

HAC RF TESTREPORT

No. I18Z60185-SEM02

For

Q INNOVATIONS PRIVATE LIMITED

MobilePhone

Model Name: QS5509A

With

Hardware Version: 01

Software Version: 1AS1

FCC ID: 2AO6NA001

Results Summary: M Category = M4

Issued Date: 2018-5-25

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 51, Xueyuan Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

REPORT HISTORY

Report Number	Revision	Issue Date Description	
I18Z60185-SEM02	Rev.0	2018-4-28	Initial creation of test report
I18Z60185-SEM02	02 Rev.1	2018-5-25	Update the version of KDB 285076
110200103-SEIVIU2		2010-5-25	D01

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 Testing Location	5
1.2 Testing Environment	5
1.3 Project Data	
1.4 Signature	5
2 CLIENT INFORMATION	6
2.1 APPLICANT INFORMATION	(
2.2 Manufacturer Information	6
3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1 About EUT	
3.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
3.3 Internal Identification of AE used during the test	
3.4 AIR INTERFACES / BANDS INDICATING OPERATING MODES	
4 CONDUCTED OUTPUT POWER MEASUREMENT	8
4.1 Summary	
4.2 CONDUCTED POWER	8
5 REFERENCE DOCUMENTS	g
5.1 Reference Documents for testing	g
6 OPERATIONAL CONDITIONS DURING TEST	10
6.1 HAC MEASUREMENT SET-UP	
6.2 PROBE SPECIFICATION	
6.3TEST ARCH PHANTOM & PHONE POSITIONER	
6.4ROBOTIC SYSTEM SPECIFICATIONS	12
7 EUT ARRANGEMENT	13
7.1 WD RF Emission Measurements Reference and Plane	13
8 SYSTEM VALIDATION	14
0.1 W. v. v. and and Dr. and	1.4
8.1 VALIDATION PROCEDURE	
9 EVALUATION OF MIF	
9.1 Introduction	
9.2 MIF MEASUREMENT WITH THE AIA	
9.3 TEST EQUIPMENT FOR THE MIF MEASUREMENT	
9.4 TEST SIGNAL VALIDATION	
10 EVALUATION FOR LOW-POWER EXEMPTION	19
10.1 Product testing threshold	1.0
10.1 PRODUCT TESTING THRESHOLD	
10.2 001D001DD10DK	

10.3 Conclusion	19
11 RF TEST PROCEDUERES	20
12 ANSIC 63.19-2011 LIMITS	21
14 MEASUREMENT UNCERTAINTY	22
15 MAIN TEST INSTRUMENTS	23
16 CONCLUSION	23
ANNEX A TEST LAYOUT	24
ANNEX B SYSTEM VALIDATION RESULT	25
ANNEX C PROBE CALIBRATION CERTIFICATE	27
ANNEX D DIPOLE CALIBRATION CERTIFICATE	37
ANNEX E DAE CALIBRATION CERTIFICATE	53

1 Test Laboratory

1.1 Testing Location

CompanyName:	CTTL(Shouxiang)
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District,
	Beijing, P. R. China100191

1.2 Testing Environment

Temperature:	18°C~25°C,		
Relative humidity:	30%~ 70%		
Ground system resistance:	< 0.5 Ω		
Ambient poice is checked and found very low and in compliance with requirement of standards			

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Hao
Testing Start Date:	April 9, 2018
Testing End Date:	April 9, 2018

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Lu Bingsong

Deputy Director of the laboratory

(Approved this test report)

2 Client Information

2.1 Applicant Information

Company Name:	Q INNOVATIONS PRIVATE LIMITED	
Address /Post:	25, Shakuntala Farm, M G Road, Sultanpur, New Delhi-110030	
Contact Person:	Mr. Gaurav Jain	
E-mail:	gaurav.j@q-innovations.in	
Telephone:	91-124-4648000/8111	

2.2 Manufacturer Information

Company Name:	Q INNOVATIONS PRIVATE LIMITED		
Address /Post:	25, Shakuntala Farm, M G Road, Sultanpur, New Delhi-110030		
Contact Person:	Mr. Gaurav Jain		
E-mail:	gaurav.j@q-innovations.in		
Telephone:	91-124-4648000/8111		

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

Description:	MobilePhone
Model name:	QS5509A
Operating mode(s):	WCDMA850/1700/1900 LTE B2/4/5/12/14/30/66, BT, WLAN

3.2 Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
EUT1	357485090000888	01	1AS1
EUT2	352593066935519	01	1AS1

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
Λ Γ 1	Dattom	ery Lithium-ion Polymer	,	Sunwoda Electronic
AE1	1 Battery		/	CO.,LTD.

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4 Air Interfaces / Bands Indicating Operating Modes

Air-interface	Band(MHz)	Туре	C63.19/tested	Simultaneous Transmissions	ОТТ
GSM	850	VO	NA		
GSIVI	1900		INA	DT MU AND	NIA
CDDS/EDCE	850	DT	NIA	BT, WLAN	NA
GPRS/EDGE	1900	וט	「 NA		
	850				
WCDMA	1700	VO	Yes	DT M/LAN	NA
(UMTS)	1900			BT, WLAN	INA
	HSPA	DT	NA		
LTE	Band 2/5/12/14/30/66	V/D	Yes	BT, WLAN	NA
ВТ	2450	DT	NA	GSM, WCDMA, LTE	NA
WLAN	2450	V/D	NA	GSM, WCDMA, LTE	NA

VO: Voice CMRS/PSTN Service Only V/D: Voice CMRS/PSTN and Data Service DT: Digital Transport

^{*} HAC Rating was not based on concurrent voice and data modes, Non current mode was found to represent worst case rating for both M and T rating

4 CONDUCTED OUTPUT POWER MEASUREMENT

4.1 Summary

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured output power should be greater and within 5% than EMI measurement.

4.2 Conducted Power

WODMA		Conducted Power (dBm)					
WCDMA 850MHz	Channel 4233(846.6MHz)	Channel 4182(836.4MHz)	Channel 4132(826.4MHz)				
OSUMINZ	23.03	23.10	23.04				
MCDMA	Conducted Power (dBm)						
WCDMA	Channel 1513 (1752.6MHz)	Channel 1412 (1732.4MHz)	Channel 1312 (1712.4MHz)				
1700MHz	21.97	21.96	22.19				
WCDMA		Conducted Power (dBm)					
1900MHz	Channel 9538(1907.6MHz)	Channel 9400(1880MHz)	Channel 9262(1852.4MHz)				
ISOUMINZ	22.87	22.56	22.31				
LTE		Conducted Power (dBm)					
Band2	Channel 19100(1900MHz)	Channel18900(1880MHz)	Channel 18700(1860MHz)				
QPSK	22.84	22.30	21.95				
LTE		Conducted Power (dBm)					
Band5	Channel 20600(844MHz)	Channel 20525(836.5MHz)	Channel20450(829MHz)				
QPSK	22.77	22.77 22.91					
LTE	Conducted Power (dBm)						
Band12	Channel 23130(711MHz)	Channel23060(704MHz)					
QPSK	23.33	23.38	23.31				
LTE	Conducted Power (dBm)						
Band14	Channel 23330(793MHz)						
QPSK	23.54						
LTE		Conducted Power (dBm)					
Band30	Channel 27710(2310MHz)						
QPSK	23.32						
LTE		Conducted Power (dBm)					
Band66	Channel 132572(1770MHz)	Channel 132322(1745MHz)	Channel 132072(1720MHz)				
QPSK	21.83	22.13	22.00				
LTE		Conducted Power (dBm)					
Band2	Channel 19100(1900MHz)	Channel18900(1880MHz)	Channel 18700(1860MHz)				
16-QAM	21.34	21.01	20.49				
LTE		Conducted Power (dBm)					
Band5	Channel 20600(844MHz)	Channel 20525(836.5MHz)	Channel20450(829MHz)				
16-QAM	21.70	21.82	22.01				

LTE		Conducted Power (dBm)					
Band12	Channel 23130(711MHz)	Channel 23095(707.5MHz)	Channel23060(704MHz)				
16-QAM	22.52	22.29	22.48				
LTE		Conducted Power (dBm)					
Band14	Channel 23330(793MHz)						
16-QAM	22.76						
LTE		Conducted Power (dBm)					
Band30		Channel 27710(2310MHz)					
16-QAM		22.50					
LTE	Conducted Power (dBm)						
Band66	Channel 132572(1770MHz) Channel 132322(1745MHz) Channel 132072(1720MHz)						
16-QAM	20.86	20.59	20.86				

5 Reference Documents

5.1 Reference Documents for testing

The following document listed in this section is referred for testing.

Reference	Title	Version
ANSI C63.19-2011	American National Standard for Methods of Measurement of	2011
	Compatibility between Wireless Communication Devices and	Edition
	Hearing Aids	
FCC 47 CFR §20.19	Hearing Aid Compatible Mobile Headsets	2015
		Edition
KDB 285076 D01	Equipment Authorization Guidance for Hearing Aid Compatibility	v05

6 OPERATIONAL CONDITIONS DURING TEST

6.1 HAC MEASUREMENT SET-UP

These measurements are performed using the DASY5 NEO automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. A cell controller system contains the power supply, robot controller, teach pendant (Joystick),and remote control, is used to drive the robot motors. The PC consists of the HP Intel Core21.86 GHz computer with Windows XP system and HAC Measurement Software DASY5 NEO, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE)circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

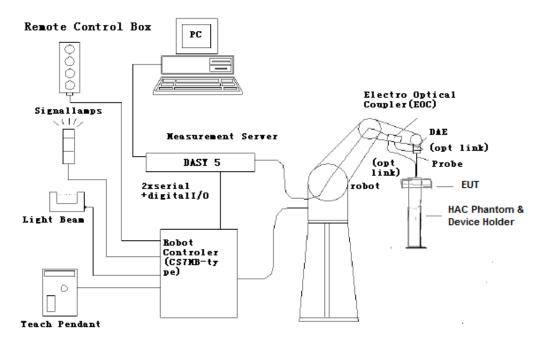


Fig. 1 HAC Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

6.2 Probe Specification

E-Field Probe Description

Construction One dipole parallel, two dipoles normal to probe axis

Built-in shielding against static charges

PEEK enclosure material

Calibration In air from 100 MHz to 3.0 GHz (absolute accuracy ±6.0%,

k=2)

Frequency 40 MHz to > 6 GHz (can be extended to < 20 MHz)

Linearity: ± 0.2 dB (100 MHz to 3 GHz)

Directivity ± 0.2 dB in air (rotation around probe axis)

± 0.4 dB in air (rotation normal to probe axis)

Dynamic Range 2 V/m to > 1000 V/m; Linearity: ± 0.2 dB

Dimensions Overall length: 330 mm (Tip: 16 mm)

Tip diameter: 8 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.5 mm

Application General near-field measurements up to 6 GHz

Field component measurements

Fast automatic scanning in phantoms

[ER3DV6]

6.3Test Arch Phantom & Phone Positioner

The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: $370 \times 370 \times 370 \text{ mm}$).

The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field $<\pm 0.5$ dB.

Fig. 2 HAC Phantom & Device Holder

6.4Robotic System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX160L

Repeatability: ±0.02 mm

No. of Axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Intel Core2 Clock Speed: 1.86GHz

Operating System: Windows XP

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY5 software

Connecting Lines: Optical downlink for data and status info.

Optical uplink for commands and clock

7 EUT ARRANGEMENT

7.1 WD RF Emission Measurements Reference and Plane

Figure 4 illustrates the references and reference plane that shall be used in the WD emissions measurement.

- The grid is 5 cm by 5 cm area that is divided into 9 evenly sized blocks or sub-grids.
- The grid is centered on the audio frequency output transducer of the WD (speaker or T-coil).
- The grid is located by reference to a reference plane. This reference plane is the planar area that contains the highest point in the area of the WD that normally rests against the user's ear
- The measurement plane is located parallel to the reference plane and 15 mm from it, out from the phone. The grid is located in the measurement plane.

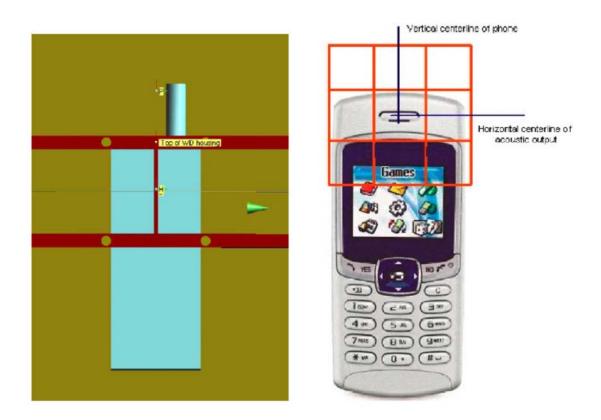


Fig. 3 WD reference and plane for RF emission measurements

8 SYSTEM VALIDATION

8.1 Validation Procedure

Place a dipole antenna meeting the requirements given in ANSI C63.19 in the position normally occupied by the WD. The dipole antenna serves as a known source for an electrical output. Position the E-field probes so that:

- •The probes and their cables are parallel to the coaxial feed of the dipole antenna
- •The probe cables and the coaxial feed of the dipole antenna approach the measurement area from opposite directions
- The center point of the probe element(s) are 15 mm from the closest surface of the dipole elements.

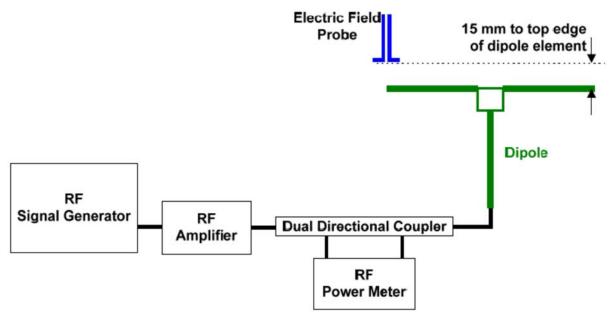


Fig. 4 Dipole Validation Setup

8.2 Validation Result

	E-Field Scan								
Mode	Mode Frequency Input Power Measured ¹ Target ² Deviation ³ Limit ⁴								
	(MHz)	(mW)	Value(dBV/m)	Value(dBV/m)	(%)	(%)			
CW	835	100	40.53	40.67	-1.60	±25			
CW	1880	100	39.45	39.24	2.45	±25			

Notes:

- 1. Please refer to the attachment for detailed measurement data and plot.
- 2. Target value is provided by SPEAD in the calibration certificate of specific dipoles.
- 3. Deviation (%) = 100 * (Measured value minus Target value) divided by Target value.
- 4. ANSI C63.19 requires values within \pm 25% are acceptable, of which 12% is deviation and 13% is measurement uncertainty. Values independently validated for the dipole actually used in the measurements should be used, when available.

9 Evaluation of MIF

9.1 Introduction

The MIF (Modulation Interference Factor) is used to classify E-field emission to determine Hearing Aid Compatibility (HAC). It scales the power-averaged signal to the RF audio interference level and is characteristic to a modulation scheme. The HAC standard preferred "indirect" measurement method is based on average field measurement with separate scaling by the MIF. With an Audio Interference Analyzer (AIA) designed by SPEAG specifically for the MIF measurement, these values have been verified by practical measurements on an RF signal modulated with each of the waveforms. The resulting deviations from the simulated values are within the requirements of the HAC standard.

The AIA (Audio Interference Analyzer) is an USB powered electronic sensor to evaluate signals in the frequency range 698MHz - 6 GHz. It contains RMS detector and audio frequency circuits for sampling of the RF envelope.

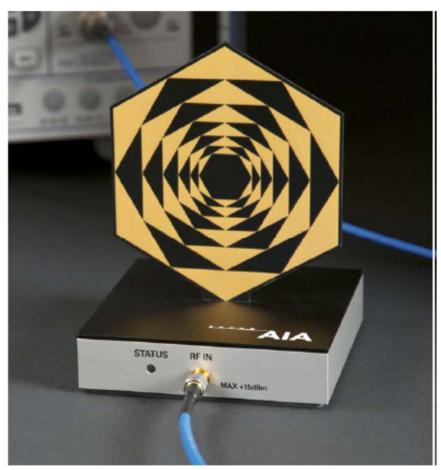


Fig. 5 AIA Front View

9.2 MIF measurement with the AIA

The MIF is measured with the AIA as follows:

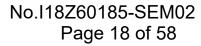
- 1. Connect the AIA via USB to the DASY5 PC and verify the configuration settings.
- 2. Couple the RF signal to be evaluated to an AIA via cable or antenna.
- 3. Generate a MIF measurement job for the unknown signal and select the measurement port and timing settings.
- 4. Document the results via the post processor in a report.

9.3 Test equipment for the MIF measurement

No.	Name	Type	Serial Number	Manufacturer
01	Signal Generator	E4438C	MY49071430	Agilent
02	AIA	SE UMS 170 CB	1029	SPEAG
03	BTS	E5515C	MY50263375	Agilent

9.4 Test signal validation

The signal generator (E4438C) is used to generate a 1GHz signal with different modulation in the below table based on the ANSI C63.19-2011. The measured MIF with AIA are compared with the target values given in ANSI C63.19-2011 table D.3, D.4 and D5.


Pulse modulation	Target MIF	Measured MIF	Deviation
0.5ms pulse, 1000Hz repetition rate	-0.9 dB	-0.9 dB	0 dB
1ms pulse, 100Hz repetition rate	+3.9 dB	+3.7 dB	0.2 dB
0.1ms pulse, 100Hz repetition rate	+10.1 dB	+10.0 dB	0.1 dB
10ms pulse, 10Hz repetition rate	+1.6 dB	+1.7 dB	0.1 dB
Sine-wave modulation	Target MIF	Measured MIF	Deviation
1 kHz, 80% AM	-1.2 dB	-1.3 dB	0.1 dB
1 kHz, 10% AM	-9.1 dB	-9.0 dB	0.1 dB
1 kHz, 1% AM	-19.1 dB	-18.9 dB	0.2 dB
100 Hz, 10% AM	-16.1 dB	-16.0 dB	0.1 dB
10 kHz, 10% AM	-21.5 dB	-21.6 dB	0.1 dB
Transmission protocol	Target MIF	Measured MIF	Deviation
GSM; full-rate version 2; speech codec/handset low	+3.5 dB	+3.47 dB	0.03 dB
WCDMA; speech; speech codec low; AMR 12.2 kb/s	-20.0 dB	-19.8 dB	0.2 dB
CDMA; speech; SO3; RC3; full frame rate; 8kEVRC	-19.0 dB	-19.1 dB	0.1 dB
CDMA; speech; SO3; RC1; 1/8 th frame rate; 8kEVRC	+3.3 dB	+3.44 dB	0.14 dB

9.5 DUT MIF results

Typical MIF levels in ANSI C63.19-2011					
Transmission protocol Modulation interference fact					
GSM; full-rate version 2; speech codec/handset low	+3.5 dB				
WCDMA; speech; speech codec low; AMR 12.2 kb/s	-20.0 dB				
LTE-FDD (SC-FDMA, 1RB, 20MHz, QPSK)	-15.63 dB				
LTE-FDD (SC-FDMA, 1RB, 20MHz, 16QAM)	-9.76 dB				

Measured MIF levels					
Band	Channel	Modulation interference factor (dB)			
	4233	-26.68			
WCDMA 850	4182	-25.79			
	4132	-25.98			
	1513	-26.55			
WCDMA 1700	1412	-26.33			
	1312	-26.17			
	9538	-25.88			
WCDMA 1900	9400	-25.79			
	9262	-26.11			
	19100	-14.88			
LTE Band2 QPSK	18900	-14.87			
QFOR	18700	-14.95			
	20600	-16.35			
LTE Band5 QPSK	20525	-14.92			
QI SIN	20450	-15.17			
	23130	-15.05			
LTE Band12 QPSK	23095	-15.53			
QI SIN	23060	-15.94			
LTE Band14 QPSK	23330	-15.05			
LTE Band30 QPSK	27710	-14.46			
	132572	-14.99			
LTE Band66 PRSK	132322	-14.69			
QION	132072	-14.64			
	19100	-10.72			
LTE Band2 16QAM	18900	-10.38			
Ισαλίνι	18700	-10.05			
	20600	-10.57			
LTE Band5 16QAM	20525	-10.55			
IUQAIVI	20450	-9.67			
LTE Band12	23130	-10.84			
16QAM	23095	-10.06			

	23060	-10.88
LTE Band14 16QAM	23330	-9.80
LTE Band30 16QAM	27710	-10.14
	132572	-10.58
LTE Band66 16QAM	132322	-10.01
TOQAW	132072	-10.84

10 Evaluation for low-power exemption

10.1 Product testing threshold

There are two methods for exempting an RF air interface technology from testing. The first method requires evaluation of the MIF for the worst-case operating mode. An RF air interface technology of a device is exempt from testing when its average antenna input power plus its MIF is \leq 17 dBm for any of its operating modes. The second method does not require determination of the MIF. The RF emissions testing exemption shall be applied to an RF air interface technology in a device whose peak antenna input power, averaged over intervals \leq 50 μ s20, is \leq 23 dBm. An RF air interface technology that is exempted from testing by either method shall be rated as M4. The first method is used to be exempt from testing for the RF air interface technology in this report.

10.2 Conducted power

Band	Average power (dBm)	MIF (dB)	Sum (dBm)
WCDMA 850	23.1	-25.79	-2.69
WCDMA 1700	22.19	-26.17	-3.98
WCDMA 1900	22.87	-25.88	-3.01
LTE B2	22.84	-14.88	7.96
LTE B5	22.91	-14.92	7.99
LTE B12	23.33	-15.05	8.28
LTE B14	23.54	-15.05	8.49
LTE B30	23.32	-14.46	8.86
LTE B66	22.13	-14.69	7.44
LTE B2 16QAM	21.01	-10.38	10.63
LTE B5 16QAM	22.01	-9.67	12.34
LTE B12 16QAM	22.29	-10.06	12.23
LTE B14 16QAM	22.76	-9.8	12.96
LTE B30 16QAM	22.5	-10.14	12.36
LTE B66 16QAM	20.59	-10.01	10.58

10.3 Conclusion

According to the above table, the sums of average power and MIF for UMTS and LTE are less than 17dBm. So the UMTS, LTE are exempt from testing and rated as M4.

11 RF TEST PROCEDUERES

The evaluation was performed with the following procedure:

- 1) Confirm proper operation of the field probe, probe measurement system and other instrumentation and the positioning system.
- 2) Position the WD in its intended test position. The gauge block can simplify this positioning.
- 3) Configure the WD normal operation for maximum rated RF output power, at the desired channel and other operating parameters (e.g., test mode), as intended for the test.
- 4) The center sub-grid shall centered on the center of the T-Coil mode axial measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the50 mm by 50 mm grid, which is contained in the measurement plane. If the field alignment method is used, align the probe for maximum field reception.
- 5) Record the reading.
- 6) Scan the entire 50 mm by 50 mm region in equally spaced increments and record the reading at each measurement point. The distance between measurement points shall be sufficient to assure the identification of the maximum reading.
- 7) Identify the five contiguous sub-grids around the center sub-grid whose maximum reading is the lowest of all available choices. This eliminates the three sub-grids with the maximum readings. Thus, the six areas to be used to determine the WD's highest emissions are identified.
- 8) Identify the maximum field reading within the non-excluded sub-grids identified in Step 7)
- 9) Evaluate the MIF and add to the maximum steady-state rms field-strength reading to obtain the RF audio interference level..
- Compare this RF audio interference level with the categories and record the resulting WD category rating.

12 ANSIC 63.19-2011 LIMITS

WD RF audio interference level categories in logarithmic units

Emission categories	< 960 MHz				
	E-field e	missions			
Category M1	50 to 55	dB (V/m)			
Category M2	45 to 50	dB (V/m)			
Category M3					
Category M4					
Emission categories	>960 MHz				
	E-field e	missions			
Category M1	40 to 45	dB (V/m)			
Category M2	35 to 40	dB (V/m)			
Category M3	30 to 35 dB (V/m)				
Category M4 < 30		dB (V/m)			

14 MEASUREMENT UNCERTAINTY

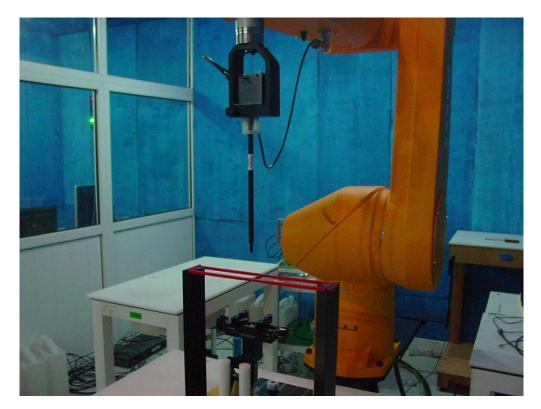
No.	Error source	Туре	Uncertainty Value(%)	Prob. Dist.	k	c _i E	Standard Uncertainty (%) u ; (%)E	Degree of freedom V _{eff} or <i>v</i> i	
Meas	Measurement System								
1	Probe Calibration	В	5.	N	1	1	5.1	∞	
2	Axial Isotropy	В	4.7	R	$\sqrt{3}$	1	2.7	∞	
3	Sensor Displacement	В	16.5	R	$\sqrt{3}$	1	9.5	∞	
4	Boundary Effects	В	2.4	R	$\sqrt{3}$	1	1.4	∞	
5	Linearity	В	4.7	R	$\sqrt{3}$	1	2.7	∞	
6	Scaling to Peak Envelope Power	В	2.0	R	$\sqrt{3}$	1	1.2	∞	
7	System Detection Limit	В	1.0	R	$\sqrt{3}$	1	0.6	∞	
8	Readout Electronics	В	0.3	N	1	1	0.3	∞	
9	Response Time	В	0.8	R	$\sqrt{3}$	1	0.5	∞	
10	Integration Time	В	2.6	R	$\sqrt{3}$	1	1.5	∞	
11	RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.7	∞	
12	RF Reflections	В	12.0	R	$\sqrt{3}$	1	6.9	∞	
13	Probe Positioner	В	1.2	R	$\sqrt{3}$	1	0.7	∞	
14	Probe Positioning	Α	4.7	R	$\sqrt{3}$	1	2.7	∞	
15	Extra. And Interpolation	В	1.0	R	$\sqrt{3}$	1	0.6	∞	
Test	Sample Related	l	•	•		•			
16	Device Positioning Vertical	В	4.7	R	$\sqrt{3}$	1	2.7	8	
17	Device Positioning Lateral	В	1.0	R	$\sqrt{3}$	1	0.6	∞	
18	Device Holder and Phantom	В	2.4	R	$\sqrt{3}$	1	1.4	∞	
19	Power Drift	В	5.0	R	$\sqrt{3}$	1	2.9	∞	

20	AIA measurement	В	12	R	$\sqrt{3}$	1	6.9	∞
Pha	Phantom and Setup related							
21	Phantom Thickness	В	2.4	R	$\sqrt{3}$	1	1.4	∞
Coml	Combined standard uncertainty(%) 16.2							
· -	nded uncertainty idence interval of 95 %)	ι	$u_e = 2u_c$	N	k=:	2	32.4	

15 MAIN TEST INSTRUMENTS

Table 1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Signal Generator	E4438C	MY49071430	January 2, 2018	One Year
02	Power meter	NRVD	102083	November 01, 2017	One year
03	Power sensor	NRV-Z5	100542	November 01, 2017	One year
04	Amplifier	60S1G4	0331848	No Calibration Requested	
05	AIA	SE UMS 170 CB	1029	No Calibration Requested	
06	E-Field Probe	ER3DV6	2272	December 19, 2017	One year
07	DAE	SPEAG DAE4	777	September 8, 2017	One year
08	HAC Dipole	CD835V3	1023	August 23, 2017	One year
09	HAC Dipole	CD1880V3	1018	August 23, 2017	One year
10	BTS	E5515C	MY50263375	January 23, 2018	One year
11	BTS	CMW 500	164049	September 12, 2017	One year


16 CONCLUSION

The HAC measurement indicates that the EUT complies with the HAC limits of the ANSIC63.19-2011. The total M-rating is **M4**.

END OF REPORT BODY

ANNEX A TEST LAYOUT

Picture A1:HAC RF System Layout

ANNEX B SYSTEM VALIDATION RESULT

E SCAN of Dipole 835 MHz

Date: 2018-4-9

Electronics: DAE4 Sn777

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon r = 1$; $\rho = 1000$ kg/m3 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

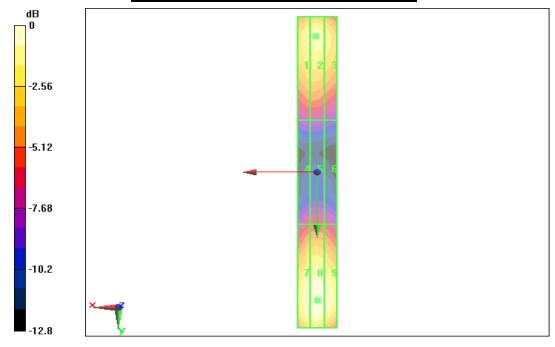
Probe: ER3DV6 - SN2272;ConvF(1, 1, 1)

E Scan - measurement distance from the probe sensor center to CD835 Dipole = 15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 106.9 V/m; Power Drift = -0.01 dB


Applied MIF = 0.00 dB

RF audio interference level = 40.53 dBV/m

Emission category: M3

MIF scaled E-field

Grid 2 M3 40.51 dBV/m	Grid 3 M3 40.33 dBV/m
Grid 5 M4	Grid 6 M4
Grid 8 M3 40.53 dBV/m	Grid 9 M3 40.46 dBV/m

0 dB = 40.53 dBV/m

E SCAN of Dipole 1880 MHz

Date: 2018-4-9

Electronics: DAE4 Sn777

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

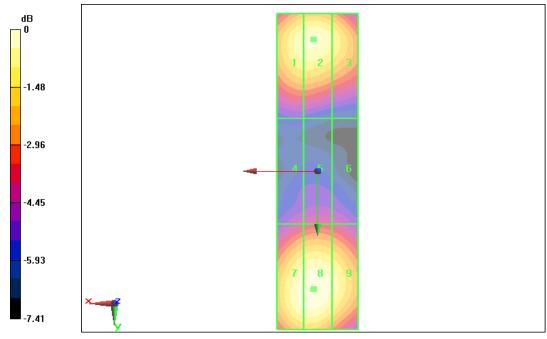
Probe: ER3DV6 - SN2272;ConvF(1, 1, 1)

E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 154.9 V/m; Power Drift = 0.02 dB


Applied MIF = 0.00 dB

RF audio interference level = 39.45 dBV/m

Emission category: M2

MIF scaled E-field

Grid 1M2	Grid 2M2	Grid 3M2
39.21 dBV/m	39.45 dBV/m	39.36 dBV/m
Grid 4M2	Grid 5M2	Grid 6M2
37.22 dBV/m	37.36 dBV/m	37.26 dBV/m
Grid 7M2	Grid 8M2	Grid 9M2
38.78 dBV/m	39.05dBV/m	38.98 dBV/m

0 dB = 39.45 dBV/m

ANNEX C PROBE CALIBRATION CERTIFICATE

E_Probe ER3DV6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CTTL (Auden)

Certificate No: ER3-2272_Dec17

CALIBRATION CERTIFICATE

Object

ER3DV6 - SN:2272

Calibration procedure(s)

QA CAL-02.v8, QA CAL-25.v6

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date:

December 19, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ER3DV6	SN: 2328	10-Oct-17 (No. ER3-2328_Oct17)	Oct-18
DAE4	SN: 789	2-Aug-17 (No. DAE4-789_Aug17)	Aug-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: December 20, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ER3-2272_Dec17

Page 1 of 38

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z DCP sensitivity in free space diode compression point

CF A, B, C, D

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005
- b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.0, November 2013

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ER3-2272_Dec17

Page 2 of 38

ER3DV6 - SN:2272

December 19, 2017

Probe ER3DV6

SN:2272

Manufactured: Calibrated:

November 29, 2001 December 19, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ER3-2272_Dec17

Page 3 of 38

ER3DV6 - SN:2272

December 19, 2017

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2272

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)$	1.60	1.67	1.72	± 10.1 %
DCP (mV) ^B	101.0	97.8	100.7	

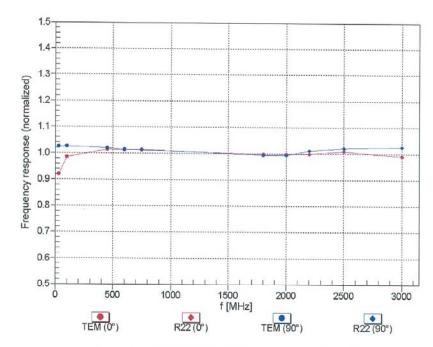
Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	Y 00	0.0	1.0	0.00	200.2	±3.5 %
		Y	0.0	0.0	1.0		165.8	
		Z	0.0	0.0	1.0		197.0	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V-1	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	94.34	448.4	35.94	25.97	1.333	5.10	0.00	0.662	1.014
Υ	100.1	483.8	36.93	26.47	1.401	5.10	0.00	0.669	1.019
Z	83.01	396.9	36.42	29.84	3.892	5.10	0.00	0.874	1.016


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

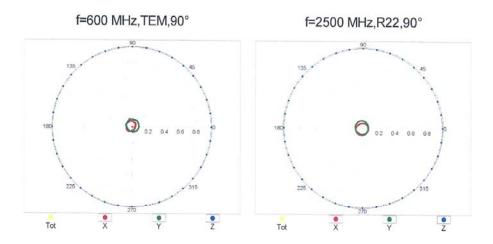
B Numerical linearization parameter: uncertainty not required.
E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

ER3DV6 - SN:2272 December 19, 2017

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

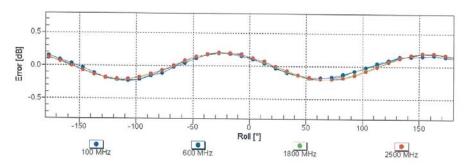
Certificate No: ER3-2272_Dec17



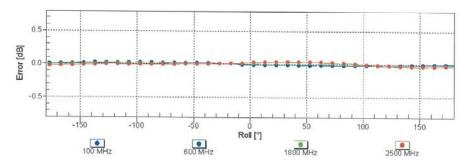
ER3DV6 - SN:2272 December 19, 2017

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$



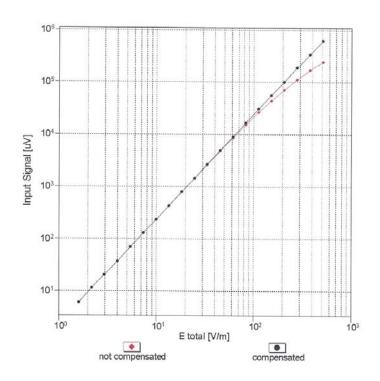
Certificate No: ER3-2272_Dec17 Page 6 of 38

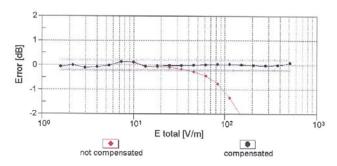

ER3DV6 - SN:2272 December 19, 2017

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$

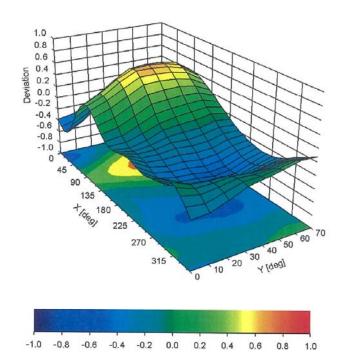



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

ER3DV6 – SN:2272 December 19, 2017

Dynamic Range f(E-field) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ER3-2272_Dec17 Page 8 of 38

ER3DV6 – SN:2272 December 19, 2017

Deviation from Isotropy in Air

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ER3-2272_Dec17 Page 9 of 38