

Test Report

HELEM2501000013-1 v1.0

INTENTIONAL RADIATOR TESTS ACCORDING TO FCC PART 15 C AND ISED CANADA REQUIREMENTS

Equipment Under Test: WSI Module

Trademark: GE HealthCare

Model: WSI01

Type: -

Customer / Manufacturer: GE Healthcare Finland Oy
Kuortaneenkatu 2
FI-00510, Helsinki
Finland

FCC Rule Part: §15.225

IC Rule Part: RSS-Gen Issue 5, Amendment 1, Amendment 2
RSS-210 Issue 11

Date: 13 August 2025

Issued by:

A handwritten blue ink signature of Lauri Sippola.

Lauri Sippola
Testing Engineer

Date: 13 August 2025

Checked by:

A handwritten blue ink signature of Rauno Repo.

Rauno Repo
Senior EMC Specialist

TABLE OF CONTENTS

TABLE OF CONTENTS	2
GENERAL REMARKS.....	3
Disclaimer	3
RELEASE HISTORY	4
PRODUCT DESCRIPTION	5
Equipment Under Test	5
General Description.....	5
Classification	5
Samples and Modifications	5
Specifications	5
Ports and Cables	6
Peripherals	6
SUMMARY OF TESTING.....	7
EUT Test Conditions	7
Test Facility	9
TEST RESULTS.....	10
Antenna Requirement	10
AC Power-Line Conducted Emissions	11
Radiated Emissions.....	13
Frequency Stability.....	19
Occupied Bandwidth 99 %	21
TEST EQUIPMENT	22
AC Power-Line Conducted Emissions	22
Radiated Emissions.....	22
Frequency Stability, Occupied Bandwidth 99 %	22

GENERAL REMARKS**Disclaimer**

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com/en/Terms-and-Conditions.aspx> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx>

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

RELEASE HISTORY

Version	Changes	Issued
1.0	Initial release	13 August 2025

PRODUCT DESCRIPTION

Equipment Under Test

Trademark: GE HealthCare
Model: WSI01
Type: -
Serial number: WSI4R-24240172
Hardware version: MWS rev. 4 (mass production equivalent)
Firmware version: wsi-module-hw20-mfg_0.0.217-97.7.20ea881
Software version: N/A
FCC ID: 2AO8L-WSI01
IC: 25821-WSI01

General Description

The WSI module is a GEHC radio product that enables a host device to communicate with GEHC wireless sensors. The operation utilizes GEHC's proprietary MBAN radio technology for patient data transfer and NFC radio technology for device pairing.

Classification

Fixed device
Mobile Device (Human body distance > 20 cm)
Portable Device (Human body distance < 20 cm)

Samples and Modifications

No.	Name	Description
1	WSI01	Normal sample

Specifications

Operating frequency range:	13.56 MHz
Number of channels:	1
Nominal channel bandwidth:	according to NFC standards ISO/IEC 14443A/B
Modulation:	according to NFC standards ISO/IEC 14443A/B
Data rate:	according to NFC standards ISO/IEC 14443A/B
Antenna model:	Pulse W3965
EUT dimensions:	22 x 30 x 2.4 mm (PCIe M.2 2230)
Power requirements:	3.3 VDC ± 5 %
Operating temperature range:	+0...+65 °C

Ports and Cables

Cable / Port	Description
USB	M.2 adapter card to Raspberry Pi
DC input (EUT)	Powering the EUT during Frequency stability and Occupied bandwidth tests
DC input (Raspberry Pi)	Powering the Raspberry Pi with an AC/DC power supply

Peripherals

Peripheral	Description / Usage
WSI host device	Raspberry Pi 5, used to command the EUT
M.2 adapter	GEHC Raspberry Pi Hat for WSI M.2 Module rev. 1, used for enabling the M.2 E-key interface between Raspberry Pi and the EUT
NFC sample card	NFC Forum Type 2 tag with NXP NTAG213 IC
AC/DC power supply	Dell HA130PM170, used for AC Power-Line Conducted Emissions test

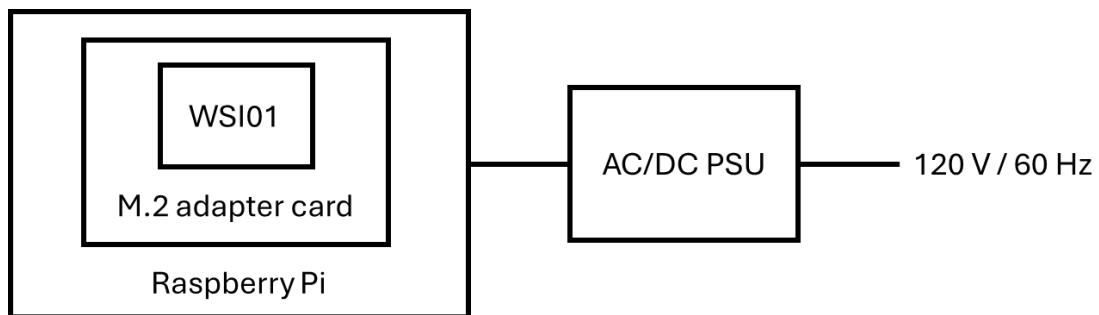
The peripherals were provided by the customer.

SUMMARY OF TESTING

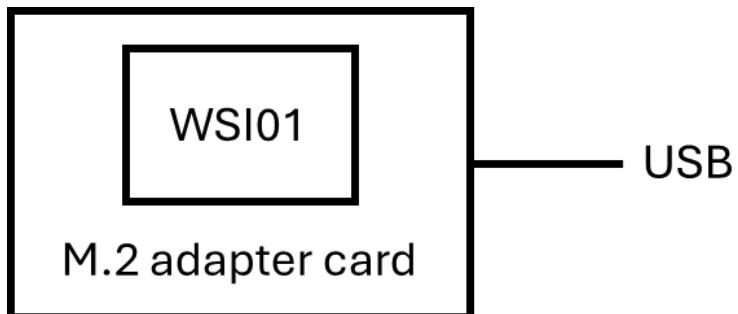
Test Specification	Description of Test	Result
§15.203	Antenna Requirement	PASS
§15.207(a) / RSS-Gen 8.8	AC Power-Line Conducted Emissions	PASS
§15.225(a)-(d) / RSS-210 B.6(a)	Radiated Emissions	PASS
§15.225(e) / RSS-210 B.6(b)	Frequency Stability	PASS
RSS-Gen 6.7	Occupied Bandwidth 99 %	PASS

The decision rule applied for the tests results stated in this test report is according to the requirements of section 1.4 of ANSI C63.10-2020.

EUT Test Conditions


The EUT was configured to continuously power cycle the WSI NFC IC and while NFC on read an external passive NFC reference card. The hub_mcu_utility and wsi_nfc_power_cycling.sh were used to command the NFC radio. The EUT was powered and controlled from a Raspberry Pi host device via an M.2 adapter card. The EUT was connected to the antenna (Pulse W3965) provided by the customer.

Conducted RF tests were performed with a near-field probe and a spectrum analyzer.


Table 1: Normal and extreme test conditions

Test conditions:		Temperature [°C]	Voltage [V]
Normal		+20...+25	3.3
Extreme	Minimum	+0	3.1
	Maximum	+65	3.8

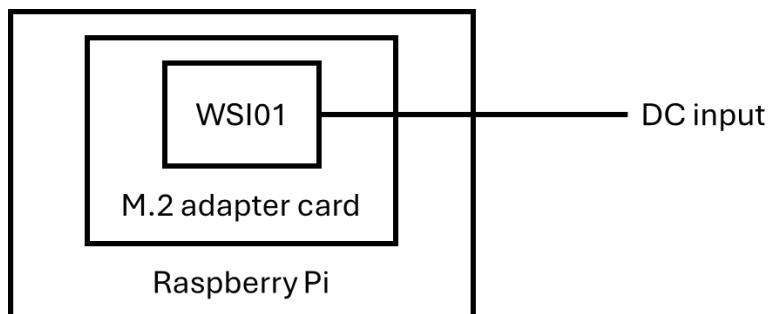

The extreme temperature and voltage ranges are declared by the manufacturer.

Figure 1: Test setup block diagram for AC Power-Line Conducted Emissions

Figure 2: Test setup block diagram for Radiated Emissions

Figure 3: Test setup block diagram for Frequency stability and Occupied Bandwidth

Test Facility

Testing Laboratory / address: FCC designation number: FI0002 ISED CAB identifier: T004	SGS Fimko Ltd Takomotie 8 FI-00380, HELSINKI FINLAND
Test Site:	<input type="checkbox"/> K10LAB, ISED Canada registration number: 8708A-1 <input checked="" type="checkbox"/> K5LAB, ISED Canada registration number: 8708A-2 <input type="checkbox"/> T10LAB

TEST RESULTS**Antenna Requirement****Standard:** FCC Rule §15.203**Tested by:** HEM**Date:** 27 January 2025**FCC Rule: §15.203**

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Specification	Requirement (at least one of the following shall be applied)	Conclusion
§15.203	<ol style="list-style-type: none">1. Permanently attached antenna2. Unique coupling to the intentional radiator3. Professionally installed radio. The installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.	PASS
Note	Option 1 is used	

AC Power-Line Conducted Emissions

Standard: ANSI C63.10-2020 clause 6.2
Tested by: HEM
Date: 28 February 2025
Temperature: 22 °C
Humidity: 39 %RH
Measurement uncertainty: ± 2.9 dB, level of confidence 95 % (k = 2)
Test result: **PASS**

FCC Rule: §15.207(a)**RSS-Gen clause 8.8**

For radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in the table below, as measured using a 50 µH / 50 Ω line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT.

Frequency of emission [MHz]	Conducted limit [dB μ V]	
	Quasi-peak	Average
0.15 – 0.5	66 to 56 *	56 to 46 *
0.5 – 5	56	46
5 – 30	60	50

* The level decreases linearly with the logarithm of the frequency

For an EUT that connects to the AC power lines indirectly, through another device, the requirement for compliance shall apply at the terminals of the AC power-line mains cable of a representative support device, while it provides power to the EUT. The lower limit applies at the boundary between the frequency ranges. The device used to power the EUT shall be representative of typical applications.

The correction factor (dB) in the final result table contains the sum of the transducers (cables + transient limiter + LISN). The reported QuasiPeak and CAverage values include the correction factor.

Test results

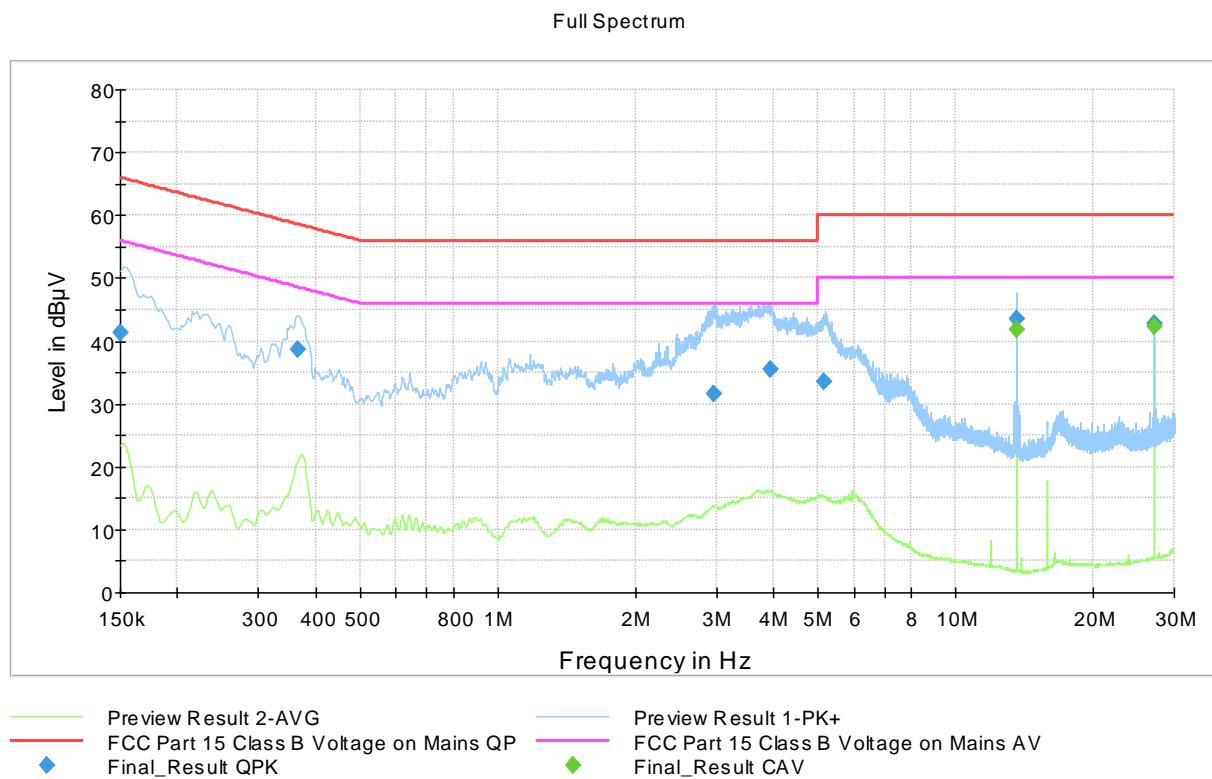


Figure 4: AC Power-Line Conducted Emissions

Table 2: Test results for AC Power-Line Conducted Emissions

Frequency (MHz)	QuasiPeak (dBμV)	CAverage (dBμV)	Limit (dBμV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.150000	41.23	---	66.00	24.77	15 x 1000.0	9.000	N	9.7
0.366750	38.56	---	58.57	20.01	15 x 1000.0	9.000	N	9.7
2.959500	31.71	---	56.00	24.29	15 x 1000.0	9.000	L1	9.9
3.952000	35.46	---	56.00	20.54	15 x 1000.0	9.000	L1	10.0
5.157750	33.44	---	60.00	26.56	15 x 1000.0	9.000	N	10.0
13.558500	43.60	---	60.00	16.40	15 x 1000.0	9.000	N	10.4
13.562500	---	41.77	50.00	8.23	15 x 1000.0	9.000	L1	10.4
27.119250	---	42.25	50.00	7.75	15 x 1000.0	9.000	L1	10.7
27.119250	42.70	---	60.00	17.30	15 x 1000.0	9.000	N	10.8

Radiated Emissions

Standard: ANSI C63.10-2020 clause 6.3-6.5
Tested by: HEM, PKA
Date: 6 February 2025
Temperature: 23 °C
Humidity: 25 %RH
Measurement uncertainty: ± 4.51 dB, level of confidence 95 % (k = 2)
Test result: **PASS**

FCC Rule: §15.225(a)-(d)
RSS-210 clause B.6(a)

The field strength of any emissions within the band 13.110-14.010 MHz shall not exceed the following limits:

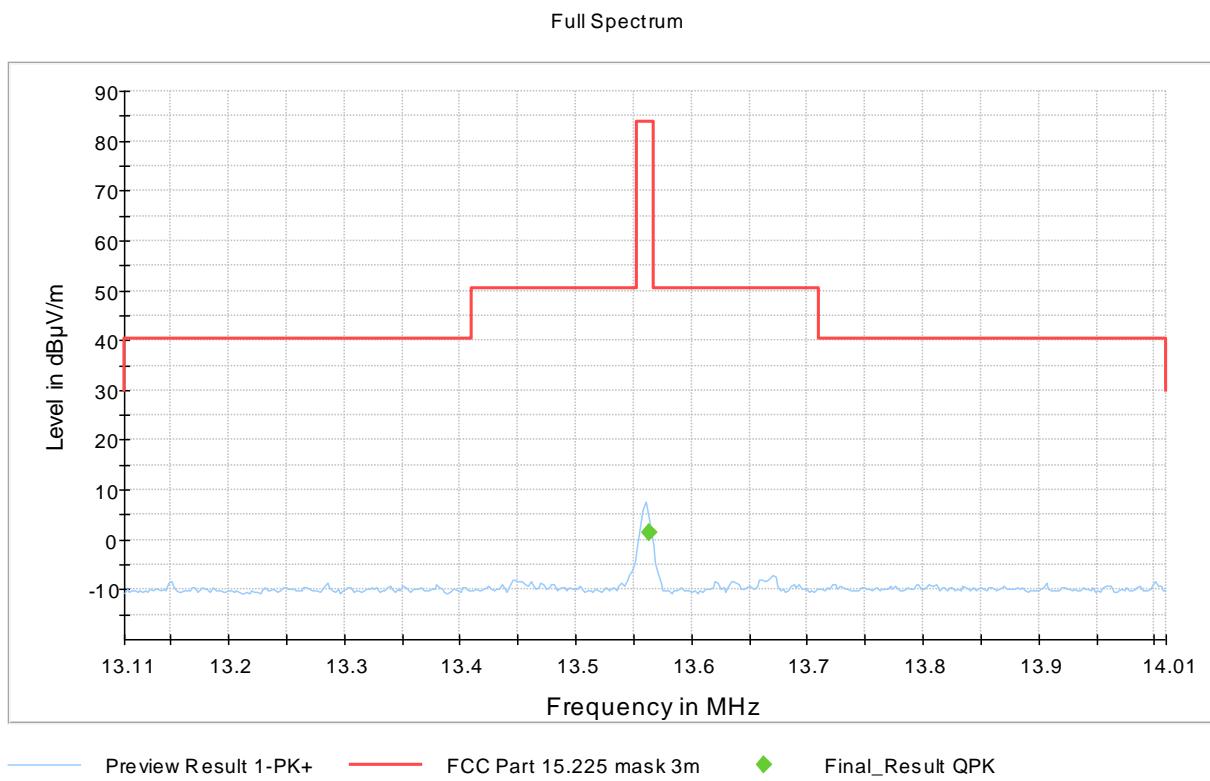
Frequency range [MHz]	Limit [μ V/m]	Distance [m]	Detector
13.110 – 13.410	106	30	Quasi-peak
13.410 – 13.553	334	30	Quasi-peak
13.553 – 13.567	15848	30	Quasi-peak
13.567 – 13.710	334	30	Quasi-peak
13.710 – 14.010	106	30	Quasi-peak

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209 and RSS-Gen.

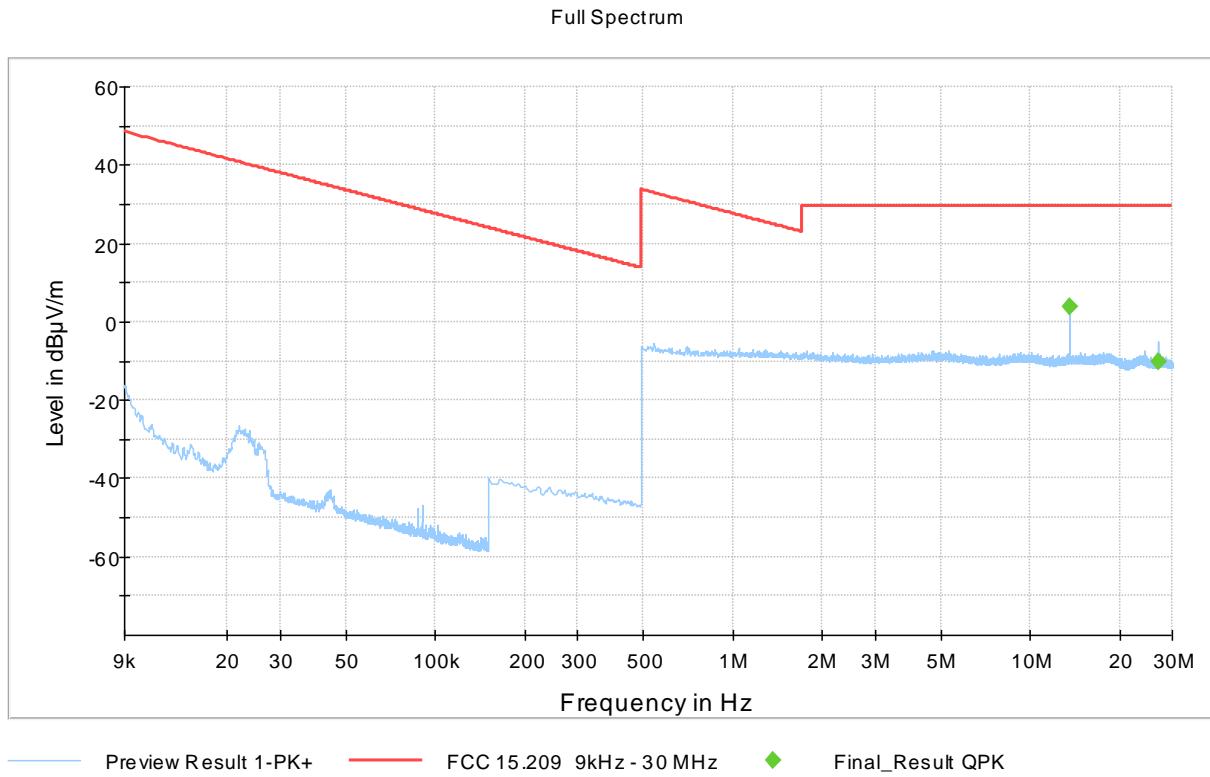
Frequency range [MHz]	Limit [μ V/m]	Distance [m]	Detector
0.009 – 0.490	2400/F(kHz)	300	Quasi-peak
0.490 – 1.705	24000/F(kHz)	30	Quasi-peak
1.705 – 30	30	30	Quasi-peak
30 – 88	100	3	Quasi-peak
88 – 216	150	3	Quasi-peak
216 – 960	200	3	Quasi-peak
960 – 1000	5000	3	Quasi-peak

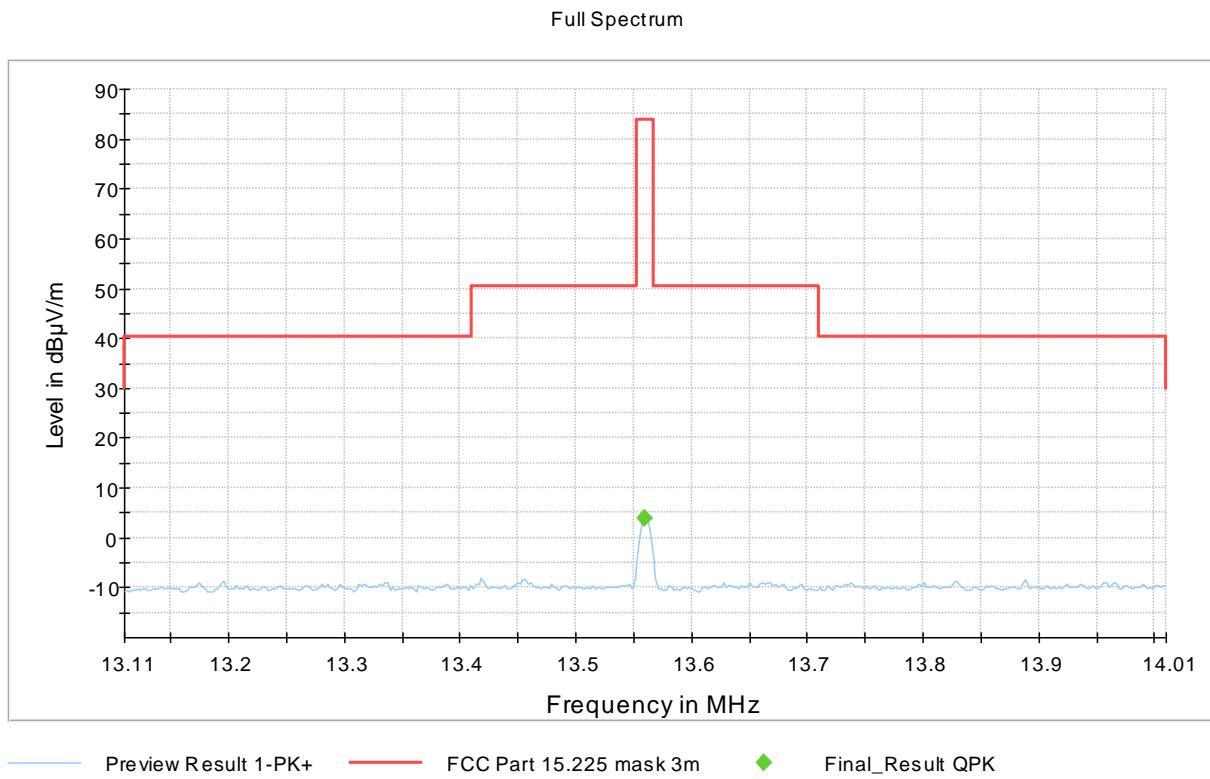

The radiated tests are performed in a semi-anechoic chamber with a measurement distance of 3 meters. The results below 30 MHz are extrapolated to 30 m or 300 m distance by using the square of an inverse linear distance extrapolation factor (40 dB/decade).

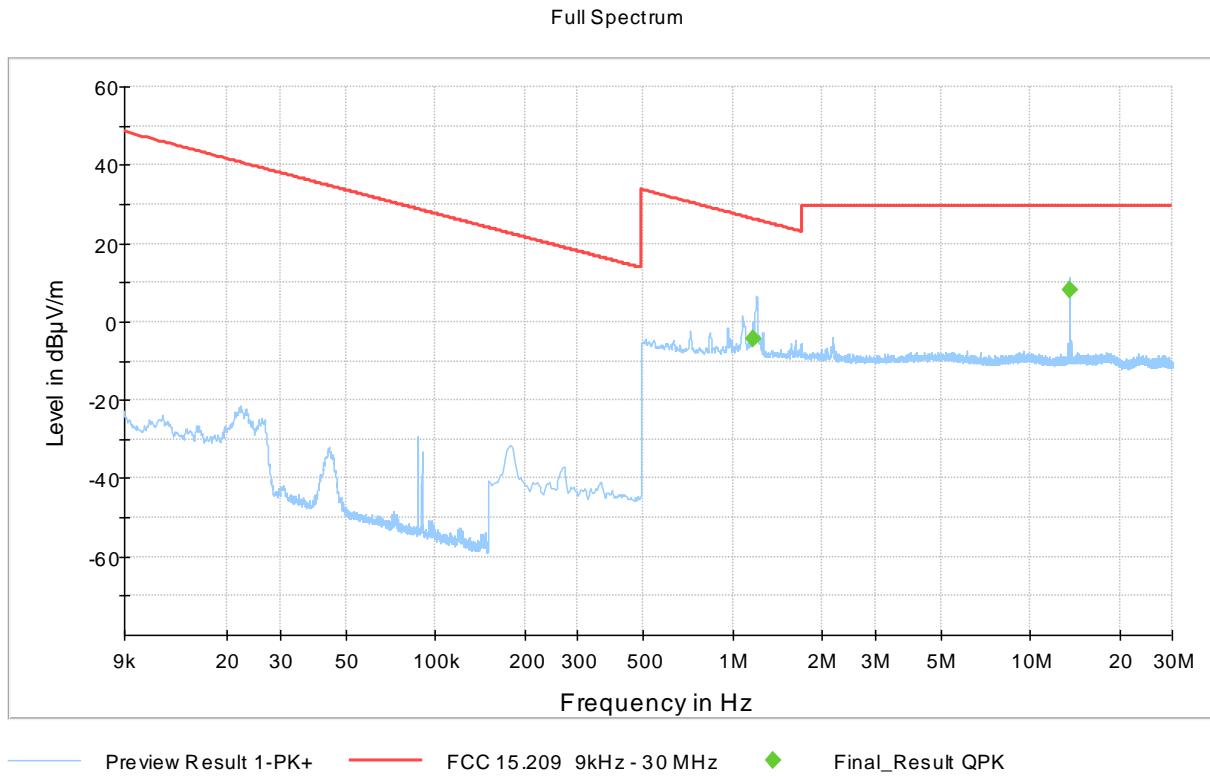
The correction factor (dB/m) in the final result table contains the sum of the transducers (antenna + cables + extrapolation factor below 30 MHz). The reported values include the correction factor.


Test results**Table 3:** Test results for Radiated Emissions

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1.174000	-4.21	26.23	30.44	15 x 1000.0	9.000	GP *	V	156.0	-20.5
13.563000	1.47	84.00	82.53	15 x 1000.0	9.000	coax *	V	110.0	-20.3
13.559000	3.92	84.00	80.08	15 x 1000.0	9.000	copl *	V	315.0	-20.3
13.559000	8.28	84.00	75.72	15 x 1000.0	9.000	GP *	V	79.0	-20.3
27.121500	-10.16	29.50	39.66	15 x 1000.0	9.000	copl *	V	311.0	-19.9
40.705000	25.71	40.00	14.29	15 x 1000.0	120.000	105.0	V	102.0	17.2
46.045000	24.83	40.00	15.17	15 x 1000.0	120.000	100.0	V	27.0	17.8
213.955000	28.12	43.50	15.38	15 x 1000.0	120.000	100.0	V	192.0	15.5
624.975000	36.11	46.00	9.89	15 x 1000.0	120.000	100.0	V	215.0	27.5
749.945000	32.09	46.00	13.91	15 x 1000.0	120.000	100.0	V	73.0	29.2
847.875000	21.27	46.00	24.73	15 x 1000.0	120.000	331.0	V	267.0	30.2


* coax/copl/GP = measurement loop antenna in coaxial/coplanar/ground parallel orientation


Figure 5: Radiated emissions 9 kHz – 30 MHz, measurement loop antenna in coaxial orientation


Figure 6: Emissions within the 13.110-14.010 MHz band, coaxial orientation

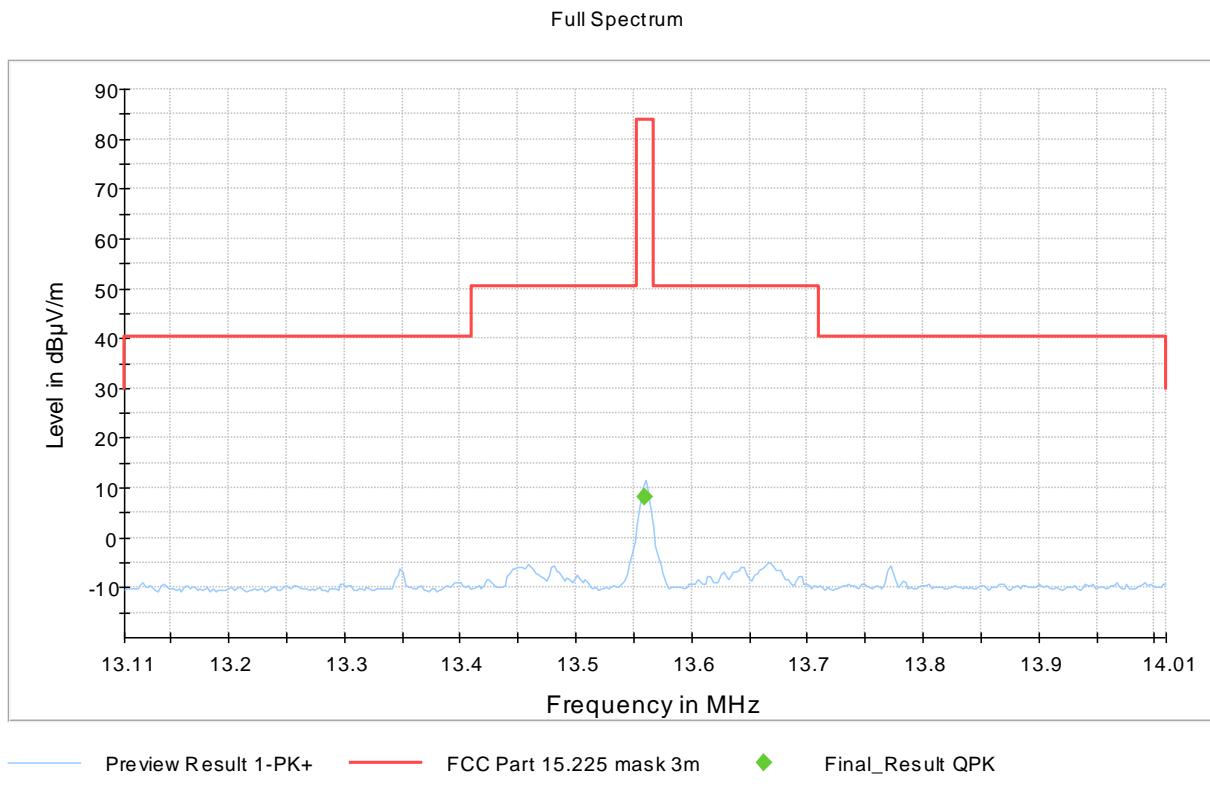

Figure 7: Radiated emissions 9 kHz – 30 MHz, measurement loop antenna in coplanar orientation


Figure 8: Emissions within the 13.110-14.010 MHz band, coplanar orientation

Figure 9: Radiated emissions 9 kHz – 30 MHz, measurement loop antenna in ground parallel orientation

Figure 10: Emissions within the 13.110-14.010 MHz band, ground parallel orientation

Figure 11: Radiated emissions 30 – 1000 MHz

Frequency Stability

Standard: ANSI C63.10-2020 clause 6.8
Tested by: HEM
Date: 27 January 2025
Temperature: 23 °C
Humidity: 26 %RH
Test result: **PASS**

FCC Rule: §15.225(e)

RSS-210 B.6(b)

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ (± 100 ppm) of the operating frequency over a temperature variation of -20 °C to +50 °C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of +20 °C.

The frequency of the carrier is measured at the startup, and after 2 min, 5 min and 10 min after the startup.

Test results

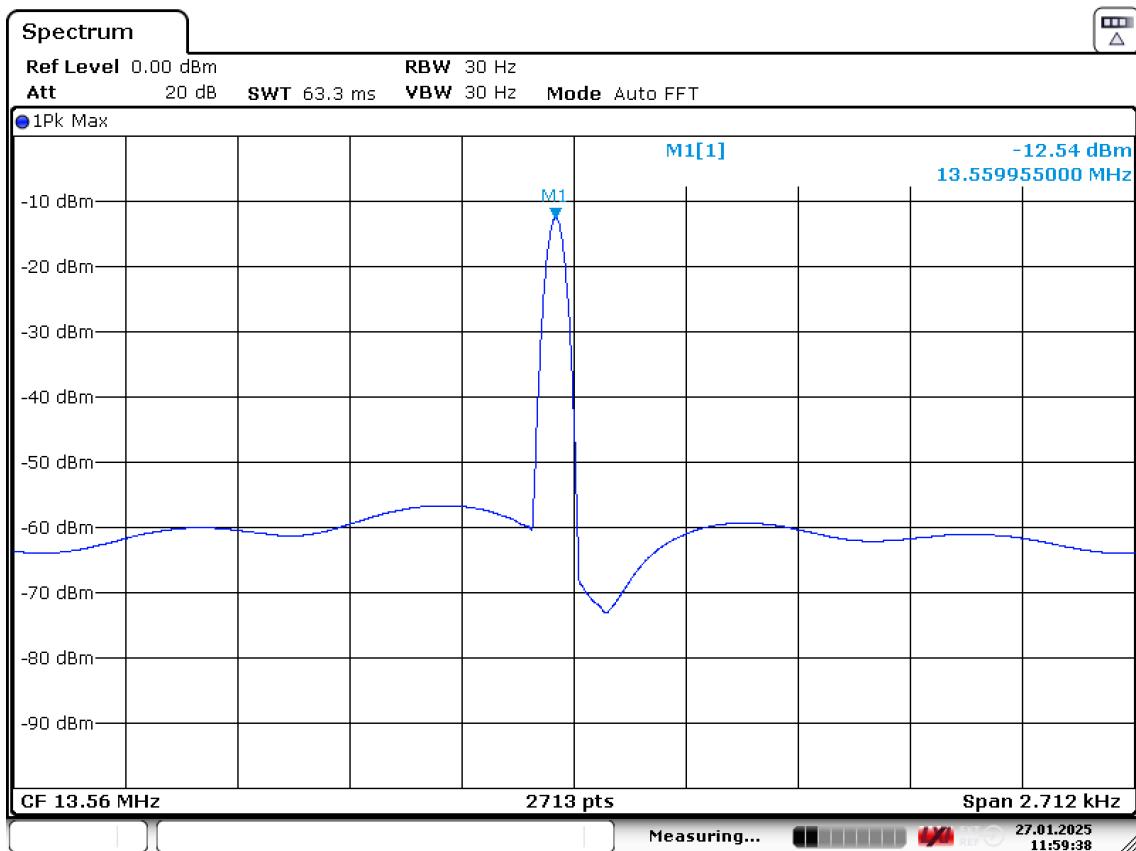
Manufacturer's specification for operating temperature and voltage ranges are +0...+65 °C and 3.3 V $\pm 5\%$. The measurements are performed with 3.3 V +15 %/-6 % input voltages.

Table 4: Measured frequencies with temperature variation

Temperature [°C]	Voltage [VDC]	Measured frequency [MHz]			
		Startup	2 min	5 min	10 min
+0	3.3	13.560017	13.560019	13.560019	13.560019
+10		13.560017	13.560015	13.560015	13.560015
+20		13.560006	13.560001	13.560001	13.560001
+30		13.559986	13.559979	13.559979	13.559979
+40		13.559966	13.559961	13.559961	13.559961
+50		13.559955	13.559955	13.559955	13.559955
+55		13.559955	13.559959	13.559959	13.559959
+65		13.559981	13.559988	13.559988	13.559988

Table 5: Measured frequencies with voltage variation

Temperature [°C]	Voltage [VDC]	Measured frequency [MHz]			
		Startup	2 min	5 min	10 min
+20	3.1 (-6 %)	13.559981	-	-	-
	3.3 (nominal)	13.560006	13.560001	13.560001	13.560001
	3.8 (+15 %)	13.559986	-	-	-


Table 6: Test results for Frequency Stability (temperature variation)

Temperature [°C]	Voltage [VDC]	Deviation [ppm]			
		Startup	2 min	5 min	10 min
+0	3.3	1.25	1.40	1.40	1.40
+10		1.25	1.11	1.11	1.11
+20		0.44	0.07	0.07	0.07
+30		-1.03	-1.55	-1.55	-1.55
+40		-2.51	-2.88	-2.88	-2.88
+50		-3.32	-3.32	-3.32	-3.32
+60		-3.32	-3.02	-3.02	-3.02
+65		-1.40	-0.88	-0.88	-0.88

Table 7: Test results for Frequency Stability (voltage variation)

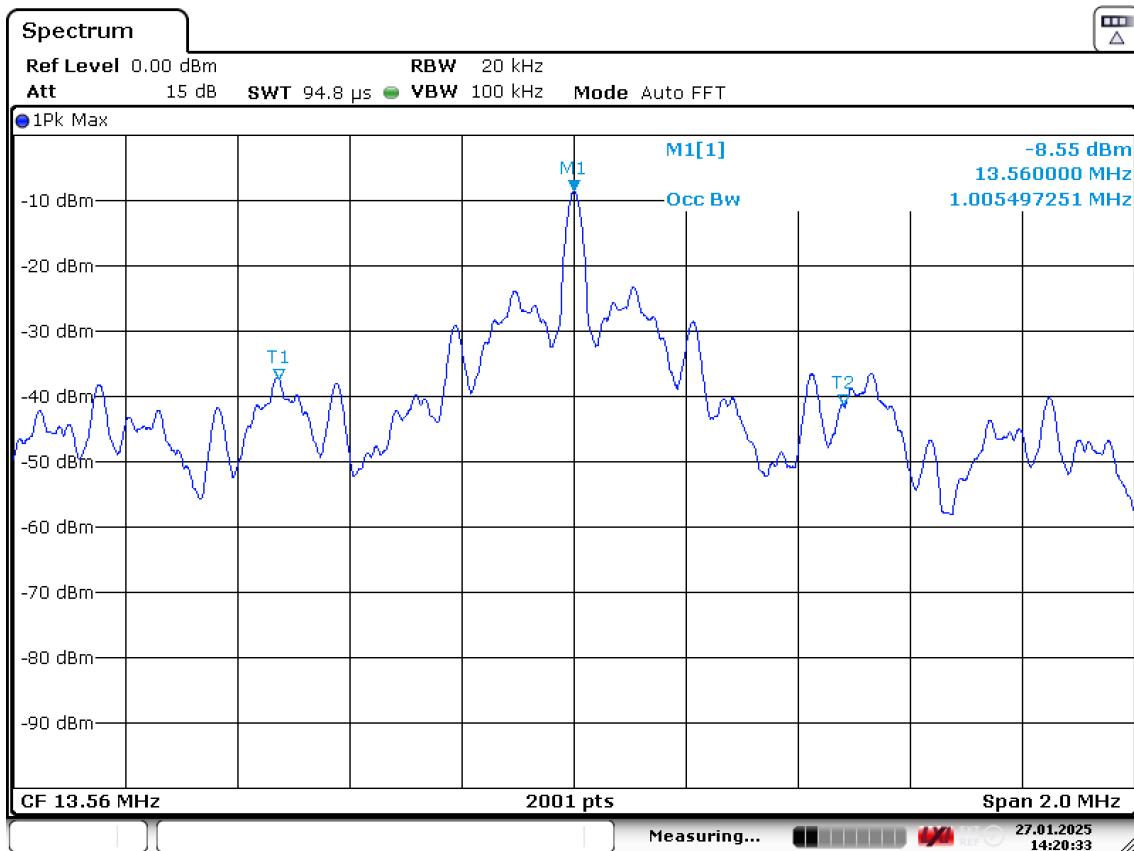
Temperature [°C]	Voltage [VDC]	Deviation [ppm]			
		Startup	2 min	5 min	10 min
+20	3.1 (-6 %)	-1.40	-	-	-
	3.3 (nominal)	0.44	0.07	0.07	0.07
	3.8 (+15 %)	-1.03	-	-	-

The spectrum analyzer figure with the worst-case result is presented:

Figure 12: Frequency Stability (+50 °C, 3.3 VDC, 10 min after startup)

Occupied Bandwidth 99 %

Standard: RSS-Gen clause 6.7
Tested by: HEM
Date: 27 January 2025
Temperature: 23 °C
Humidity: 26 %RH
Test result: **PASS**


RSS-Gen clause 6.7

The occupied bandwidth or the “99% emission bandwidth” is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained.

Test results

Table 8: Test results for Occupied Bandwidth 99 %

OBW 99% [MHz]	Limit [MHz]	Result
1.005497	N/A	PASS

Figure 13: Occupied Bandwidth 99 %

TEST EQUIPMENT**AC Power-Line Conducted Emissions**

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
COAX CHAIN K5 EMI CE 9kHz-30MHz	-	C054+FP1SF+C153	-	2024-03-28	2025-03-28
EMI TEST RECEIVER	ROHDE & SCHWARZ	ESW26	inv. 10679	2024-06-12	2025-06-11
LISN	ROHDE & SCHWARZ	ENV216	inv. 9611	2025-02-18	2026-02-18
POWER SUPPLY	CALIFORNIA INSTR.	5001 iX Series II	inv. 7826	NCR	NCR
TEMPERATURE/ HUMIDITY SENSOR	EDS	OW-ENV-TH, K5 SAC	inv. 10517	2024-11-02	2025-11-02
TEST SOFTWARE	ROHDE & SCHWARZ	EMC-32	-	-	-

Radiated Emissions

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
ANTENNA	ROHDE & SCHWARZ	HFH2-Z2 , 335.4711.52	inv. 8013	2024-11-18	2025-11-18
ANTENNA	SCHWARZBECK	VULB 9168	inv. 8911	2024-12-11	2026-12-11
ANTENNA MAST	MATURO	TAM 4.0E	inv. 10181	NCR	NCR
ATTENUATOR	PASTERNACK	PE 7004-4 (4dB)	inv. 10126	2024-12-11	2026-12-11
COAX CHAIN K5 EMI < 1GHz	-	C053+FP3AirC+C138	-	2024-03-28	2025-03-28
EMI TEST RECEIVER	ROHDE & SCHWARZ	ESW26	inv. 10679	2024-06-12	2025-06-11
MAST & TURNTABLE CONTROLLER	MATURO	NCD	inv. 10183	NCR	NCR
TEMPERATURE/ HUMIDITY SENSOR	EDS	OW-ENV-TH, K5 SAC	inv. 10517	2024-11-02	2025-11-02
TEST SOFTWARE	ROHDE & SCHWARZ	EMC-32	-	-	-
TURNTABLE	MATURO	DS430 UPGRADED	inv. 10182	NCR	NCR

Frequency Stability, Occupied Bandwidth 99 %

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
CABLE	HUBER & SUHNER	SUCOFLEX 104	inv. C050	2024-07-16	2025-07-16
NEAR-FIELD PROBE SET	ROHDE & SCHWARZ	HS-14 1026.7744.02	inv. 7883	NCR	NCR
MULTIMETER	FLUKE	289	inv. 221117A	2024-11-25	2025-11-25
POWER SUPPLY	THANDAR	PL330TP	inv. 9787	NCR	NCR
SPECTRUM ANALYZER	ROHDE & SCHWARZ	FSV40	inv. 9093	2024-06-13	2025-06-12
TEMPERATURE CHAMBER	CTS	T-65/50	inv. 10521	NCR	NCR
TEMPERATURE/HUMIDITY METER	VAISALA	HMT 333	inv. 8638	2024-09-03	2025-09-03

NCR = No Calibration Required

END OF REPORT