

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Fundamental transmit (prediction) frequency: 2438 MHz

Maximum measured conducted peak output power: 19.60 dBm

Cable and/or jumper loss: 0.0 dB

Maximum peak power at antenna input terminal: 19.60 dBm

Tx On time: 0.860 ms

Tx period time: 100.000 ms

Average factor: 0.86 %

Maximum calculated average power at antenna input terminal: 0.784 mW

Single Antenna gain (typical): 16 dBi

Number of antennae: 1

Total system gain (typical): 16.000 dBi

MPE limit for uncontrolled exposure at prediction frequency: 1 mW/cm²

10 W/m²

Minimum calculated prediction distance for compliance: 2 cm

Typical (declared) distance: 25 cm

Average power density at prediction frequency: 0.003976 mW/cm²

0.03976 W/m²

Margin of Compliance: 24.00591 dB

Maximum allowable antenna gain: 40.00591 dBi

Note 1: No simultaneous transmission between the WLAN and LTE Radios due to the antenna separation distance \geq 20cm

Note 2: EUT does not support simultaneous transmission between the 2.4 and 5 GHz WLAN Radios