type : UV350

Listed Models : N/A

Applicant : Siyata Mobile Inc.

Address : 1001 Lenoir St Suite A, Montreal, Quebec H4C 2Z6 Canada

Manufacturer : Siyata Mobile Inc.

Address : 1001 Lenoir St Suite A, Montreal, Quebec H4C 2Z6 Canada

Test result	Pass *

^{*}In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Testing Technol

** Modified History **

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2017-11-25	CTL1708188063-WF05	Tracy Qi

	Table of Contents	Page
1. SU	MMARY	5
1.1.	TEST STANDARDS	5
1.2.	Test Description	
1.3.	TEST FACILITY	6
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2. GE	NERAL INFORMATION	7
2.1.	Environmental conditions	7
2.2.	GENERAL DESCRIPTION OF EUT	7
2.3.	DESCRIPTION OF TEST MODES	7
2.4.	EQUIPMENTS USED DURING THE TEST	7
2.5.	Related Submittal(s) / Grant (s)	8
2.6.	Modifications	8
3. TE	ST CONDITIONS AND RESULTS	9
3.1.	Output Power	9
3.2.	Peak-to-Average Ratio (PAR)	
3.3.	OCCUPIED BANDWIDTH AND EMISSION BANDWIDTH	
3.4.	BAND EDGE COMPLIANCE	20
3.5.	Spurious Emission	
3.6.	Frequency Stability under Temperature & Voltage Variations	43
4. TE	ST SETUP PHOTOS OF THE EUT	48
5. PH	IOTOS OF THE EUT	49

V1.0 Page 5 of 49 Report No.: CTL1708188063-WF05

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

KDB971168 D01: v02r02 MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: –American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

RSS-Gen Issue 4: General Requirements for Compliance of Radio Apparatus

RSS-139 Issue 3: Advanced Wireless Services (AWS) Equipment Operating in the Bands 1710-1780 MHz and 2110-2180 MHz

SRSP-513: Technical Requirements for Advanced Wireless Services (AWS) in the Bands 1710-1780 MHz and 2110-2180 MHz

1.2. Test Description

Test Item	Section in CFR 47	Result
RF Output Power	Part 2.1046 Part 27.50(d)(4) RSS-199 4.4	Pass
Peak-to-Average Ratio	Part 27.50(d)(4) RSS-199 4.4	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 27.53(h) RSS-GEN 6.6 RSS-199 4.2	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 27.53(h) RSS-199 4.5	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 27.53(h) RSS-199 4.5	Pass
Out of band emission, Band Edge	Part 2.1051 Part 27.53(h) RSS-199 4.5	Pass
Frequency stability	Part 2.1055 Part 27.54 RSS-199 4.3	Pass

V1.0 Page 6 of 49 Report No.: CTL1708188063-WF05

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

V1.0 Page 7 of 49 Report No.: CTL1708188063-WF05

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	Vehicle Communicator
Model/Type reference:	UV350
Power supply:	DC 12V form battery
LTE	
Operation Band:	FDD-LTE: Band 2/4/5/7/13/14/17
Modulation Type:	QPSK, 16QAM
Release Version:	Release 9
Category:	Cat 4
Antenna Type:	FPC antenna

Note: For more details, please refer to the user's manual of the EUT.

2.3. Description of Test Modes

The EUT has been tested under typical operating condition. The CMW500 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest middle and highest frequency of channel were selected to perform the test, then shown on this report.

2.4. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2016/06/02	2017/06/01
Bilog Antenna	Sunol Sciences Corp.	JB1	A061714	2016/06/02	2017/06/01
EMI Test Receiver	R&S	ESCI	103710	2016/06/02	2017/06/01
Spectrum Analyzer	Agilent	E4407B	MY41440676	2016/05/21	2017/05/20
Spectrum Analyzer	Agilent	N9020	US46220290	2017/01/16	2018/01/17
Controller	EM Electronics	Controller EM 1000	N/A	2016/05/21	2017/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2016/05/19	2017/05/18
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062014	2016/05/19	2017/05/18
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2016/05/19	2017/05/18
Amplifier	Agilent	8349B	3008A02306	2016/05/19	2017/05/18

Amplifier	Agilent	8447D	2944A10176	2016/05/19	2017/05/18
Temperature/Humi dity Meter	Gangxing	CTH-608	02	2016/05/20	2017/05/19
Wideband Radio Communication Tester	R&S	CMW500	101814	2016/11/21	2017/11/20
High-Pass Filter	K&L	9SH10-2700/X1 2750-O/O	N/A	2016/05/20	2017/05/19
High-Pass Filter	K&L	41H10-1375/U1 2750-O/O	N/A	2016/05/20	2017/05/19
RF Cable	HUBER+SUHN ER	RG214	N/A	2016/06/02	2017/06/01
Climate Chamber	ESPEC	EL-10KA	A20120523	2016/05/19	2017/05/18
SIGNAL GENERATOR	Agilent	E4421B	US40051744	2016/05/19	2017/05/18

Report No.: CTL1708188063-WF05

2016/05/19

2017/05/18

The calibration interval was one year

2.5. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with of the Part 27 and RSS-199 Rules.

87300B

3116A03638

2.6. Modifications

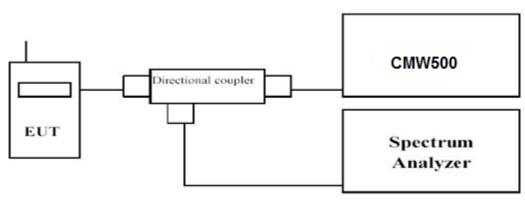
Directional Coupler

No modifications were implemented to meet testing criteria.

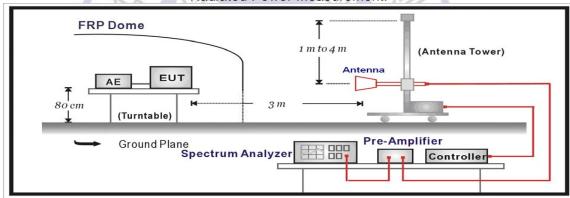
Agilent

V1.0 Page 9 of 49 Report No.: CTL1708188063-WF05

3. TEST CONDITIONS AND RESULTS


3.1. Output Power

LIMIT


≤2 watt EIRP

TEST CONFIGURATION

Conducted Power Measurement

Radiated Power Measurement:

Techn

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c) EUT Communicate with CMW500 then selects a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c) The output of the test antenna shall be connected to the measuring receiver.

d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.

- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q) Test site anechoic chamber refer to ANSI C63.4.

Report No.: CTL1708188063-WF05

TEST RESULTS

Conducted Measurement:

Conducted Meas		LTE FDD Band 7			
TX Channel	Frequency	DD 0:/0#t	Average Power [dBm]		
Bandwidth	(MHz)	RB Size/Offset	QPSK	16QAM	
	,	1 RB low	21.97	21.26	
	0500.5	1 RB high	23.47	22.70	
	2502.5	50% RB mid	22.65	22.11	
		100% RB	22.84	21.99	
		1 RB low	22.89	22.33	
C 1411	0505	1 RB high	22.91	22.56	
5 MHz	2535	50% RB mid	23.26	22.66	
1		100% RB	23.14	22.69	
		1 RB low	22.42	21.88	
		1 RB high	22.85	22.43	
	2567.5	50% RB mid	22.11	21.32	
		100% RB	22.49	21.83	
	- 4	1 RB low	22.71	22.27	
		1 RB high	22.20	21.68	
	2505	50% RB mid	23.36	22.54	
		100% RB	22.83	22.45	
		1 RB low	23.01	22.23	
	12.	1 RB high	23.23	22.54	
10 MHz	2535	50% RB mid	22.82	22.00	
	J. J.	100% RB	21.62	20.82	
	S	1 RB low	22.55	21.98	
		1 RB high	22.74	21.92	
	2565	50% RB mid	22.62	21.86	
	0 10	100% RB	22.30	21.82	
	2507.5	1 RB low	22.73	21.97	
		1 RB high	21.78	20.97	
		50% RB mid	22.00	21.42	
		100% RB	21.64	21.05	
	13	1 RB low	21.54	20.84	
	2535	1 RB high	21.59	21.02	
15 MHz		50% RB mid	23.33	22.77	
	11/2	100% RB	23.47	22.91	
		1 RB low	23.26	22.63	
		1 RB high	22.53	22.03	
	2562.5	50% RB mid	23.33	22.69	
		100% RB	23.19	22.37	
		1 RB low	23.19	22.39	
		1 RB high	22.69	22.20	
	2510	50% RB mid	21.84	21.36	
		100% RB	22.97	22.28	
		1 RB low	23.39	22.86	
		1 RB high	23.39	20.95	
20 MHz	2535	50% RB mid	23.21	20.95	
		100% RB	23.13	22.77	
		1 RB low	22.51	21.84	
	2560	1 RB high	21.55	20.89	
		50% RB mid	22.80	22.28	
		100% RB	22.02	21.48	

V1.0 Page 12 of 49 Report No.: CTL1708188063-WF05

Radiated Measurement:

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 7; recorded worst case for each Channel Bandwidth of LTE FDD Band 7.

2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_a(dBi)$

LTE FDD Band 7_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2502.5	-16.90	3.06	9.68	34.8	24.52	33.01	8.49	V
2535	-15.63	3.17	9.68	34.8	25.68	33.01	7.33	V
2567.5	-15.97	3.22	9.75	34.8	25.36	33.01	7.65	V

LTE FDD Band 7_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2505	-16.20	3.06	9.68	34.8	25.22	33.01	7.79	V
2535	-15.84	3.17	9.68	34.8	25.47	33.01	7.54	V
2565	-15.62	3.22	9.75	34.8	25.71	33.01	7.30	V

LTE FDD Band 7_Channel Bandwidth 15MHz_QPSK

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2507.5	-17.17	3.06	9.68	34.8	24.25	33.01	8.76	V
2535	-15.44	3.17	9.68	34.8	25.87	33.01	7.14	V
2562.5	-15.71	3.22	9.75	34.8	25.62	33.01	7.39	V

LTE FDD Band 7_Channel Bandwidth 20MHz_QPSK

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2510	-16.21	3.06	9.68	34.8	25.21	33.01	7.80	V
2535	-15.95	3.17	9.68	34.8	25.36	33.01	7.65	V
2560	-17.12	3.22	9.75	34.8	24.21	33.01	8.80	V

LTE FDD Band 7 Channel Bandwidth 5MHz 16QAM

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2502.5	-17.01	3.06	9.68	34.8	24.41	33.01	8.60	V
2535	-17.16	3.17	9.68	34.8	24.15	33.01	8.86	V
2567.5	-16.97	3.22	9.75	34.8	24.36	33.01	8.65	V

LTE FDD Band 7_Channel Bandwidth 10MHz_16QAM

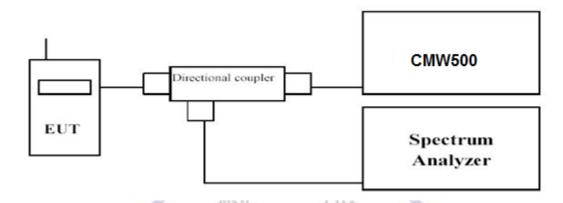
Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2505	-17.88	3.06	9.68	34.8	23.54	33.01	9.47	V
2535	-16.80	3.17	9.68	34.8	24.51	33.01	8.50	V
2565	-16.62	3.22	9.75	34.8	24.71	33.01	8.30	V

LTE FDD Band 7_Channel Bandwidth 15MHz_16QAM

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2507.5	-17.80	3.06	9.68	34.8	23.62	33.01	9.39	V
2535	-17.57	3.17	9.68	34.8	23.74	33.01	9.27	V
2562.5	-17.23	3.22	9.75	34.8	24.10	33.01	8.91	V

LTE FDD Band 7_Channel Bandwidth 20MHz_16QAM

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2510	-18.01	3.06	9.68	34.8	23.41	33.01	9.60	V
2535	-17.69	3.17	9.68	34.8	23.62	33.01	9.39	V
2560	-17.12	3.22	9.75	34.8	24.21	33.01	8.80	V



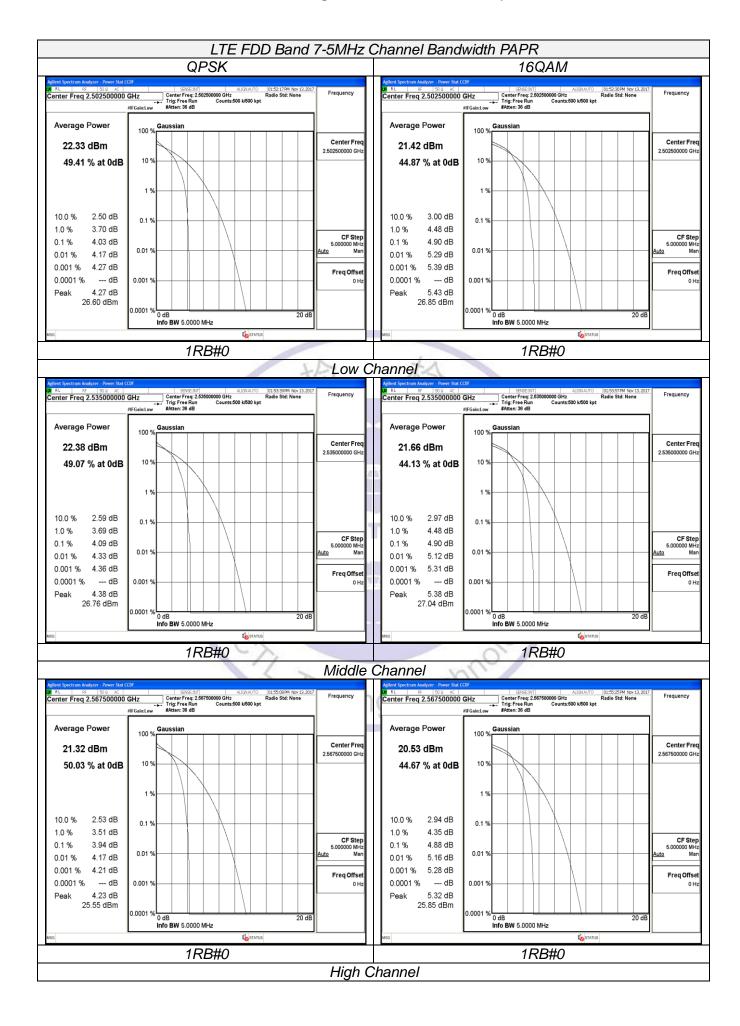
3.2. Peak-to-Average Ratio (PAR)

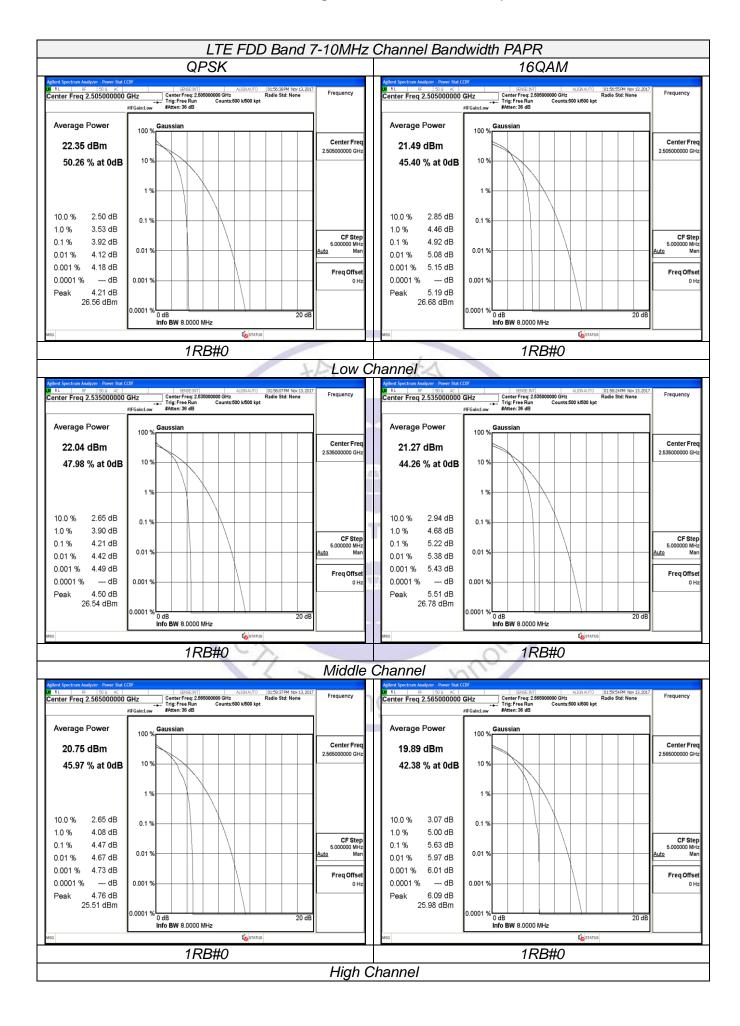
LIMIT

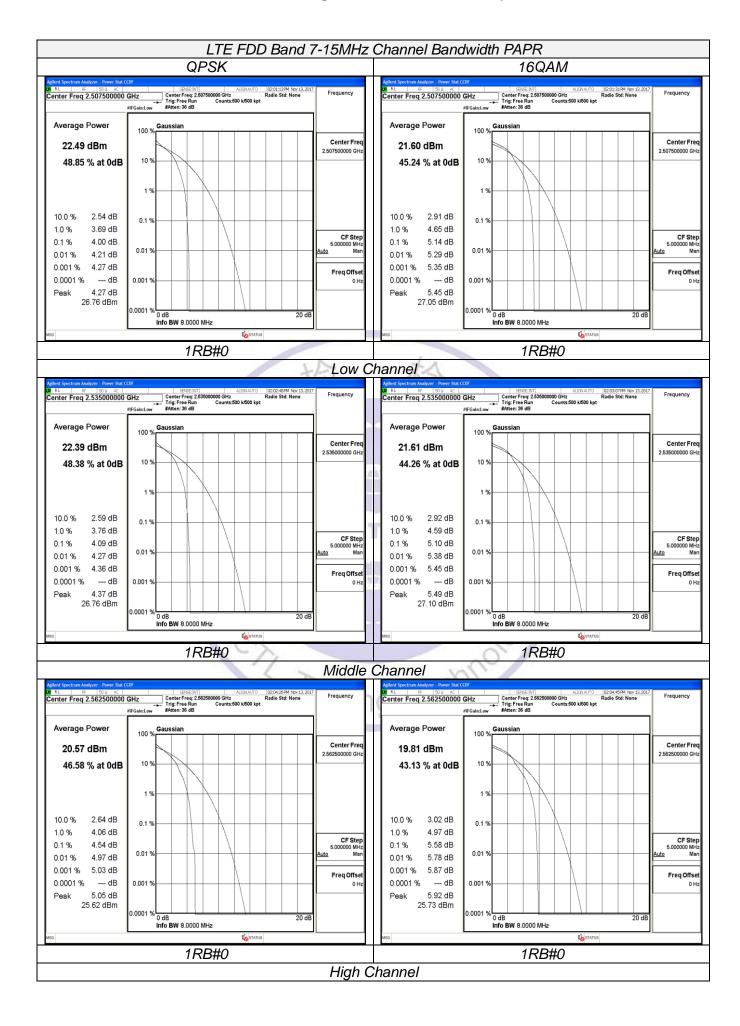
The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

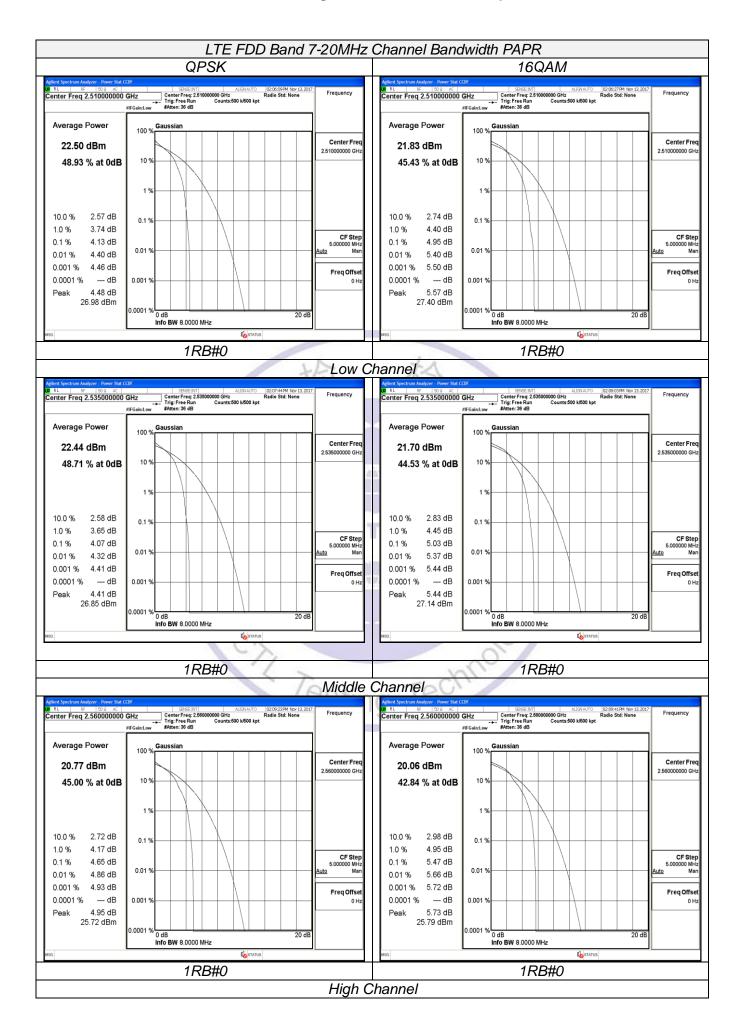
TEST CONFIGURATION

TEST PROCEDURE

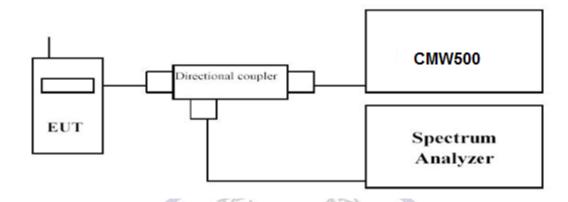

- Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,
 - 2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.


TEST RESULTS


Remark:


1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 7; recorded worst case for each Channel Bandwidth of LTE FDD Band 7.

1.55.50	LTE FDD Band 7, recorded worst case for each channel bandwidth of ETE FDD Band 7.									
TX Channel	Frequency	DD C:/O#224	PAPR (dB)							
Bandwidth	(MHz)	RB Size/Offset	QPSK	16QAM						
	2502.5		4.03	4.90						
5 MHz	2535	1RB#0	4.09	4.90						
	2567.5		3.94	4.88						
	2505		3.92	4.92						
10 MHz	2535	1RB#0	4.21	5.22						
	2565		4.47	5.63						
	2507.5		4.00	5.14						
15 MHz	2535	1RB#0	4.09	5.10						
	2562.5		4.54	5.58						
	2510		4.13	4.95						
20 MHz	2535	1RB#0	4.07	5.03						
	2560		4.65	5.47						


V1.0 Page 19 of 49 Report No.: CTL1708188063-WF05

3.3. Occupied Bandwidth and Emission Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded.

Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

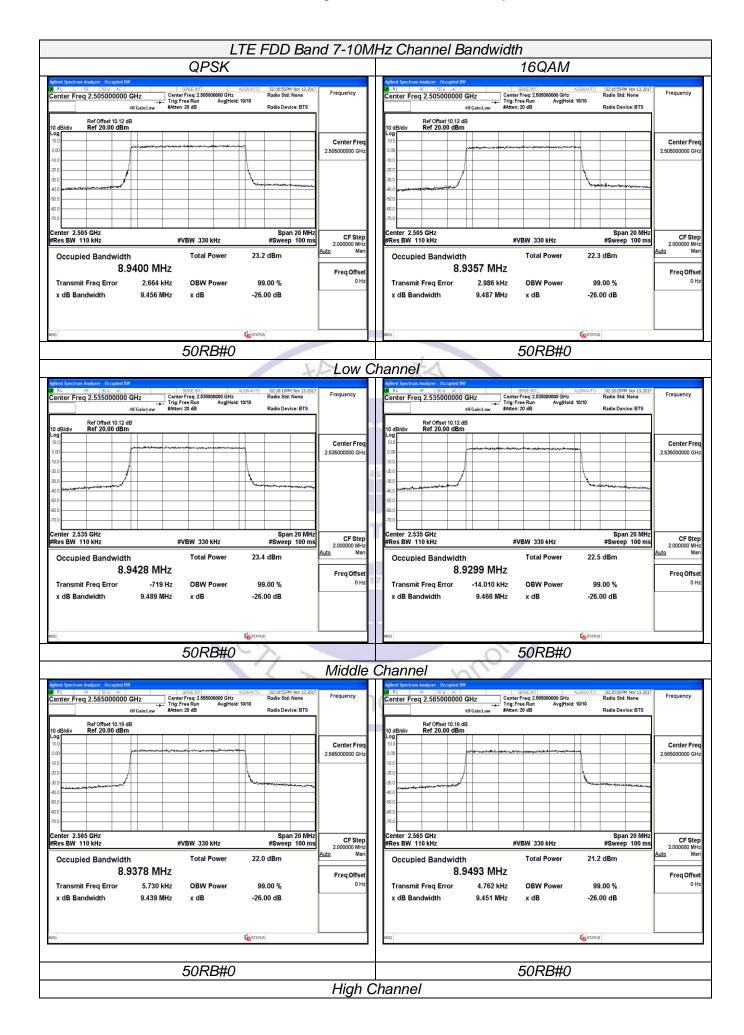
-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

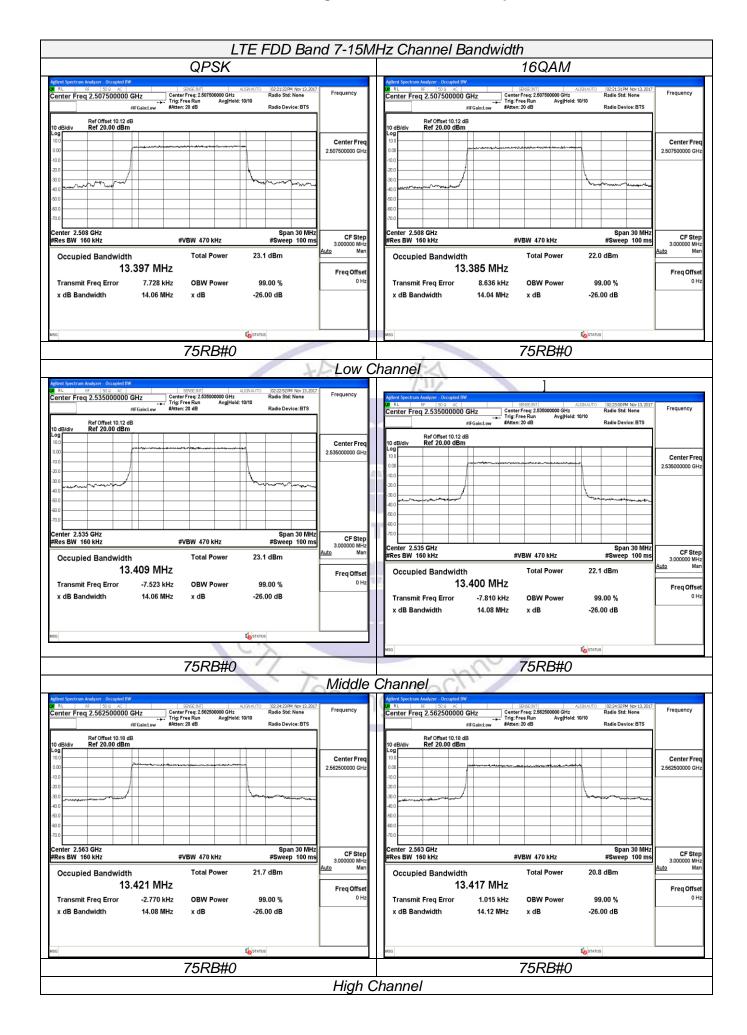
TEST RESULTS

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 7; recorded worst case for each Channel Bandwidth of LTE FDD Band 7.

		LTE FDD	Band 7				
TX		Fraguenay	-26dBc I	Emission	99% Occupied		
Channel	RB Size/Offset	Frequency (MHz)	bandwid	th (MHz)	bandwid	th (MHz)	
Bandwidth		(1011-12)	QPSK	16QAM	QPSK	16QAM	
		2502.5	4.805	4.798	4.4814	4.4786	
5 MHz	25RB#0	2535	4.847	4.800	4.4808	4.4842	
		2567.5	4.856	4.829	4.4907	4.4918	
		2505	9.456	9.487	8.9400	8.9357	
10 MHz	50RB#0	2535	9.489	9.466	8.9428	8.9299	
		2565	9.439	9.451	8.9378	8.9493	
		2507.5	14.06	14.04	13.397	13.385	
15 MHz	75RB#0	2535	14.06	14.08	13.409	13.400	
		2562.5	14.08	14.12	13.421	13.417	
		2510	18.62	18.57	17.844	17.847	
20 MHz	100RB#0	2535	18.64	18.61	17.868	17.871	
		2560	18.59	18.65	17.869	17.903	


25RB#0


V1.0

High Channel

Report No.: CTL1708188063-WF05

25RB#0

Radio Device: BTS

Span 40 MHz

#Sweep 100 ms

22.9 dBm

99 00 %

Center Freq

CF Step 4.000000 MHz Man

Freq Offse

0 H:

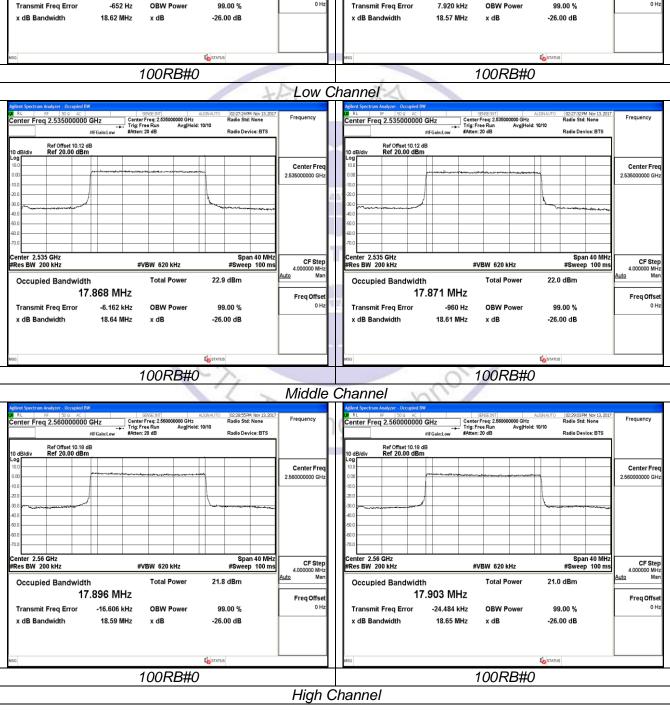
enter Freq 2.510000000 GHz

Center 2.51 GHz

Occupied Bandwidth

17.844 MHz

QPSK


Center Freq: 2.510000000 GHz

Trig: Free Run Avg|Hold: 10/10

#Atten: 20 dB

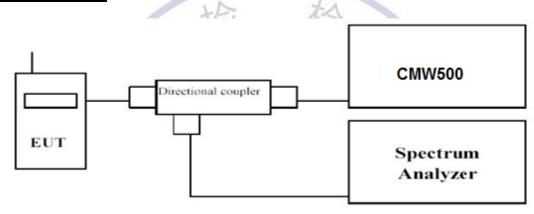
#VBW 620 kHz

Total Power

V1.0 Page 24 of 49 Report No.: CTL1708188063-WF05

3.4. Band Edge compliance

LIMIT

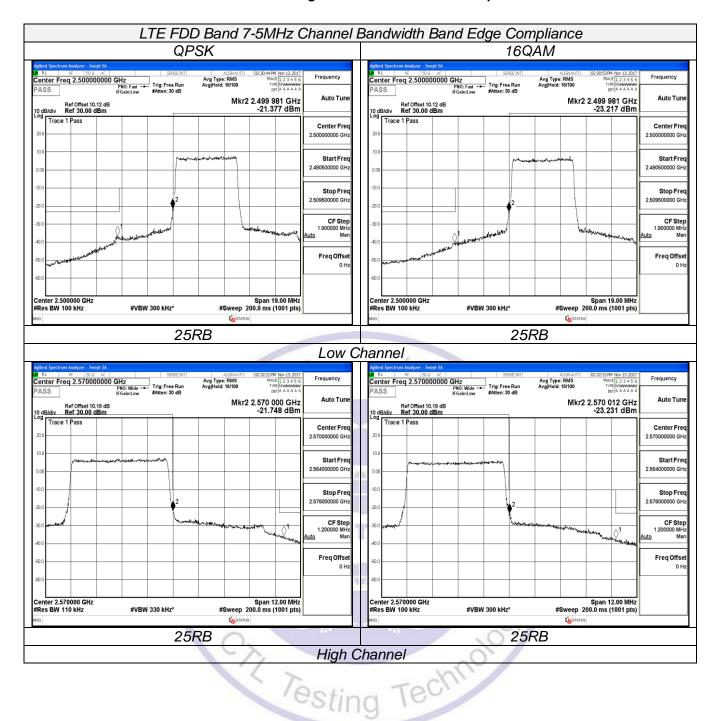

Equipment shall comply with the following unwanted emission limits:

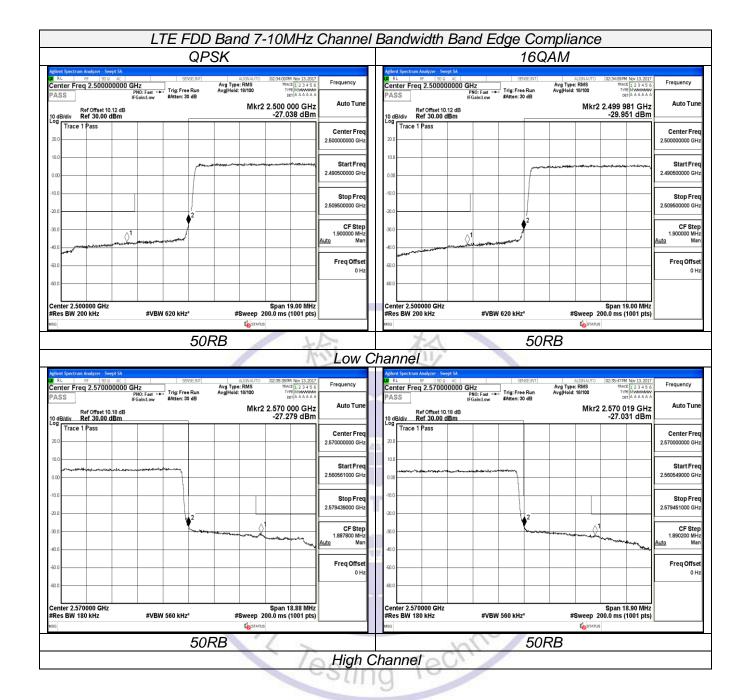
- a) for base station and fixed subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least 43 + 10 log10 p
- b) for mobile subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least:
 - 40 + 10 log10 p from the channel edges to 5 MHz away
 - 43 + 10 log10 p between 5 MHz and X MHz from the channel edges, and
 - 55 + 10 log10 p at X MHz and beyond from the channel edges

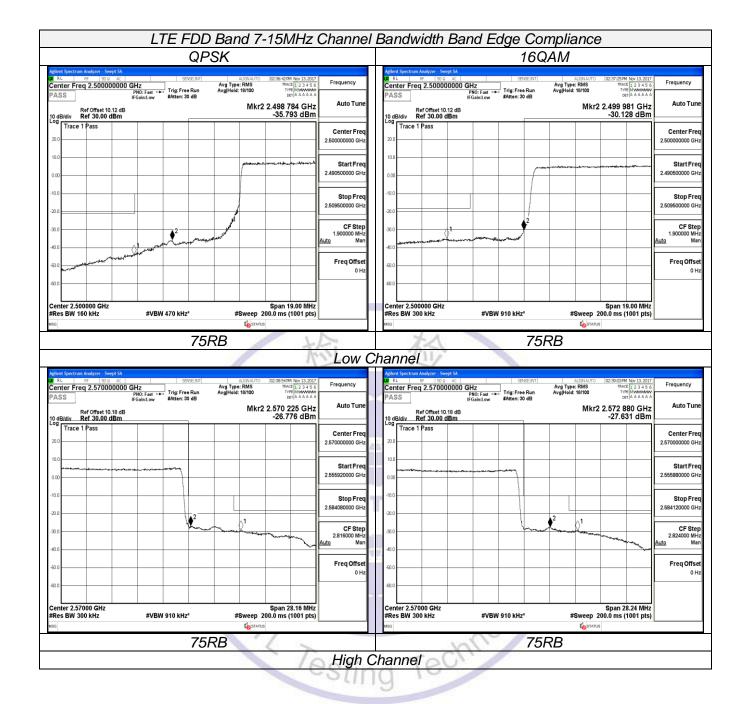
In addition, the attenuation shall not be less than 43 + 10 log10 p on all frequencies between 2490.5 MHz and 2496 MHz, and 55 + 10 log10 p at or below 2490.5 MHz.

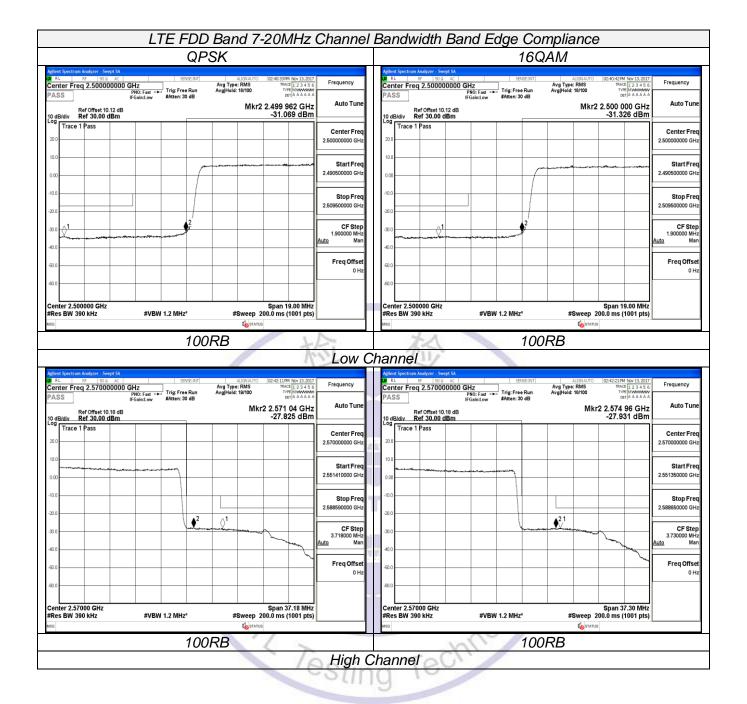
In (a) and (b), p is the transmitter power measured in watts and X is 6 MHz or the equipment occupied bandwidth, whichever is greater.

TEST CONFIGURATION


TEST PROCEDURE

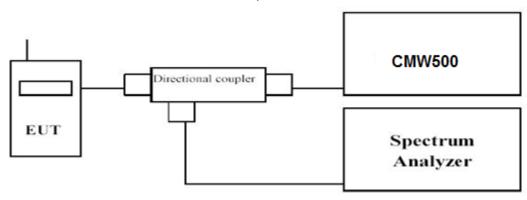

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest and highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum


TEST RESULTS

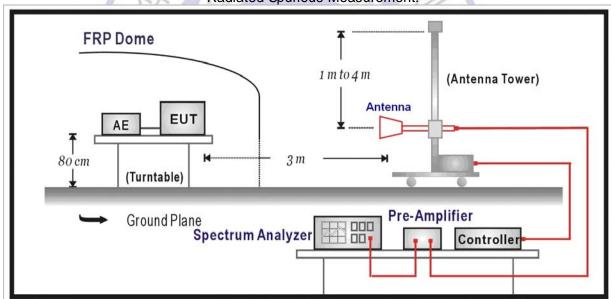

Remark:

 We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 7; recorded worst case for each Channel Bandwidth of LTE FDD Band 7.

V1.0 Page 29 of 49 Report No.: CTL1708188063-WF05


3.5. Spurious Emission

LIMIT


According to §27.53 (h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

TEST CONFIGURATION

Conducted Spurious Measurement:

Radiated Spurious Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Spurious Measurement:

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500 then selects a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was set sufficient scans were taken to show the out of band Emission if any up to10th harmonic.

V1.0 Page 30 of 49 Report No.: CTL1708188063-WF05

Radiated Spurious Measurement:

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.
- r. Test site anechoic chamber refer to ANSI C63.

TEST RESULTS

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 7; recorded worst case for each Channel Bandwidth of LTE FDD Band 7.