

RF TEST REPORT

Applicant Bosch Sensortec GmbH

FCC ID 2AO4I-18N0

Product IoTHub

Model IoTHub

Report No. RXC1705-0136RF02R4

Issue Date March 9, 2018

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15C (2017)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Xianqing Li

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Tes	st Laboratory	4
1.1.	Notes of the test report	
1.2.	Test facility	
1.3.	Testing Location	5
2. Ge	neral Description of Equipment under Test	6
	olied Standards	
	st Configuration	
5. Tes	st Case Results	9
5.1.	Conducted Output Power	9
5.2.	6dB Bandwidth	11
5.3.	Band Edge	13
5.4.	Power Spectral Density	15
5.5.	Spurious RF Conducted Emissions	17
5.6.	Radiated Emissions in the Restricted Band	19
5.7.	Radiates Emission	23
5.8.	Conducted Emission	35
6. Ma	in Test Instruments	36
ANNEX	A: EUT Appearance and Test Setup	37
	UT Appearance	
A.2 T	est Setup	38

Summary of measurement results

Number	Summary of measurements of results	Clause in FCC rules	Verdict	
1	Max. Conducted Output Power	15.247(b)(3)	PASS	
2	6 dB bandwidth	15.247(a)(2)	PASS	
3	Power spectral density	15.247(e)	PASS	
4	Band Edge	15.247(d)	PASS	
5	Spurious RF Conducted Emissions	15.247(d)	PASS	
6	Radiated Emissions in restricted frequency bands	15.247(d),15.205,15.209	PASS	
7	Radiated Emissions	15.247(d),15.205,15.209	PASS	
8	Conducted Emissions	15.207	PASS	
	Date of Testing: June 25, 2017~ July 5, 2017			

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of TA technology

(shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the

conditions and modes of operation as described herein .Measurement Uncertainties were not taken

into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above. This report must not be used by the

client to claim product certification, approval, or endorsement by any government agencies.

1.2. Test facility

CNAS (accreditation number: L2264)

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation

Service for Conformity Assessment (CNAS).

FCC (recognition number is 428261)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic

emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-10766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic

emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Address:

City: Shanghai

201201 Post code:

P. R. China Country:

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

2. General Description of Equipment under Test

Client Information

Applicant	Bosch Sensortec GmbH	
Applicant address	333 Fuquan Road North, IBP, Changning District Shanghai, 200335 P.R.China	
Manufacturer	Bosch Sensortec GmbH	
Manufacturer address	333 Fuquan Road North, IBP, Changning District Shanghai, 200335 P.R.China	

General information

EUT Description			
Model:	IoTHub		
SN:	I		
Hardware Version:	1.3		
Software Version:	1.0.2		
Power Supply:	Button battery(the after-market accessory)		
Antenna Type:	Internal Antenna		
additional beamforming gain:	0 dB		
Test Mode:	Bluetooth(Low Energy)		
Modulation Type:	BLE :GFSK		
Max. Conducted Power	BLE:-0.54dBm		
Operating Frequency Range(s)	BLE: 2402 ~2480 MHz		
EUT Accessory			
	Manufacturer: Panasonic		
Button battery	Model: CR1220		
	Nominal Voltage:3.0V		
Note: The information of the EUT is declared by the manufacturer.			

TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 6 of 38

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards

- FCC CFR47 Part 15C (2017) Radio Frequency Devices
- · ANSI C63.10 (2013)
- · KDB 558074 D01 DTS Meas Guidance v04

4. Test Configuration

Test Mode

The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded.

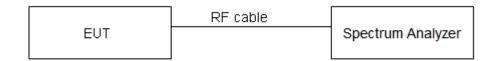
In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

Worst-case data rates are shown as following table.

Band	Data Rate
Bluetooth(Low Energy)	1Mbps

5. Test Case Results

5.1. Conducted Output Power


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

During the process of the testing, The EUT was connected to Spectrum Analyzer with a known loss. The EUT is max power transmission with proper modulation. The EUT transmits continuously. Test method followed KDB 558074 D01 clause 9.2.2.2 Method AVGSA-1

Test Setup

Limits

Rule Part 15.247 (b) (3) specifies that "For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz: 1 Watt."

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

Test Results

Network Standards	Carrier frequency (MHz)	Average Output Power (dBm)	Limit (dBm)	Conclusion
	2402	-0.66	30	PASS
Bluetooth (Low Energy)	2440	-0.54	30	PASS
(Low Lifergy)	2480	-1.01	30	PASS

5.2. 6dB Bandwidth

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

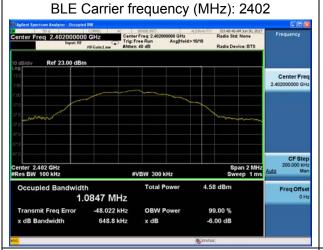
Method of Measurement

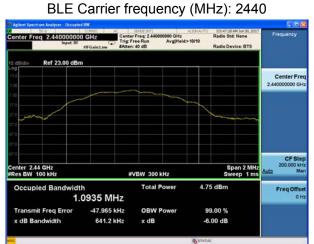
The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable. RBW is set to 100 kHz; VBW is set to 300 kHz on spectrum analyzer.

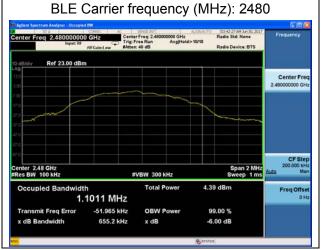
Test Setup

Limits

Rule Part 15.247 (a) (2) specifies that "Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz."


minimum C dD handwidth	> E00 kl l=
minimum 6 dB bandwidth	≥ 500 kHz

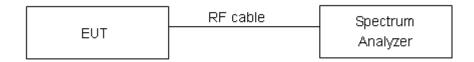

Measurement Uncertainty


The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

Test Results:

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
	2402	1.0847	0.648	500	PASS
Bluetooth (Low Energy)	2440	1.0935	0.641	500	PASS
(23.: 21161gy)	2480	1.1011	0.655	500	PASS

5.3. Band Edge


Ambient condition

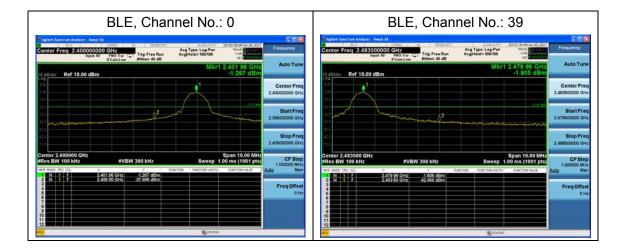
Temperature	Relative humidity	Pressure	
23°C ~25°C	45%~50%	101.5kPa	

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable the band edge of the lowest and highest channels were measured. The peak detector is used and RBW is set to 100 kHz and VBW is set to 300 kHz on spectrum analyzer. Spectrum analyzer plots are included on the following pages.

Test Setup

Limits


Rule Part 15.247(d) specifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits."

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
2GHz-3GHz	1.407 dB

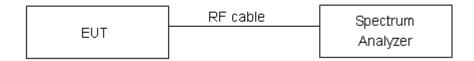
Test Results: PASS

5.4. Power Spectral Density

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement


The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable.

RBW is set to 3 kHz and VBW is set to 10 kHz for BLE on spectrum analyzer.

Set the span to 1.5 times the DTS channel bandwidth. Sweep time = auto couple.

Trace mode = max hold. The Average power spectral density is recorded.

Test setup

Limits

Rule Part 15.247(e) specifies that" For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. "

Limits	≤ 8 dBm / 3kHz
	• • • • • • • • • • • • • • • • • • •

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB.

Test Results:

Network Standards	Channel Number	Power Spectral Density (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion
	0	-12.601	8	PASS
Bluetooth (Low Energy)	19	-12.574	8	PASS
(======================================	39	-13.027	8	PASS

5.5. Spurious RF Conducted Emissions

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer with a known loss. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. Set RBW to100kHz and VBW to 300 kHz, Sweep is set to ATUO.

The test is in transmitting mode.

Test setup

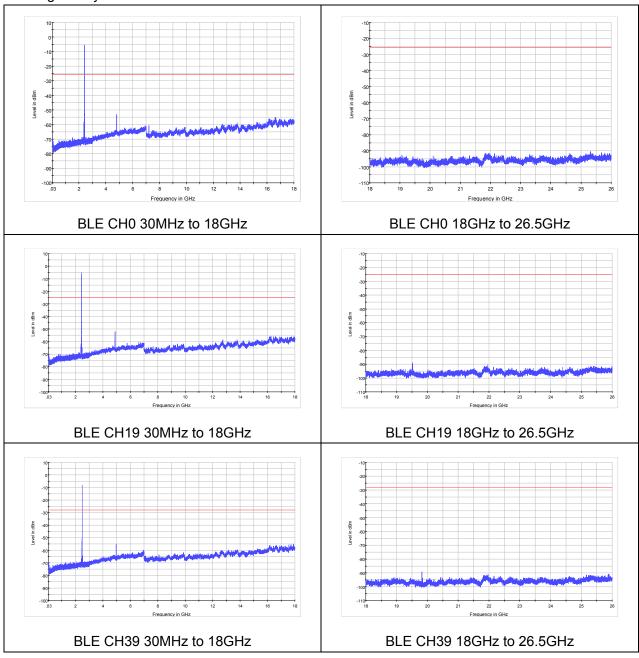
Limits

Rule Part 15.247(d) pacifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power."

Network Standards	Carrier frequency (MHz)	Reference value (dBm)	Limit
Dhaataath	2402	-5.468	-25.468
Bluetooth (Low Energy)	2440	-4.915	-24.915
(Low Energy)	2480	-7.997	-27.997

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


Frequency	Uncertainty
100kHz-2GHz	0.684 dB
2GHz-26GHz	1.407 dB

TA Technology (Shanghai) Co., Ltd.

Test Results:

If disturbances were found more than 20dB below limit line, the mark is not required for the EUT. The signal beyond the limit is carrier.

5.6. Radiated Emissions in the Restricted Band

Ambient condition

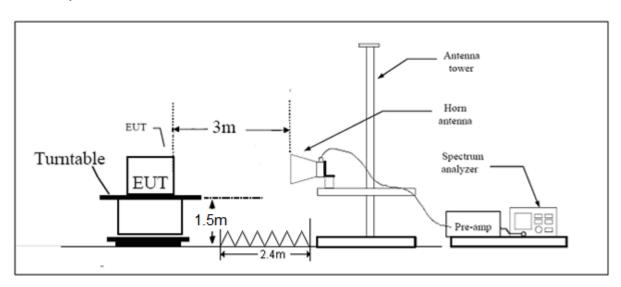
Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. Sweep the Restricted Band and the emissions less than 20 dB below the permissible value are reported.

This method refer to KDB 558074.

The procedure for peak unwanted emissions measurements above 1000 MHz is as follows:


- I) Peak emission levels are measured by setting the instrument as follows:
- 1) RBW = 1 MHz.
- 2) VBW ≥ [3 × RBW]
- 3) Detector = peak.
- 4) Sweep time = auto.
- 5) Trace mode = max hold.
- 6) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, then the time required for the trace to stabilize will increase by a factor of approximately 1 / D, where D is the duty cycle.
- II) Average emission levels are measured by setting the instrument as follows:
- a) RBW = 1 MHz.
- b) VBW \geq [3 × RBW].
- c) Detector = RMS (power averaging), if $[\text{span} / (\text{# of points in sweep})] \le \text{RBW} / 2$. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

- Report No: RXA1705-0136RF02R4 g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction
- factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the antenna is vertical.

The test is in transmitting mode.

Test setup

Note: Area side: 2.4mX3.6m

Limits

Spurious Radiated Emissions are permitted in any of the frequency bands listed below:

FCC RF Test Report

-	_	-	-
MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13 36 - 13 41			

Report No: RXA1705-0136RF02R4

Limit in restricted band

Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.

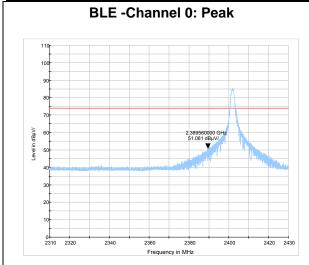
Peak Limit=74 dBuV/m

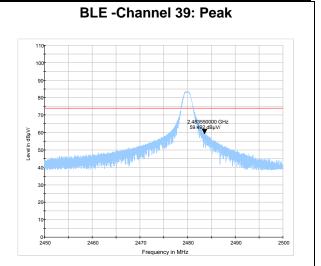
Average Limit=54 dBuV/m

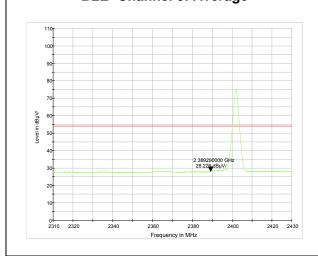
Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 3.55 dB.

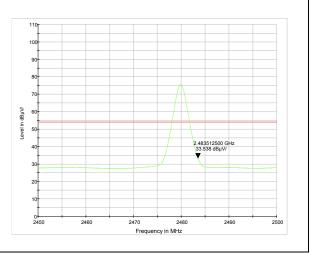
Test Results:


PASS


The signal beyond the limit is carrier.


FCC RF Test Report

Report No: RXA1705-0136RF02R4



BLE -Channel 0: Average

BLE -Channel 39: Average

5.7. Radiates Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	102.5kPa

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10-2013. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The radiated emissions measurements were made in a typical installation configuration. Sweep the whole frequency band through the range from 9 kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

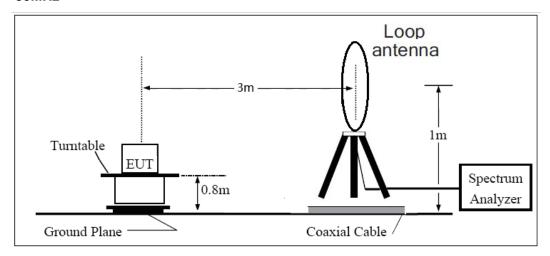
During the test, below 30MHz, the center of the loop shall be 1 meters; above 30MHz, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Set the spectrum analyzer in the following:

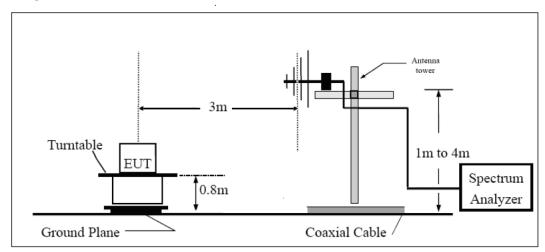
Below 1GHz (detector: Peak and Quasi-Peak) RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

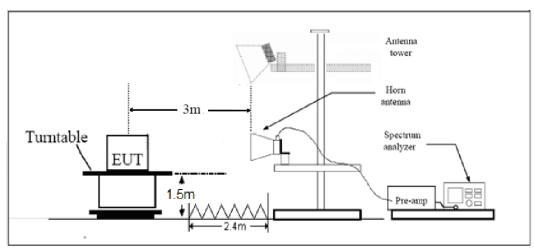
Above 1GHz (detector: Peak):

(a) PEAK: RBW=1MHz / VBW=3MHz/ Sweep=AUTO


(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded.


The test is in transmitting mode.


Test setup 9KHz ~ 30MHz

30MHz ~ 1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

Rule Part 15.247(d) specifies that "In addition, radiated emissions which fall in the restricted bands,

Report No: RXA1705-0136RF02R4

as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))."

Limit in restricted band

Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
0.009–0.490	2400/F(kHz)	1
0.490–1.705	24000/F(kHz)	1
1.705–30.0	30	1
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

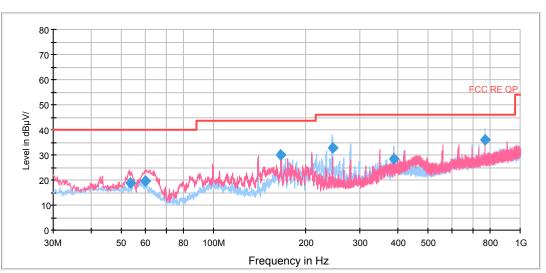
There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
9KHz-30MHz	3.55 dB
30MHz-200MHz	4.19 dB
200MHz-1GHz	3.63 dB
Above 1GHz	3.68 dB

Test result


Sweep from 9 kHz to 30MHz, and the emissions more than 20 dB below the permissible value are not reported.

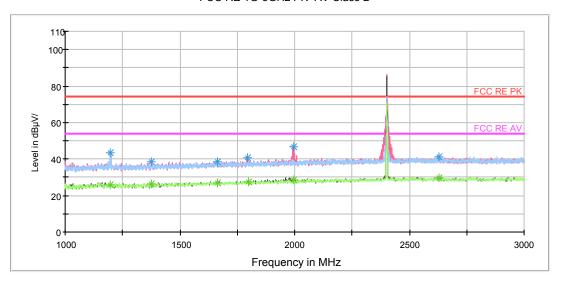
The following graphs display the maximum values of horizontal and vertical by software.

For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.

BLE-Channel 0

FCC RE 0.03-1GHz QP Class B

Radiates Emission from 30MHz to 1GHz


Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
53.437500	18.6	100.0	V	6.0	5.8	12.8	21.4	40.0
59.987500	19.7	100.0	V	56.0	7.1	12.6	20.3	40.0
166.002500	30.1	100.0	V	75.0	20.1	10.0	13.4	43.5
244.005000	32.8	125.0	Н	88.0	18.9	13.9	13.2	46.0
386.966250	28.6	100.0	Н	176.0	10.4	18.2	17.4	46.0
769.706250	35.8	114.0	Н	291.0	11.2	24.6	10.2	46.0

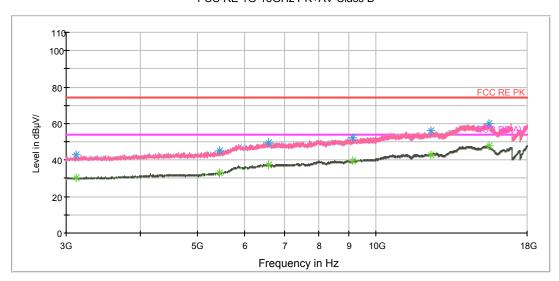
Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R

FCC RE 1G-3GHz PK+AV Class B

Note: The signal beyond the limit is carrier.
Radiates Emission from 1GHz to 3GHz

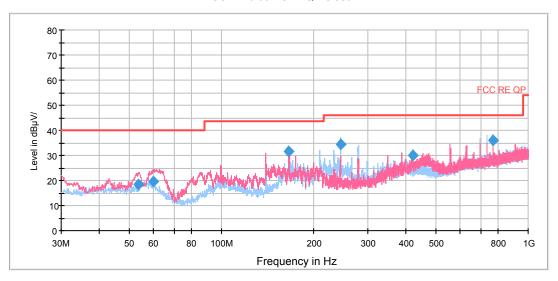

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1196.500000	43.4	100.0	Н	221.0	51.0	-7.6	30.6	74
1377.000000	38.5	100.0	Н	13.0	45.5	-7.0	35.5	74
1663.000000	38.7	100.0	Н	340.0	44.7	-6.0	35.3	74
1796.500000	40.9	100.0	V	216.0	46.4	-5.5	33.1	74
1995.000000	46.7	100.0	V	261.0	51.5	-4.8	27.3	74
2627.000000	41.4	100.0	V	296.0	44.1	-2.7	32.6	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

remaint is considered actor – Amornia ractor i most tien rocc (casto rocc i ampinior gami)								
Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1196.500000	25.9	100.0	Н	221.0	33.5	-7.6	28.1	54
1377.000000	26.3	100.0	Н	13.0	33.3	-7.0	27.7	54
1663.500000	26.9	100.0	V	358.0	32.9	-6.0	27.1	54
1797.000000	27.5	100.0	Н	107.0	33.0	-5.5	26.5	54
1995.000000	28.3	100.0	Н	9.0	33.1	-4.8	25.7	54
2627.000000	29.4	100.0	V	296.0	32.1	-2.7	24.6	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

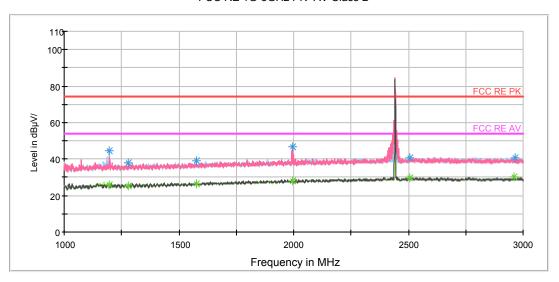
Radiates Emission from 3GHz to 18GHz


Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3118.125000	42.8	100.0	Н	277.0	43.0	-0.2	31.2	74
5450.625000	45.0	100.0	Н	349.0	42.4	2.6	29.0	74
6585.000000	49.8	100.0	Н	0.0	42.4	7.4	24.2	74
9129.375000	52.5	100.0	V	220.0	42.1	10.4	21.5	74
12401.250000	56.3	100.0	Н	206.0	41.7	14.6	17.7	74
15543.750000	60.1	100.0	V	1.0	41.7	18.4	13.9	74

Nemark. 1. Correction Factor - America factor insertion loss (cable loss + amplifier gain)								
Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3118.125000	30.0	100.0	V	56.0	30.2	-0.2	24.0	54
5450.625000	33.1	100.0	V	0.0	30.5	2.6	20.9	54
6585.000000	37.6	100.0	Н	0.0	30.2	7.4	16.4	54
9129.375000	39.5	100.0	V	220.0	29.1	10.4	14.5	54
12401.250000	42.9	100.0	V	0.0	28.3	14.6	11.1	54
15541.875000	48.0	100.0	Н	0.0	29.6	18.4	6.0	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

BLE-Channel 19

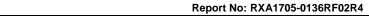

Radiates Emission from 30MHz to 1GHz

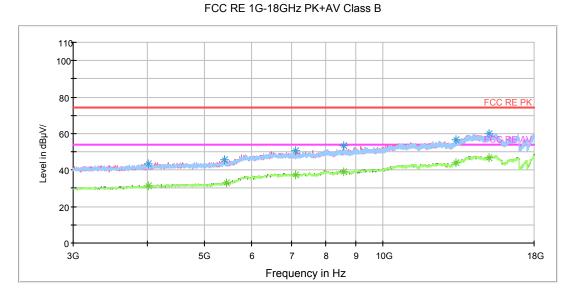
Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
53.643750	18.5	100.0	V	0.0	5.7	12.8	21.5	40.0
59.987500	19.6	100.0	V	317.0	7.0	12.6	20.4	40.0
166.001250	31.7	125.0	Н	142.0	21.7	10.0	11.8	43.5
244.852500	34.6	125.0	Н	63.0	20.4	14.2	11.4	46.0
419.818750	30.1	125.0	Н	349.0	11.7	18.4	15.9	46.0
769.707500	36.2	114.0	Н	288.0	11.6	24.6	9.8	46.0

Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

FCC RE 1G-3GHz PK+AV Class B


Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz


			adiates Emission					
Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1196.500000	44.6	100.0	Н	258.0	52.2	-7.6	29.4	74
1279.500000	37.8	100.0	V	28.0	45.1	-7.3	36.2	74
1574.500000	39.1	100.0	Н	235.0	45.5	-6.4	34.9	74
1994.000000	46.5	100.0	V	255.0	51.3	-4.8	27.5	74
2506.500000	40.9	100.0	Н	200.0	43.7	-2.8	33.1	74
2963.000000	40.5	100.0	Н	211.0	43.0	-2.5	33.5	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

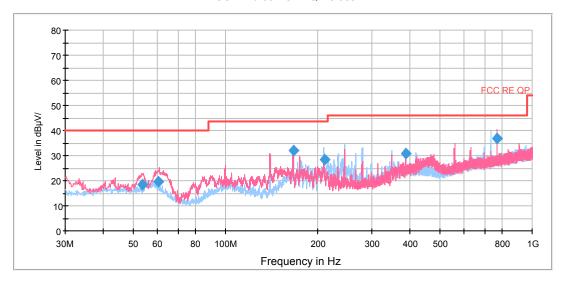
remark is considered actor – Amortina ractor i most tien rocc (casto rocc : ampinior gami)								
Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1196.500000	25.8	100.0	Н	258.0	33.4	-7.6	28.2	54
1279.500000	25.2	100.0	V	28.0	32.5	-7.3	28.8	54
1574.500000	26.5	100.0	V	13.0	32.9	-6.4	27.5	54
1994.000000	28.2	100.0	V	255.0	33.0	-4.8	25.8	54
2506.500000	29.8	100.0	V	0.0	32.6	-2.8	24.2	54
2962.500000	30.3	100.0	Н	291.0	32.8	-2.5	23.7	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
4016.250000	43.6	100.0	Н	1.0	42.9	0.7	30.4	74
5396.250000	45.9	100.0	V	293.0	43.5	2.4	28.1	74
7113.750000	50.4	100.0	V	303.0	43.2	7.2	23.6	74
8581.875000	53.4	100.0	V	354.0	43.4	10.0	20.6	74
13275.000000	56.8	100.0	V	249.0	41.2	15.6	17.2	74
15131.250000	60.0	100.0	V	349.0	42.3	17.7	14.0	74

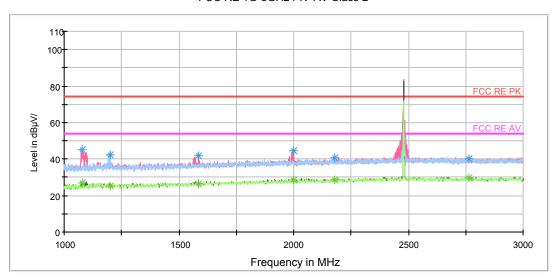
Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)


Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
4023.750000	31.3	100.0	Н	49.0	30.5	0.8	22.7	54
5448.750000	33.2	100.0	V	194.0	30.6	2.6	20.8	54
7115.625000	37.2	100.0	V	150.0	30.0	7.2	16.8	54
8583.750000	39.1	100.0	V	358.0	29.1	10.0	14.9	54
13273.125000	43.8	100.0	V	358.0	28.2	15.6	10.2	54
15133.125000	46.7	100.0	Н	92.0	29.0	17.7	7.3	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

BLE-Channel 39

Radiates Emission from 30MHz to 1GHz

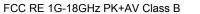

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
53.445000	18.6	100.0	V	0.0	5.8	12.8	21.4	40.0
60.517500	19.7	100.0	V	0.0	7.3	12.4	20.3	40.0
166.562500	32.0	125.0	Н	131.0	21.9	10.1	11.5	43.5
209.888750	28.3	125.0	Н	20.0	15.7	12.6	15.2	43.5
387.686250	30.9	100.0	Н	308.0	12.9	18.0	15.1	46.0
769.706250	36.7	125.0	V	239.0	12.1	24.6	9.3	46.0

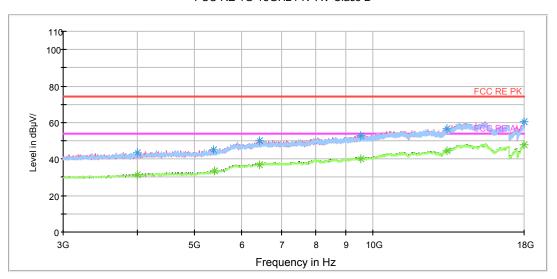
Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

TA Technology (Shanghai) Co., Ltd.

FCC RE 1G-3GHz PK+AV Class B


Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz


Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1078.000000	45.2	100.0	V	356.0	53.1	-7.9	28.8	74
1201.500000	42.2	100.0	Н	234.0	49.8	-7.6	31.8	74
1586.500000	41.7	100.0	V	354.0	48.0	-6.3	32.3	74
1999.000000	44.3	100.0	V	262.0	49.1	-4.8	29.7	74
2177.000000	40.5	100.0	V	339.0	44.6	-4.1	33.5	74
2764.500000	40.2	100.0	Н	9.0	42.8	-2.6	33.8	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

				y				
Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1078.000000	26.8	100.0	V	356.0	34.7	-7.9	27.2	54
1201.500000	25.5	100.0	Н	234.0	33.1	-7.6	28.5	54
1586.500000	26.5	100.0	V	354.0	32.8	-6.3	27.5	54
1998.500000	28.5	100.0	V	346.0	33.3	-4.8	25.5	54
2177.000000	28.6	100.0	V	339.0	32.7	-4.1	25.4	54
2764.500000	29.8	100.0	Н	9.0	32.4	-2.6	24.2	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3997.500000	43.6	100.0	Н	0.0	43.1	0.5	30.4	74
5371.875000	45.2	100.0	V	0.0	43.0	2.2	28.8	74
6440.625000	50.3	100.0	Н	88.0	43.5	6.8	23.7	74
9523.125000	53.0	100.0	Н	34.0	41.9	11.1	21.0	74
13336.875000	56.6	100.0	V	357.0	40.9	15.7	17.4	74
17992.500000	60.7	100.0	V	281.0	40.9	19.8	13.3	74

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
4008.750000	31.6	100.0	V	344.0	31.0	0.6	22.4	54
			-					
5409.375000	33.3	100.0	Н	0.0	31.0	2.3	20.7	54
6440.625000	37.1	100.0	Н	88.0	30.3	6.8	16.9	54
9525.000000	40.4	100.0	V	359.0	29.3	11.1	13.6	54
13340.625000	44.4	100.0	V	344.0	28.7	15.7	9.6	54
17990.625000	48.1	100.0	Н	165.0	28.4	19.7	5.9	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

5.8. Conducted Emission

The equipment that only employs battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Measurements to demonstrate compliance with the conducted limits are not required.

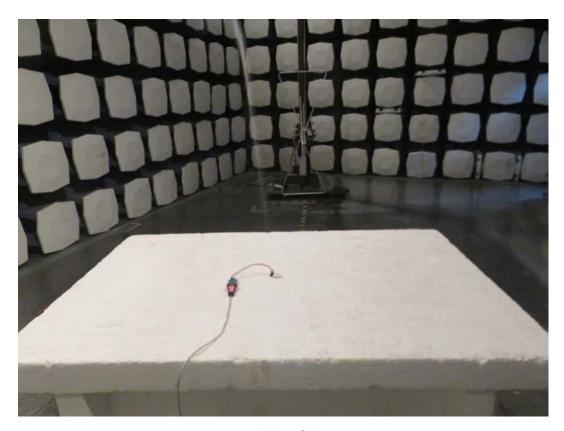
6. Main Test Instruments

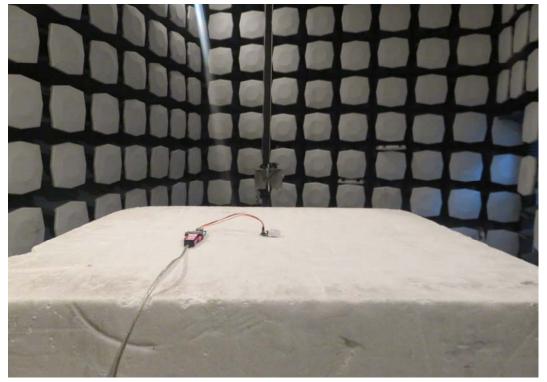
Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Time
BT Base Station Simulator	R&S	CBT	100271	2017-05-14	2018-05-13
Spectrum Analyzer	R&S	FSV30	100815	2016-12-16	2017-12-15
EMI Test Receiver	R&S	ESCI	100948	2017-05-20	2018-05-19
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-201	2014-12-06	2017-12-05
Double Ridged Waveguide Horn Antenna	R&S	HF907	100126	2014-12-06	2017-12-05
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2017-02-18	2020-02-17
Standard Gain Horn	ETS-Lindgren	3160-09	00102644	2015-01-30	2018-01-29
EMI Test Receiver	R&S	ESCS30	100138	2016-12-16	2017-12-15
LISN	R&S	ENV216	101171	2016-12-16	2019-12-15
Spectrum Analyzer	Agilent	N9010A	MY47191109	2017-05-20	2018-05-19
RF Cable	Agilent	SMA 15cm	0001	2017-02-06	2017-08-05

*****END OF REPORT *****

ANNEX A: EUT Appearance and Test Setup

A.1 EUT Appearance


Front Side


Back Side

Picture 1 EUT and Accessory

A.2 Test Setup

30MHz-1GHz

Above 1GHz **Picture 2 Radiated Emission Test Setup**