

FCC CFR47 PART 27L

CERTIFICATION TEST REPORT

FCC ID: 2AO5B-0001L

Product: E1

Trade Mark: Duubee

Model Number: T301L

Serial Model: N/A

Report No.: SER180207605006E-01

Prepared for

Shenzhen Duubee Intelligent Technologies Co.,LTD.

9F, Block B, Unicenter, Xin'an Sub district, Bao'an District,

Shenzhen, P.R. China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street

Bao'an District, Shenzhen 518126 P.R. China

Tel.: +86-755-6115 9388 Fax.: +86-755-6115 6599

Website:<http://www.ntek.org.cn>

TEST RESULT CERTIFICATION

Applicant's name : Shenzhen Duubee Intelligent Technologies Co.,LTD.
Address..... : 9F, Block B, Unicenter, Xin'an Sub district, Bao'an District, Shenzhen, P.R. China

Manufacturer's Name..... : Shenzhen Duubee Intelligent Technologies Co.,LTD.
Address..... : 9F, Block B, Unicenter, Xin'an Sub district, Bao'an District, Shenzhen, P.R. China

Product name..... : E1

Model and/or type reference ... : T301L

Serial Model: N/A

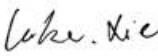
Standards..... : FCC CFR 47 Part 27L

Test procedure : ANSI C63.26:2015
ANSI/TIA-603-E-2016

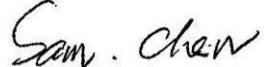
This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personal only, and shall be noted in the revision of the document.

Date of Test


Date (s) of performance of tests..... 08 Feb. 2018~ 14 Mar. 2018

Date of Issue 18 Apr. 2018


Test Result..... **Pass**

Note: All test data of this report are based on the original test report

SER180207605006E, dated by 2018-03-14.

Testing Engineer :
(Lake Xie)

Technical Manager :
(Jason Chen)

Authorized Signatory :
(Sam Chen)

TABLE OF CONTENTS

1. GENERAL INFORMATION.....	5
1.1 PRODUCT DESCRIPTION.....	5
1.2 RELATED SUBMITTAL(S) / GRANT (S)	6
1.3 TEST METHODOLOGY	6
1.4 TEST FACILITY.....	6
1.5 SPECIAL ACCESSORIES.....	8
1.6 WORST-CASE CONFIGURATION AND MODE.....	8
2. SYSTEM TEST CONFIGURATION	8
2.1 EUT CONFIGURATION.....	8
2.2 EUT EXERCISE	8
2.3 CONFIGURATION OF EUT SYSTEM.....	8
2.4 TEST SETUP	9
3. TEST AND MEASUREMENT EQUIPMENT	10
4. RF OUTPUT POWER	11
4.1 OUTPUT POWER MEASUREMENT.....	11
4.2 TEST RESULT.....	12
5. MODULATION CHARACTERISTIC	14
6. OCCUPIED BANDWIDTH	15
6.1 OCCUPIED BANDWIDTH MEASUREMENT	15
6.2 TEST RESULT.....	16
7. SPURIOUS EMISSIONS AT ANTENNA TERMINALS	17
7.1 SPURIOUS EMISSIONS MEASUREMENT	17

7.2 TEST RESULT.....	17
8. SPURIOUS RADIATED EMISSIONS	20
8.1 SPURIOUS RADIATED MEASUREMENT	20
8.2 TEST RESULT.....	21
9. BAND EDGE.....	22
9.1 BAND EDGE MEASUREMENT	22
10. FREQUENCY STABILITY	24
10.1 FREQUENCY STABILITY MEASUREMENT	24
10.2 TEST RESULT.....	25

1. GENERAL INFORMATION

1.1 PRODUCT DESCRIPTION

A major technical description of EUT is described as following:

Product Designation:	E1
Trade Mark	Duubee
Model Name	T301L
FCC ID:	2AO5B-0001L
Frequency Bands:	U.S. Bands: <input checked="" type="checkbox"/> UMTS-FDD Band IV
Frequency Range:	UMTS-FDD Band 4 Uplink: 1710MHz-1755MHz, Downlink: 2110MHz-2155MHz
Type of Modulation:	QPSK
Antenna:	PIFA Antenna
Antenna gain:	0.5 dBi
Power Supply:	DC 3.8V from battery or DC 5V from USB port
Battery parameter:	DC 3.8V/2000mAh
Adapter:	Model: DB-E1DC5101 Input:AC100~240V 50~60Hz 0.2A Output:DC5V, 1A
Extreme Vol. Limits:	DC3.6 V to 4.4 V (Nominal DC3.8 V)
Extreme Temp. Tolerance	-30°C to +50°C
HW Version	DVT
SW Version	Duubee OS 1.0.0.5
** Note: The High Voltage 4.4V and Low Voltage 3.6V was declared by manufacturer, The EUT couldn't be operate normally with higher or lower voltage.	

1.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2AO5B-0001L** filing to comply with the FCC Part 27.

1.3 TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA-603-E-2016, FCC CFR 47 Part 27.

1.4 TEST FACILITY

All measurement facilities used to collect the measurement data are located at 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

CNAS-Lab. : The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
The Certificate Registration Number is L5516.

IC-Registration The Certificate Registration Number is 9270A-1.

FCC- Accredited Test Firm Registration Number: 463705.

Designation Number: CN1184

A2LA-Lab. The Certificate Registration Number is 4298.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Name of Firm : Shenzhen NTEK Testing Technology Co., Ltd.

Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_{c(y)}$)	2.5dB

Revision History

1.5 SPECIAL ACCESSORIES

The battery and the charger, earphone supplied by the applicant were used as accessories and being tested with EUT intended for FCC grant together.

1.6 WORST-CASE CONFIGURATION AND MODE

The worst-case scenario for all measurements is based on the investigation results.

The device has UMTS-FDD Band IV

The RB Size was selected to measure for peak or average ERP and EIRP, which was based on the conducted power verification baseline data.

For the fundamental investigation of radiated emissions, the EUT is investigated for vertical and horizontal antenna orientations and X Y and Z orientations of the EUT alone. After the investigations the worst case was determined to be at X orientation for all LTE bands.

2. SYSTEM TEST CONFIGURATION

2.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

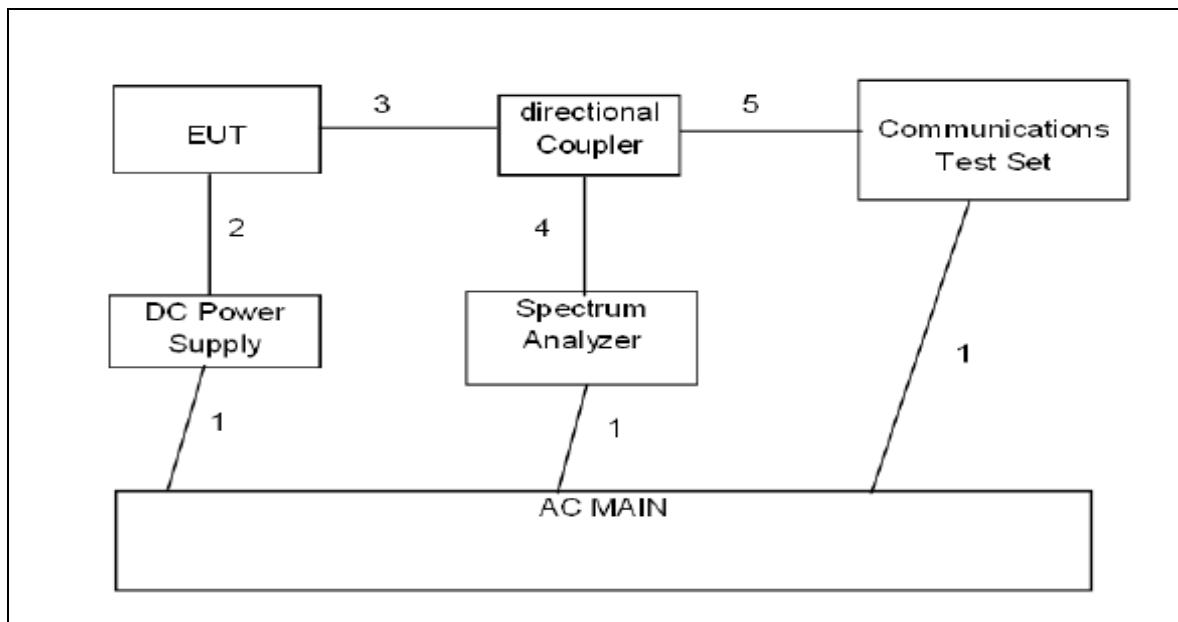
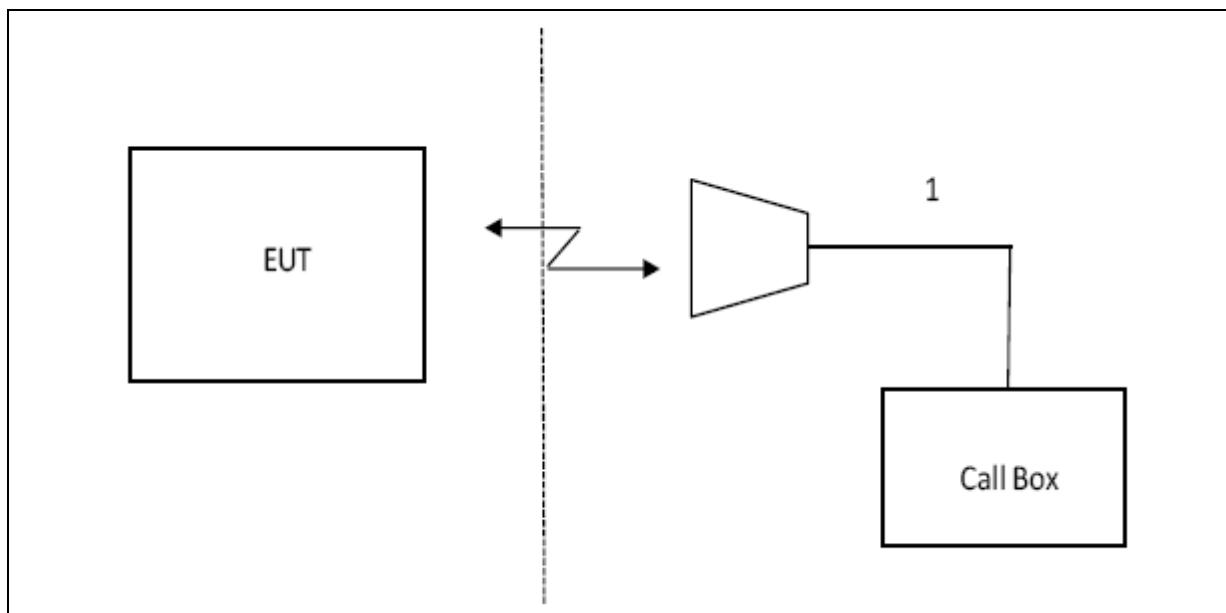


2.3 CONFIGURATION OF EUT SYSTEM

Table 2-1 Equipment Used in EUT System

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
E-1	E1	Duubee	T301L	2AO5B-0001L	EUT

Note: All the accessories have been used during the test.

the following "EUT" in setup diagram means EUT system.

2.4 TEST SETUP**CONDUCTED SETUP DIAGRAM FOR TESTS****RADIATED SETUP DIAGRAM FOR TESTS**

3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	NEXT CAL. DATE
SPECTRUM ANALYZER	AGILENT	E4440A	US44300399	2018.6.26
TEST RECEIVER	R&S	ESCI	A0304218	2018.6.26
COMMUNICATION TESTER	R&S	CMU200	A0304247	2018.6.26
COMMUNICATION TESTER	R&S	CMW500	X	2018.6.26
TEST RECEIVER	R&S	FCKL1528	A0304230	2018.6.26
LISN	SCHWARZBECK	NSLK8127	A0304233	2018.6.26
CLIMATE CHAMBER	ALBATROSS	--	--	2018.6.26
Loop Antenna	Daze	ZN30900N	SEL0097	2018.6.26
Biological Antenna	A.H. Systems Inc.	SAS-521-4	N/A	2018.6.26
Horn Antenna	EM	EM-AH-10180	N/A	2018.6.26

4. RF OUTPUT POWER

According to FCC § 2.1046; § 27.50(c.10); § 27.50(d.4)

4.1 OUTPUT POWER MEASUREMENT

Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

Procedures: (According with KDB 971168)

For Conducted Power:

1. The transmitter output port was connected to base station.
2. Set EUT at maximum power through base station.
3. Select lowest, middle, and highest channels for each band and different test mode.
4. The instrument must have an available measurement/resolution bandwidth that is equal to or exceeds the OBW. If this capability is available, then the following procedure can be used to determine the total peak output power.
 - a) Set the RBW \geq OBW.
 - b) Set VBW $\geq 3 \times$ RBW.
 - c) Set span $\geq 2 \times$ RBW
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Ensure that the number of measurement points \geq span/RBW.
 - g) Trace mode = max hold.
 - h) Allow trace to fully stabilize.
- 1) Use the peak marker function to determine the peak amplitude level.

For ERP/EIRP: (According with TIA-603-E-2016)

1. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.
2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
3. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Sample Calculation:

EUT Field Strength (dBm) = Reading (Signal generator) + Antenna Gain (substitution antenna) - Cable loss (From Signal Generator to substitution antenna)

Remark: Conducted Burst Average power for reporting purposes only.

4.2 Test Result

Conducted Power

UMTS Mode:

UMTS-FDD Band IV

Band/ Time Slot configuration	Channel	Frequency	Average power (dBm)
RMC 12.2kbps	1313	1712.6	22.97
	1413	1732.6	22.43
	1512	1752.4	22.48
HSDPA Subtest1	1313	1712.6	21.99
	1413	1732.6	22.48
	1512	1752.4	22.43
HSDPA Subtest2	1313	1712.6	21.52
	1413	1732.6	21.95
	1512	1752.4	22.11
HSDPA Subtest3	1313	1712.6	21.50
	1413	1732.6	21.97
	1512	1752.4	22.03
HSDPA Subtest4	1313	1712.6	21.62
	1413	1732.6	21.98
	1512	1752.4	22.09
HSUPA Subtest1	1313	1712.6	21.50
	1413	1732.6	21.98
	1512	1752.4	22.10
HSUPA Subtest2	1313	1712.6	21.45
	1413	1732.6	21.89
	1512	1752.4	22.15
HSUPA Subtest3	1313	1712.6	21.46
	1413	1732.6	22.01
	1512	1752.4	22.06
HSUPA Subtest4	1313	1712.6	21.55
	1413	1732.6	21.95
	1512	1752.4	22.11
HSUPA Subtest5	1313	1712.6	21.89
	1413	1732.6	22.38
	1512	1752.4	22.46

EIRP (worst case)**EIRP for AWS Band (Part 27)**

Radiated Power (E.I.R.P) for Band IV						
Frequency (MHz)	Polarization	SG Level	Pcl	Ga Antenna Gain	EIRP (dBm)	EIRP (W)
		(dBm)	(dB)	(dB)	(dBm)	(W)
1712.6	H	-2.32	3.76	28.24	22.16	0.16444
1732.6	H	-2.12	3.91	28.22	22.19	0.16558
1752.4	H	-3.05	3.93	28.20	21.22	0.13243
1712.6	V	-2.21	3.76	27.32	21.35	0.13646
1732.6	V	-2.09	3.91	27.33	21.33	0.13583
1752.4	V	-1.63	3.93	27.31	21.75	0.14962

Note:

SG Level= Signal generator output

Pcl= cable loss

Ga= Antenna Gain

Peak EIRP(dBm)= SGLevel -Pcl+Ga.

5. Modulation Characteristic

According to FCC § 2.1047(d), Part 27 there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

6. Occupied Bandwidth

According to FCC 2.1049, §27.53(a.5)

6.1 Occupied Bandwidth MEASUREMENT

Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyser was connected to the antenna terminal.

Procedures:

1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
2. The 99% and 26 dB occupied bandwidth (BW) of the middle channel for the highest RF powers.
3. Details according with KDB 971168 section 4.1 & 4.2.

6.2 Test Result

UMTS-FDD Band IV (Part 27)

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
1313	1712.4	4153.0	4749
1413	1732.6	4155.3	4755
1512	1752.6	4155.3	4767

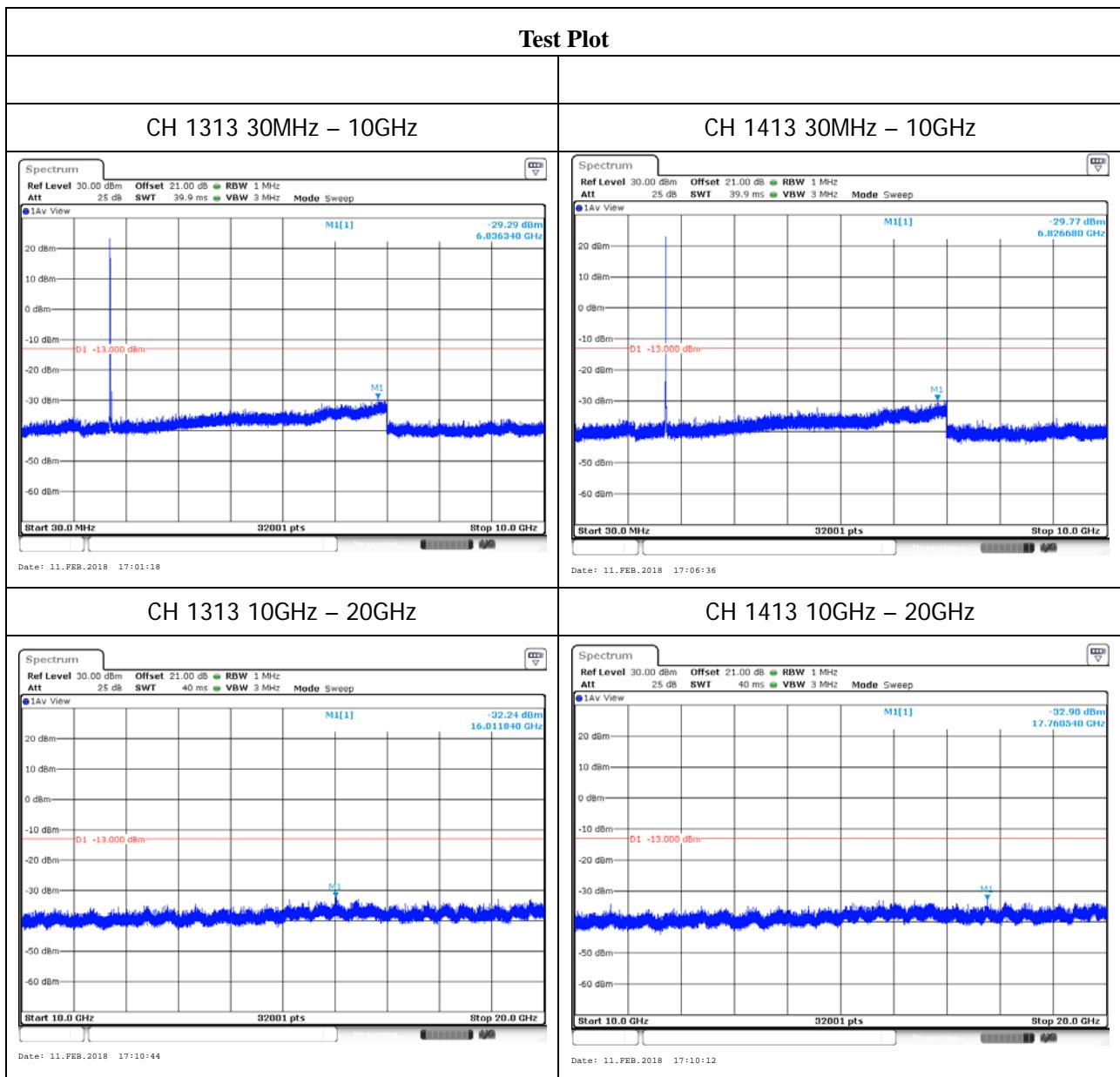
7. Spurious Emissions at Antenna Terminals

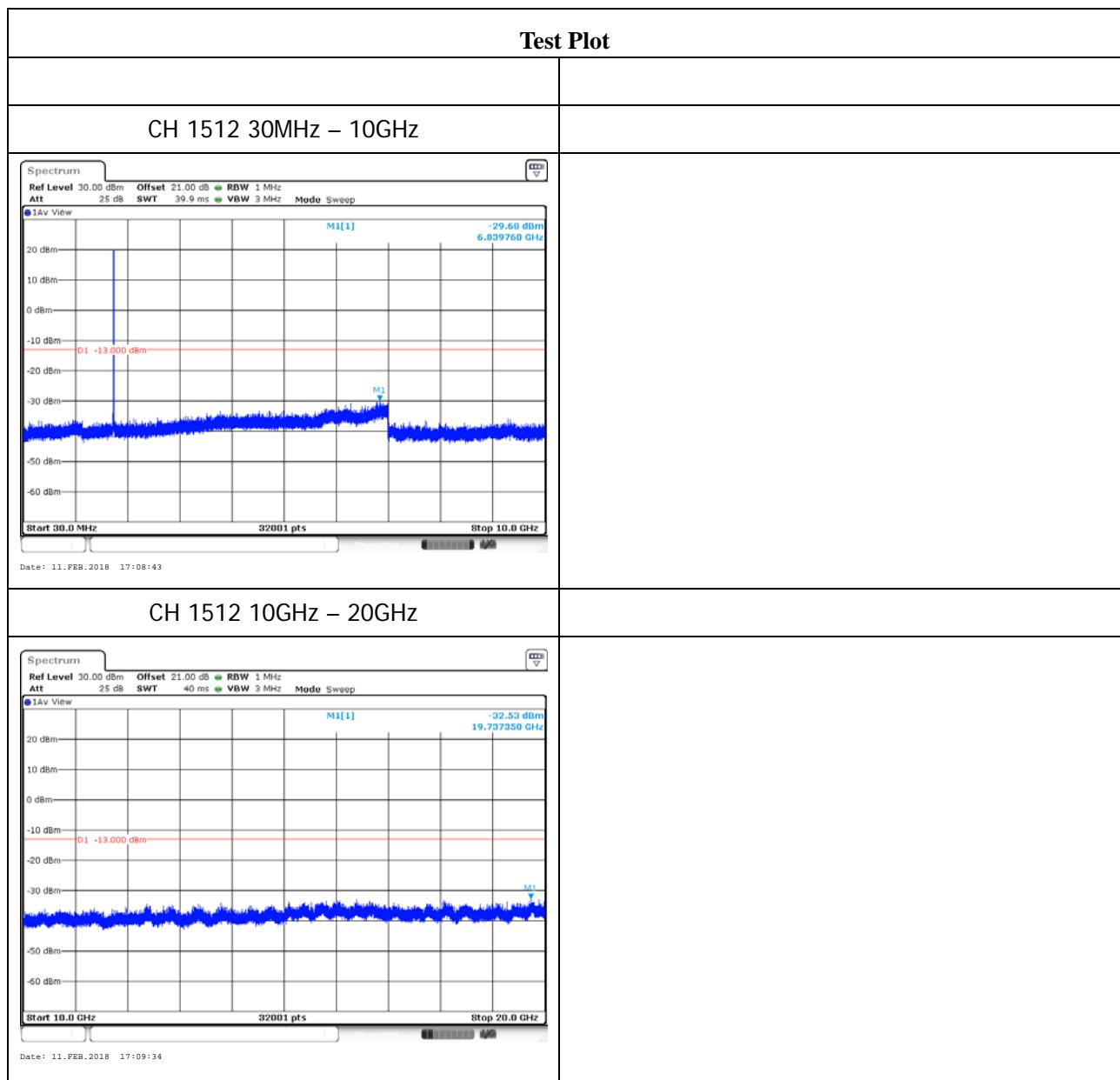
According to FCC §2.1051, §27.53(h)

7.1 Spurious Emissions MEASUREMENT

Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.


The spectrum analyzer was connected to the antenna terminal.


Procedures:

1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
2. The Band Edges of low and high channels for the highest RF powers were measured. Setting RBW as roughly BW/100.

7.2 Test Result

UMTS-FDD BandIV (Part 27)

8. Spurious Radiated Emissions

According to FCC §2.1053, § 27.53(h)

8.1 Spurious Radiated MEASUREMENT

1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.

Standard Requirement:

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic

Procedures: (According with TIA-603-E-2016)

1. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.
2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
3. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Sample Calculation:

EUT Field Strength (dBm) = Reading (Signal generator) + Antenna Gain (substitution antenna) - Cable loss (From Signal Generator to substitution antenna)

8.2 Test Result

Low channel

Frequency (MHz)	Substituted level (dBm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3424.8	-47.11	V	10.07	2.66	-39.7	-13	-26.7
3424.8	-46.99	H	10.07	2.66	-39.58	-13	-26.58
425.5	-53.87	V	6.30	0.35	-47.92	-13	-34.92
803.4	-50.66	H	6.80	0.69	-44.55	-13	-31.55

Middle channel

Frequency (MHz)	Substituted level (dBm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3465.2	-47.11	V	10.08	2.66	-39.69	-13	-26.69
3465.2	-46.99	H	10.08	2.66	-39.57	-13	-26.57
423.7	-53.87	V	6.34	0.35	-47.88	-13	-34.88
803.6	-50.66	H	6.83	0.69	-44.52	-13	-31.52

High channel

Frequency (MHz)	Substituted level (dBm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3505.2	-47.11	V	10.09	2.66	-39.68	-13	-26.68
3505.2	-46.99	H	10.09	2.66	-39.56	-13	-26.56
427.1	-53.87	V	6.38	0.35	-47.84	-13	-34.84
802.6	-50.66	H	6.87	0.69	-44.48	-13	-31.48

9. Band Edge

According to FCC §27.53(h)

9.1 Band Edge MEASUREMENT

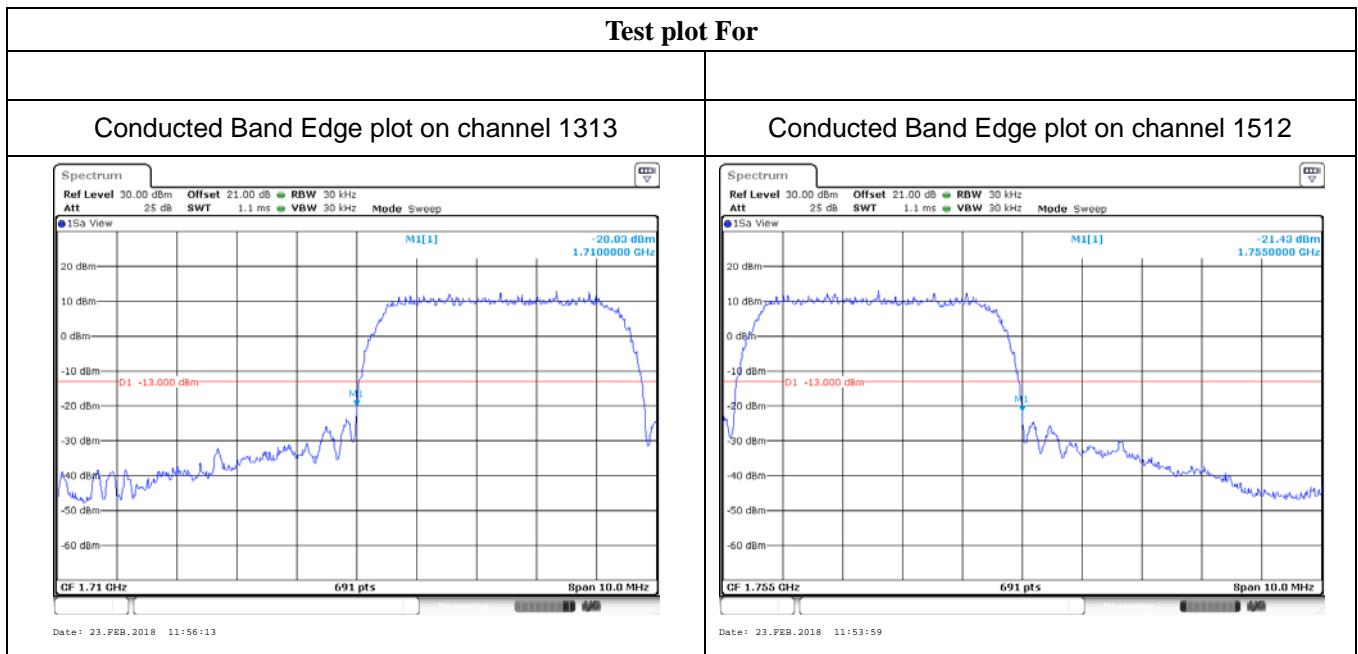
Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

Standard Requirement:

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB.


Procedures:

1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
2. The Band Edges of low and high channels for the highest RF powers were measured. Setting RBW as roughly BW/100.
3. Details according with KDB 971168 section 6.0.

9.2 Test Result

UMTS-FDD Band IV (Part 27)

Frequency (MHz)	Emission (dBm)	Limit (dBm)
1710.000	-20.03	-13
1755.000	-21.43	-13

10. FREQUENCY STABILITY

According to FCC §2.1055, §27.5(h) & §27.54

10.1 FREQUENCY STABILITY MEASUREMENT

Standard Requirement:

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

Frequency Tolerance for Transmitters in the Public Mobile Services

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤ 3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

Procedures:

A communication link was established between EUT and base station. The frequency error was monitored and measured by base station under variation of ambient temperature and variation of primary supply voltage.

Limit: The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ ($\pm 2.5\text{ppm}$) of the center frequency.

10.2 Test Result

Frequency Stability versus Temperature: The Frequency tolerance of the carrier signal shall be maintained within 2.5ppm of the operating frequency over a temperature variation of -30°C to +50°C at normal supply voltage.

UMTS-FDD Band IV (Part 27)

Middle Channel				
Temperature (°C)	Power Supplied (Vdc)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)
-30	3.8	25	0.0144	2.5
0		41	0.0237	2.5
10		40	0.0231	2.5
20		36	0.0208	2.5
30		14	0.0081	2.5
40		35	0.0202	2.5
50		32	0.0185	2.5
25		4.4	0.0202	2.5
	3.6	21	0.0121	2.5

----END OF REPORT----