

TEST REPORT

FCC PART 15 SUBPART C

Report Reference No.: CTL1905091031-WF

Compiled by: (position+printed name+signature)

Happy Guo (File administrators)

Happy Guo

Tested by: (position+printed name+signature)

Nice Nong (Test Engineer) Nice Nong

Approved by:
(position+printed name+signature)

Ivan Xie (Manager)

hom Die

Product Name...... Wireless Charging Power Bank

Model/Type reference CHARGEit

List Model(s)..... N/A

Trade Mark SACKit

FCC ID 2AO5W-CHARGEIT

Applicant's name SACKit ApS

Address of applicant Lyngvej 1, DK-9000 Aalbrog, Denmark

Test Firm Shenzhen CTL Testing Technology Co., Ltd.

Address of Test Firm Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Test specification.....

Standard...... FCC Rules Part 15.207,15.209, 15.215(c)

ANSI C63.10-2013

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF Dated 2011-01

Date of Receipt...... May 17, 2019

Date of sampling May 17, 2019

Date of Test Date May 17, 2019–May 21, 2019

Data of Issue...... May 30, 2019

Result Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. :	CTL1905091031-WF	May 30, 2019 Date of issue
•		Date of issue

Equipment under Test : Wireless Charging Power Bank

Model /Type : CHARGEit

Listed Models : N/A

Applicant : SACKit ApS

Address : Lyngvej 1, DK-9000 Aalbrog, Denmark

Manufacturer : Shenzhen Powerqi Technology Co., Ltd.

Address : 2nd Floor, A4 Building, Block A, Fangxing Science &

Tech. Park, Longgang District, Shenzhen, China

Test result	Pass *
-------------	--------

^{*}In the configuration tested, the EUT complied with the standards specified page 5.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

** Modified History **

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2019-05-30	CTL1905091031-WF	Tracy Qi
		10		
M A P		1.7	1	
	10			- 1
		SAC		-0
	0 7 0			0 1
	9 11		1114	W
	10 10			A W

	Table of Contents	Page
1. SU	IMMARY	
1.1.	TEST STANDARDS	5
1.2.	TEST DESCRIPTION	
1.3.	TEST FACILITY	
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2. GE	NERAL INFORMATION	8
2.1.	ENVIRONMENTAL CONDITIONS	8
2.2.	GENERAL DESCRIPTION OF EUT	8
2.3.	Special Accessories	8
2.4.	EQUIPMENTS USED DURING THE TEST	8
2.5.	RELATED SUBMITTAL(S) / GRANT (S)	
2.6.	Modifications	
3. TE	ST CONDITIONS AND RESULTS	
3.1.	CONDUCTED EMISSIONS TEST	10
3.2.	RADIATED EMISSIONS	13
3.3.	20dB Bandwidth	
4. TE	ST SETUP PHOTOS OF THE EUT	17
5 PH	IOTOS OF THE FLIT	18

V1.0 Page 5 of 22 Report No.: CTL1905091031-WF

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.207,15.209, 15.215(c)

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

1.2. Test Description

Test Item	Test Standards	Test Result	
Electric Field Radiated Emissions	FCC Part 15 C (Section15.209)	PASS	
20dB Bandwidth/99% Bandwidth	FCC Part 15 C (Section15.215(c))	PASS	
Conducted Emissions	FCC Part 15 C (Section15.207)	PASS	

V1.0 Page 6 of 22 Report No.: CTL1905091031-WF

1.3. Test Facility

1.3.1Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9518B

CAB identifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9518B on Jan. 22, 2019.

FCC-Registration No.: 399832

Designation No.: CN1216

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)

V1.0 Page 7 of 22 Report No.: CTL1905091031-WF

Conducted Disturbance0.15~30MHz	±3.20dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

V1.0 Page 8 of 22 Report No.: CTL1905091031-WF

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	Wireless Charging Power Bank
Model/Type reference:	CHARGEit
Battery capacity:	6000mAh(TYP)/3.7V, 22.2Wh(TYP)
Input :	USB-C 5V/2A, 9V/1.67A
Output:	USB-A 5V/2.1A
Operation frequency:	115KHz~205KHz
Antenna type:	Loop antenna
Antenna gain:	0dBi

Note: For more details, please refer to the user's manual of the EUT.

2.3. Special Accessories

Manufacturer	cturer Description Model		Serial Number	
ASUS	Notebook PC	FL5900U	9014	
Samsung	Phone	Galaxy s7	35615607721414	

2.4. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date recent	Calibration Due Date
LISN	R&S	ENV216	3560.6550.12	2018/05/25	2019/05/24
LISN	R&S	ESH2-Z5	860014/010	2018/05/25	2019/05/24
Power Meter	Agilent	U2531A	TW53323507	2018/05/25	2019/05/24
Power Sensor	Agilent	U2021XA	MY5365004	2018/05/25	2019/05/24
EMI Test Receiver	R&S	ESCI	103710	2018/05/25	2019/05/24
Spectrum Analyzer	Agilent	E4407B	MY41440676	2018/05/25	2019/05/24
Spectrum Analyzer	Agilent	N9020	US46220290	2018/05/25	2019/05/24
Controller	EM Electronics	Controller EM 1000	N/A	2018/05/25	2019/05/24
Active Loop Antenna	Daze	ZN30900A	N/A	2018/05/25	2019/05/24
Bilog Antenna	Schwarzbeck	VULB 9168	00824	2018/05/25	2019/05/24
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2018/05/25	2019/05/24
Horn Antenna	SCHWARZBACK	BBHA 9170	BBHA9170184	2018/05/25	2019/05/24
Amplifier	Agilent	8349B	3008A02306	2018/05/25	2019/05/24
Amplifier	Agilent	8447D	2944A10176	2018/05/25	2019/05/24

Temperature/Humidity Meter	Gangxing	CTH-608	02	2018/05/25	2019/05/24
High-Pass Filter	K&L	9SH10-2700/X12750-O/O	N/A	2018/05/25	2019/05/24
High-Pass Filter	K&L	41H10-1375/U12750-O/O	N/A	2018/05/25	2019/05/24
Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	2018/05/25	2019/05/24
Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2018/05/25	2019/05/24
Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2018/05/25	2019/05/24
RF Cable	Megalon	RF-A303	N/A	2018/05/25	2019/05/24
EMI Test Software	R&S	ES-K1	V1.7.1	2018/05/25	2019/05/24
EMI Test Software	AUDIX	E3	V6.0	2018/05/25	2019/05/24

The calibration interval was one year

2.5. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with FCC Part 15, Subpart C Rules.

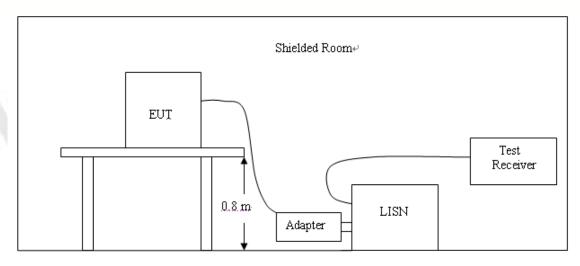
2.6. Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 10 of 22 Report No.: CTL1905091031-WF

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test


LIMIT

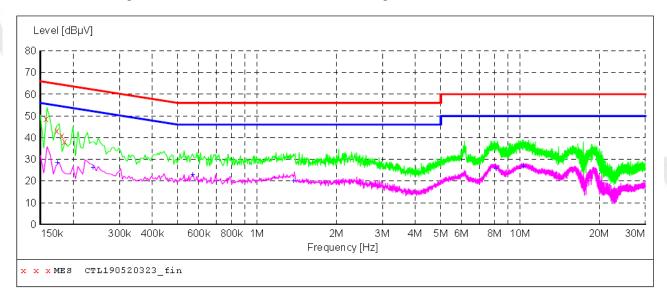
FCC CFR Title 47 Part 15 Subpart C Section 15.207

Francisco (MIII)	Limit (d	lBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

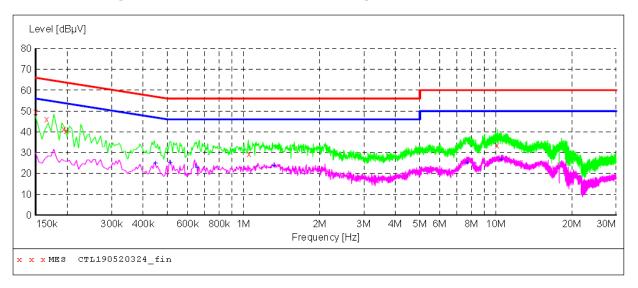

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

V1.0 Page 11 of 22 Report No.: CTL1905091031-WF

TEST RESULTS

Note: Both power supply modes have been tested, and the following data are the worst

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage


MEASUREMENT RESULT: "CTL190520323 fin"

20	019-5-20 05:	10??						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.158000	48.70	11.2	66	16.9	QP	L1	GND
	0.174000	43.20	11.2	65	21.6	QP	L1	GND
	0.182000	41.00	11.2	64	23.4	QP	L1	GND
	0.186000	38.30	11.2	64	25.9	QP	L1	GND

MEASUREMENT RESULT: "CTL190520323 fin2"

2019	9-5-20 05 : 1	.0??						
Ε	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.174000	28.50	11.2	55	26.3	AV	L1	GND
	0.238000	26.30	11.2	52	25.9	AV	L1	GND
	0.572000	23.10	11.2	46	22.9	AV	L1	GND
	1.382000	20.10	11.3	46	25.9	AV	L1	GND
	8.090000	26.10	11.0	50	23.9	AV	L1	GND
1	10.328000	27.00	11.1	50	23.0	AV	L1	GND

SCAN TABLE: "Voltage (9K-30M)FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL190520324 fin"

2019-5-20 05	:13??						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.150000	49.60	11.2	66	16.4	QP	N	GND
0.166000	46.20	11.2	65	19.0	QP	N	GND
0.194000	41.50	11.2	64	22.4	QP	N	GND
0.198000	40.70	11.2	64	23.0	QP	N	GND
1.052000	29.60	11.3	56	26.4	QP	N	GND
10.130000	33.70	11.1	60	26.3	QP	N	GND

MEASUREMENT RESULT: "CTL190520324 fin2"

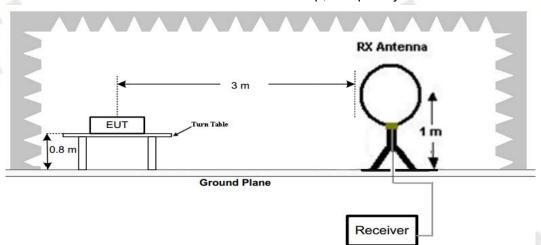
20	019-5-20 05:	13??						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.450000	25.10	11.2	47	21.8	AV	N	GND
	0.512000	25.50	11.2	46	20.5	AV	N	GND
	0.656000	23.20	11.2	46	22.8	AV	N	GND
	1.322000	23.90	11.3	46	22.1	AV	N	GND
	7.718000	25.50	11.0	50	24.5	AV	N	GND
	10.550000	27.00	11.1	50	23.0	AV	N	GND

V1.0 Page 13 of 22 Report No.: CTL1905091031-WF

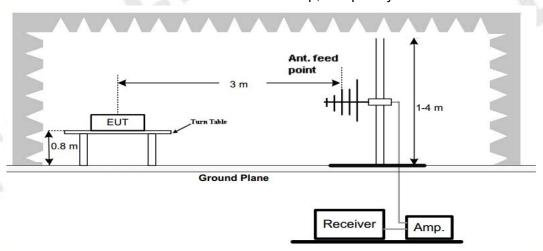
3.2. Radiated Emissions

Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.


In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits


Frequency (MHz) Distance (Meters)		Radiated (dBµV/m)	Radiated (µV/m)				
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)				
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)				
1.705-30	3	20log(30)+ 40log(30/3)	30				
30-88	3	40.0	100				
88-216	3	43.5	150				
216-960	3	46.0	200				
Above 960	3	54.0	500				

TEST CONFIGURATION

1. Radiated Emission Test Set-Up, Frequency Below 30MHz

2. Radiated Emission Test Set-Up, Frequency below 1000MHz

V1.0 Page 14 of 22 Report No.: CTL1905091031-WF

Test Procedure

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 1000MHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3

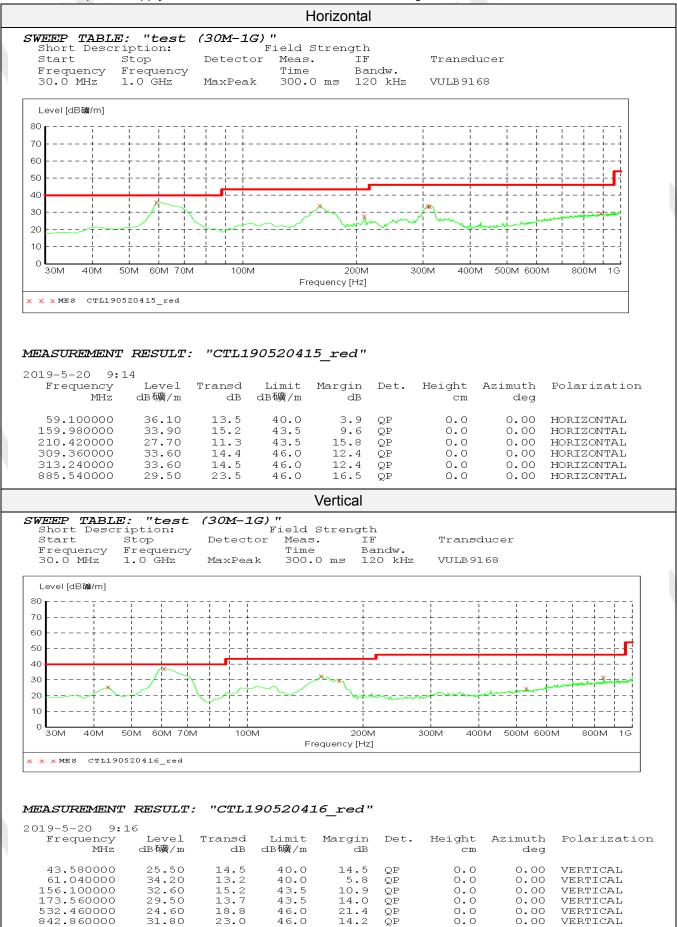
7. Setting test receiver/spectrum as following table states:

Test Frequency	Test Receiver/Spectrum Setting	Detector
range		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP

Test Results

WORST-CASE RADIATED EMISSION BELOW 30 MHz

Frequency	Reading	Polar	Antenna Factor	Cable Loss	Emission Levels	Limits at 3m	Margin	Detector Mode
(MHz)	(dBµV/m)	Loop	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
0.122(F)	54.47	Loop	23.64	0.01	78.12	105.88	27.76	PK
0.122(F)	45.69	Loop	23.64	0.01	69.34	85.88	16.54	AV
0.110	36.72	Loop	23.55	0.01	60.28	106.78	46.50	PK
0.110	30.83	Loop	23.55	0.01	54.39	86.78	32.39	AV
0.495	25.26	Loop	25.07	-0.17	50.16	73.71	23.55	QP
1.654	16.49	Loop	27.12	-0.25	43.36	63.23	19.87	QP
2.418	17.05	Loop	23.91	-0.24	40.72	69.54	28.82	QP


Remark:

- 1. Data of measurement within this frequency range shown "-- in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits and not recorded.
- 2. The test limit distance is 3m limit.
- 3. PK means Peak Value, QP means Quasi Peak Value, AV means Average Value.
- 4. F means Fundamental Frequency.
- 5. Emission level (dBuV/m) =Reading + Antenna Factor + Cable Loss.
- 6. Margin value = Limit value- Emission level.

V1.0 Page 15 of 22 Report No.: CTL1905091031-WF

For 30MHz-1GHz

Note: Both power supply modes have been tested, and the following data are the worst

V1.0 Page 16 of 22 Report No.: CTL1905091031-WF

3.3. 20dB Bandwidth

Limit

The 20dB bandwidth shall be less than 80% of the permitted frequency band.

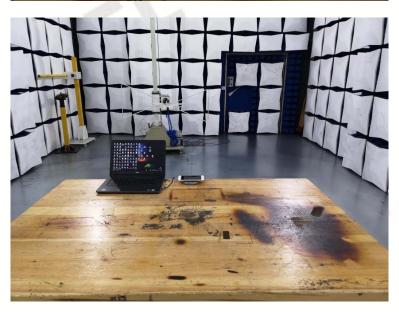
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

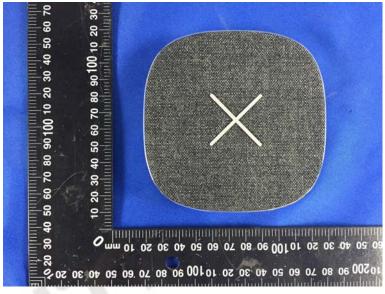

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

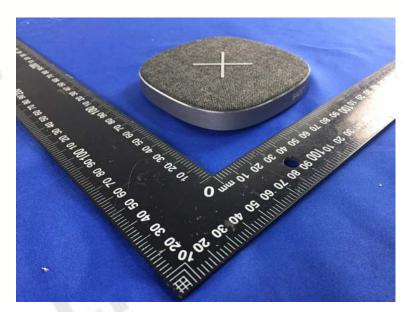
Test Results


Frequency (MHz)	20dB bandwidth (KHz)	99% OBW (KHz)	Result	
0.122	2.728	2.324	Pass	

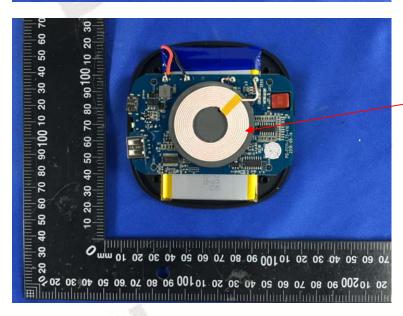
4. Test Setup Photos of the EUT

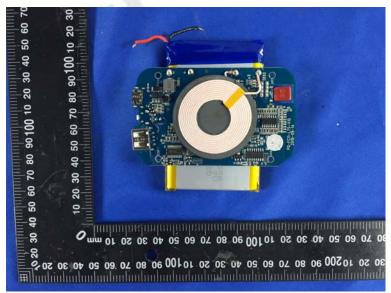


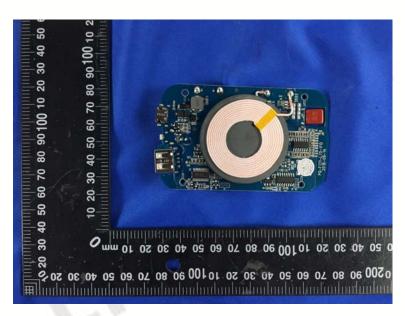
Report No.: CTL1905091031-WF

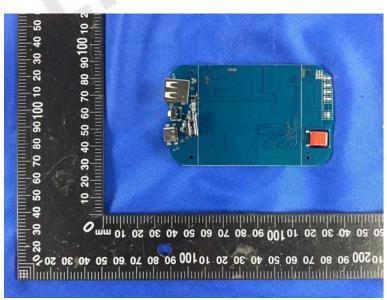

5. Photos of the EUT

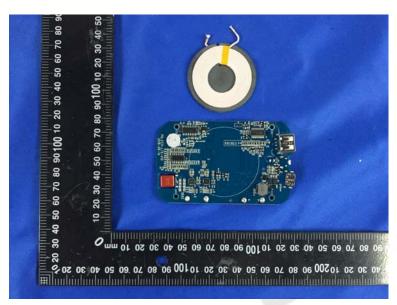
External Photos of EUT



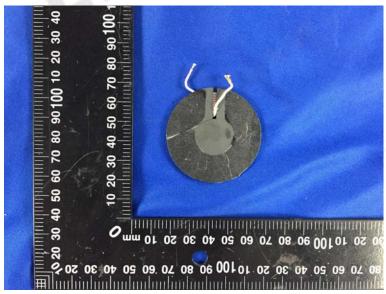



V1.0





Loop Antenna



*********************** End of Report *****************