

test report

Customer:
Complete Solutions d.o.o.
Presernova cesta 55
6310 Izolar

RF test report
180103-AU01+W01

Complete Solutions d.o.o.
Sex Toy
come-X

The test result refers exclusively to the
model tested.
This test report may not be copied or published
in extracts without the written authorization of
the accreditation agency and/or
EMV TESTHAUS GmbH

EMV **TESTHAUS** GmbH

Gustav-Hertz-Straße 35
94315 Straubing
Germany
Tel.: +49 9421 56868-0
Fax: +49 9421 56868-100
Email: info@emv-testhaus.com

Accreditation:

Test Firm Type "accredited": Valid until 2019-05-06
MRA US-EU, FCC designation number: DE0010
BNetzA-CAB-02/21-02/04 Valid until 2018-11-27

Industry Canada test site numbers with registration expiry date:
3472A-1, expiring 2018-11-09
3472A-2, expiring 2018-11-12

Test laboratory:

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

The technical accuracy is guaranteed through the quality management of
EMV **TESTHAUS** GmbH.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

Table of contents

1	Summary of test results	6
2	Referenced publications.....	8
3	Equipment under test (EUT)	9
3.1	General information	9
3.2	Radio specifications	10
3.3	Photo documentation	11
4	Test configuration and mode of operation	12
4.1	Test configuration	12
4.2	Mode of operation	13
5	Test procedures	14
5.1	General specifications.....	14
5.2	Antenna-port conducted measurements	15
5.3	Radiated emissions below 30 MHz	15
5.4	Radiated emissions from 30 MHz to 1 GHz	17
5.5	Radiated emissions above 1 GHz	19
5.6	Bandwidth measurements	22
5.7	Maximum peak conducted output power.....	24
5.8	Power spectral density.....	24
6	Test results.....	26
6.1	20 dB bandwidth	27
6.2	6 dB bandwidth	31
6.3	Occupied bandwidth	35
6.4	Calculated conducted output power	39
6.5	Calculated power spectral density.....	44
6.6	Band-edge measurements	49
6.7	Emissions outside the operating frequency band(s) specified.....	53
6.8	Radio frequency radiation exposure evaluation for portable devices	70
7	Equipment calibration status	73
8	Measurement uncertainties.....	74
9	Revision history	75

List of figures

Figure 1: Setting of the required test mode	13
Figure 2: Setup for antenna-port conducted measurements	15
Figure 3: Setup for radiated emissions test below 30 MHz	17
Figure 4: Setup for radiated emissions test from 30 MHz to 1 GHz	19
Figure 5: Setup for radiated emissions test above 1 GHz	22
Figure 6: Chart of 20 dB bandwidth on channel 37	29
Figure 7: Chart of 20 dB bandwidth on channel 17	29
Figure 8: Chart of 20 dB bandwidth test on channel 39	30
Figure 9: Chart of 6 dB bandwidth test on channel 37	33
Figure 10: Chart of 6 dB bandwidth test on channel 17	33
Figure 11: Chart of 6 dB bandwidth test on channel 39	34
Figure 12: Chart of occupied bandwidth test on channel 37	37
Figure 13: Chart of occupied bandwidth test on channel 17	37
Figure 14: Chart of occupied bandwidth test on channel 39	38
Figure 15: Chart of measured raw data on channel 37 in position 2	41
Figure 16: Chart of measured raw data on channel 17 in position 2	41
Figure 17: Chart of measured raw data on channel 39 on position 2	42
Figure 18: Chart of measured raw data on channel 37 in position 2	46
Figure 19: Chart of measured raw data on channel 17 in position 2	46
Figure 20: Chart of raw data on channel 39 in position 2	47
Figure 21: Chart of band-edge measurement on channel 37 in horizontal polarization	51
Figure 22: Chart of band-edge measurement on channel 39 in horizontal polarization	52
Figure 23: Chart of emissions test below 30 MHz on channel 37 in position 2	55
Figure 24: Chart of emissions test below 30 MHz on channel 17 in position 2	56
Figure 25: Chart of emissions test below 30 MHz on channel 39 in position 2	56
Figure 26: Chart of emissions test from 30 MHz to 1 GHz on channel 37 in position 1	59
Figure 27: Chart of emissions test from 1 GHz to 10 GHz on channel 37 in position 3	64
Figure 28: Chart of exploratory emission test from 10 GHz to 25 GHz on channel 37	64
Figure 29: Chart of emissions test from 1 GHz to 10 GHz on channel 17 in position 3	66
Figure 30: Chart of exploratory emissions test from 10 GHz to 25 GHz on channel 17	66
Figure 31: Chart of emissions test from 1 GHz to 10 GHz on channel 39 in position 3	68
Figure 32: Chart of exploratory emissions test from 10 GHz to 25 GHz on channel 39	68

List of tables

Table 1: Radio specifications of EUT	11
Table 2: Devices used for testing	12
Table 3: Ports of EUT and appropriate cables	12
Table 4: Recalculation factors for extrapolation	16
Table 5: Bandwidth and detector type for radiated emissions test below 30 MHz	16
Table 6: Bandwidth and detector type for radiated emissions test from 30 MHz to 1 GHz	18
Table 7: Bandwidth and trace settings for exploratory radiated emissions test above 1 GHz	20
Table 8: Bandwidth and detector type for final radiated emissions test above 1 GHz	20

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

Table 9: Results of 20 dB bandwidth tests	30
Table 10: Results of 6 dB channel bandwidth test	34
Table 11: Results of occupied bandwidth test.....	38
Table 12: Results of measurement (raw data)	42
Table 13: Corrected output power	42
Table 14: Results of calculated conducted output power.....	43
Table 15: Results of measurement (raw data)	47
Table 16: Corrected power spectral density	47
Table 17: Results of calculated conducted power spectral density	48
Table 18: Restricted bands of operation according to §15.205	50
Table 19: General radiated emission limits up to 30 MHz according to §15.209	54
Table 20: General radiated emission limits \geq 30 MHz according to §15.209	58
Table 21: Results of emissions test from 30 MHz to 1 GHz on channel 02	60
Table 22: General radiated emission limits above 960 MHz according to §15.209	62
Table 23: Results of emissions test from 1 GHz to 25 GHz on channel 37	65
Table 24: Results of emissions test from 1 GHz to 25 GHz on channel 17	67
Table 25: Results of emissions test from 1 GHz to 25 GHz on channel 39.....	69

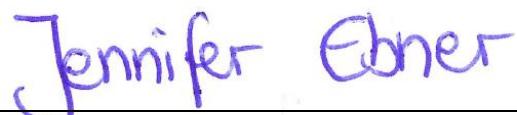
EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

1 Summary of test results

System type: Digital transmission system (DTS)

47 CFR part and section	Test	Equivalent to IC radio standard(s)	Page	Result	Note(s)
15.207	AC power line conducted emissions 150 kHz to 30 MHz	RSS-Gen, section 8.8	---	Not applicable	1,5
15.247(a)(1) KDB 558074, section 8	20 dB bandwidth	RSS-247, section 5.1(b)	27	For information only	2
15.247(a)(2) KDB 558074, section 8	6 dB bandwidth	RSS-247, section 5.2(a)	31	Passed	3
2.202(a) ANSI C63.10	Occupied bandwidth (99 %)	RSS-Gen, section 6.7	35	For reference only	3
15.247(b) KDB 558074, section 9	Calculated conducted output power	RSS-Gen, section 6.12 RSS-247, section 5.4	39	Passed	---
15.247(e) KDB 558074, section 10	Calculated power spectral density	RSS-247, section 5.2(b)	44	Passed	---
15.247(d) KDB 558074, sections 11 & 12	Antenna-port conducted measurements	RSS-247, section 5.5	---	Not applicable	4
15.247(d) KDB 558074, section 13	Band-edge compliance	RSS-247, section 5.5	49	Passed	---
15.247(d) KDB 558074, sections 11 & 12	Emissions outside the operating frequency band(s) specified 9 kHz to 10 th harmonic 9 kHz to 30 MHz 30 MHz to 1 GHz 1 GHz to 10 th harmonic	RSS-Gen, section 6.13 RSS-247, section 5.5	53 57 61	Passed Passed Passed	--- --- ---
2.109	RF radiation exposure evaluation for portable devices	RSS-Gen, section 3.4 (exempted from SAR and RF evaluation)	70	Passed	---


EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

Notes (for information about EUT see clause 3):

- 1 Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.
- 2 For systems using digital modulation techniques (DTS), the 6 dB bandwidth (DTS bandwidth) is regarded as the bandwidth of the emission and measuring the 20 dB bandwidth is not required.
- 3 For frequency hopping systems, measuring the 6 dB bandwidth (DTS bandwidth) is not required.
- 4 If antenna port conducted tests cannot be performed (e.g. for portable or handheld devices with integral antenna), then radiated tests are performed for demonstrating compliance to the conducted emission requirements (see "Spurious radiated emissions 9 kHz to 10th harmonic").
- 5 EUT is battery-powered.

Straubing, June 18, 2018

Jennifer Ebner
Test engineer
EMV **TESTHAUS** GmbH

Konrad Grassl
Head of radio department
EMV **TESTHAUS** GmbH

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

2 Referenced publications

Publication	Title
CFR 47 Part 2 October 2017	Code of Federal Regulations, Title 47 (Telecommunication), Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)
CFR 47 Part 15 October 2017	Code of Federal Regulations, Title 47 (Telecommunication), Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)
KDB Publication no. 412172 August 7, 2015	Guidelines for determining the Effective Radiated Power (ERP) and Equivalent Isotropically Radiated Power (EIRP) of an RF transmitting system
KDB Publication no. 447498 October 23, 2015	RF exposure procedures and equipment authorization policies for mobile and portable devices
KDB Publication no. 558074 April 5, 2017	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247
KDB Publication no. 662911 October 31, 2013	Emissions Testing of Transmitters with Multiple Outputs in the Same Band (e.g., MIMO, Smart Antenna, etc)
ANSI C63.10 June 2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
RSS-Gen, Issue 5 April 2018	Spectrum Management and Telecommunications - Radio Standards Specification - General Requirements for Compliance of Radio Apparatus
RSS-102, Issue 5 March 2015	Spectrum Management and Telecommunications - Radio Standards Specification - Radio Frequency Exposure Compliance of Radiocommunications Apperatus
RSS-247, Issue 2 February 2017	Spectrum Management and Telecommunications - Radio Standards Specification - Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

3 Equipment under test (EUT)

All Information in this clause is declared by customer.

3.1 General information

Product type: Sex Toy
Model name: come-X
Serial number(s): ---
Applicant: Complete Solutions d.o.o.
Manufacturer: Complete Solutions d.o.o.
Version: Hardware: V3.0
Software: V3.2
Additional modifications: None
FCC ID: 2AO34-HPT03001
IC registration number: 23943-HPT03001
Power supply: Battery supply by lithium ion battery
Nominal voltage: 3.7 V
Temperature range: -5 °C to +45 °C (customer defined)
Device type: Portable Mobile Fixed

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

3.2 Radio specifications

System type ¹ :	Digital transmission system (DTS)			
Application frequency band:	2400.0 MHz - 2483.5 MHz			
Frequency range used:	2402.0 MHz - 2480.0 MHz			
Operating frequencies:	2402.0 MHz - 2480.0 MHz			
Short description:	The EUT is a sex toy with an integrated RF module using Bluetooth Low Energy (BLE) technique in the 2.4 GHz band.			
Antenna:	Type:	PCB monopole antenna		
	Gain:	5 dBi (maximum)		
	Connector:	<input type="checkbox"/> external	<input type="checkbox"/> internal	
		<input type="checkbox"/> temporary	<input checked="" type="checkbox"/> none (integral antenna)	

¹ "DTS" is the equipment class for digital transmission systems, "DSS" for all other Part 15 spread spectrum transmitters as used for equipment authorization system form 731.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

Frequency range used:	2402 MHz to 2480 MHz
Number of RF channels:	40
Channel spacing:	2 MHz
Modulation:	GFSK

Channel no.	Operating frequency	Test(s) performed	Channel no.	Operating frequency	Test(s) performed
37	2402 MHz	<input checked="" type="checkbox"/>	18	2442 MHz	<input type="checkbox"/>
0	2404 MHz	<input type="checkbox"/>	19	2444 MHz	<input type="checkbox"/>
1	2406 MHz	<input type="checkbox"/>	20	2446 MHz	<input type="checkbox"/>
2	2408 MHz	<input type="checkbox"/>	21	2448 MHz	<input type="checkbox"/>
3	2410 MHz	<input type="checkbox"/>	22	2450 MHz	<input type="checkbox"/>
4	2412 MHz	<input type="checkbox"/>	23	2452 MHz	<input type="checkbox"/>
5	2414 MHz	<input type="checkbox"/>	24	2454 MHz	<input type="checkbox"/>
6	2416 MHz	<input type="checkbox"/>	25	2456 MHz	<input type="checkbox"/>
7	2418 MHz	<input type="checkbox"/>	26	2458 MHz	<input type="checkbox"/>
8	2420 MHz	<input type="checkbox"/>	27	2460 MHz	<input type="checkbox"/>
9	2422 MHz	<input type="checkbox"/>	28	2462 MHz	<input type="checkbox"/>
10	2424 MHz	<input type="checkbox"/>	29	2464 MHz	<input type="checkbox"/>
38	2426 MHz	<input type="checkbox"/>	30	2466 MHz	<input type="checkbox"/>
11	2428 MHz	<input type="checkbox"/>	31	2468 MHz	<input type="checkbox"/>
12	2430 MHz	<input type="checkbox"/>	32	2470 MHz	<input type="checkbox"/>
13	2432 MHz	<input type="checkbox"/>	33	2472 MHz	<input type="checkbox"/>
14	2434 MHz	<input type="checkbox"/>	34	2474 MHz	<input type="checkbox"/>
15	2436 MHz	<input type="checkbox"/>	35	2476 MHz	<input type="checkbox"/>
16	2438 MHz	<input type="checkbox"/>	36	2478 MHz	<input type="checkbox"/>
17	2440 MHz	<input checked="" type="checkbox"/>	39	2480 MHz	<input checked="" type="checkbox"/>

Table 1: Radio specifications of EUT

3.3 Photo documentation

For external photos of the EUT see annex B, for internal ones see annex C. Photos taken during testing including EUT positions can be found in annex A.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

4 Test configuration and mode of operation

4.1 Test configuration

Device	Type designation	Serial or inventory no.	Manufacturer
<i>EUT</i>			
Sex toy	come-X	---	Complete Solutions d.o.o.
<i>Support equipment</i>			
Notebook	Lifebook A557	E001053	FUJITSU
Power supply for notebook	ADP-65JHAB	E001053	FUJITSU

Table 2: Devices used for testing

Port	Classification (see note 1)	Cable type	Fixed	Cable length		Note
				used	maximum	
Connector to the UART-USB-adapter	Signal/control	Unshielded	<input type="checkbox"/>	0.5 cm	---	2

Table 3: Ports of EUT and appropriate cables²

Notes:

- 1 Ports of EUT are classified as “AC power”, “DC power”, “DC power connected to dedicated AC/DC power supply”, “Signal/control” or “Wired network”.
- 2 The UART-USB-adapter is used for configuration.

² As specified by manufacturer.

4.2 Mode of operation

4.2.1 Test software used for all tests

The test software is part of the firmware of the EUT. It is controlled by serial communication via the UART-USB-adapter. The required test mode can be selected by typing the appropriate commands in a terminal program. As shown in Figure 1, the software Tera Term V4.90 is used for this purpose.

Figure 1 shows a screenshot of the Tera Term V4.90 terminal window. The window title is "COM9 - Tera Term VT". The menu bar includes "Datei", "Bearbeiten", "Einstellungen", "Steuerung", "Fenster", and "Hilfe". The main text area displays a command list for setting test modes. The commands are grouped under "Usage:" and "TX modulated carrier". The commands listed are:

- a: Enter start channel for sweep/channel for constant carrier
- b: Enter end channel for sweep
- c: Start TX carrier
- d: Enter time on each channel (1ms-99ms)
- e: Cancel sweep/carrier
- m: Enter data rate
- o: Start modulated TX carrier
- p: Enter output power
- s: Print current delay, channels and so on
- t: Start TX sweep
- x: Start RX sweep
- x: Start RX carrier

Usage:

- a: Enter start channel for sweep/channel for constant carrier
- b: Enter end channel for sweep
- c: Start TX carrier
- d: Enter time on each channel (1ms-99ms)
- e: Cancel sweep/carrier
- m: Enter data rate
- o: Start modulated TX carrier
- p: Enter output power
- s: Print current delay, channels and so on
- t: Start RX sweep
- x: Start RX sweep
- x: Start RX carrier

Usage:

- a: Enter start channel for sweep/channel for constant carrier
- b: Enter end channel for sweep
- c: Start TX carrier
- d: Enter time on each channel (1ms-99ms)
- e: Cancel sweep/carrier
- m: Enter data rate
- o: Start modulated TX carrier
- p: Enter output power
- s: Print current delay, channels and so on
- t: Start RX sweep
- x: Start RX sweep
- x: Start RX carrier

Enter start channel (two decimal digits, 00 to 80):

TX modulated carrier

Figure 1: Setting of the required test mode

To enter the desired testing mode, press the appropriate letter:

- a: select a channel (02 to 80)
- o: start modulated TX carrier
- m: select the data rate (1 for 1 Mbps)
- p: select the output power (0 for 0 dBm)

4.2.2 Test modes applied

For the measurements the testing mode "o" for modulated TX carrier is used with the carrier frequency set to the appropriate channel using "Ch = 02", "Ch = 40" or "Ch = 80", as applicable. For further details see clause 4.2.1.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

5 Test procedures

5.1 General specifications

5.1.1 Test setups

Tabletop devices are placed on a non-conductive table with a height of 0.8 m. In case of AC power-line conducted emissions test, the rear of the EUT is located 40 cm to the vertical wall of the RF-shielded (screened) room which is used as vertical conducting plane. For radiated emission measurements above 1 GHz, tabletop devices are placed at a height of 1.5 m above the floor using a support made of styrene placed on top of the non-conductive table.

Floor-standing devices are placed either directly on the reference ground-plane or on insulating material (see clause 6.3.3 of ANSI C63.4-2014 for more details).

All other surfaces of tabletop or floor-standing EUTs are at least 80 cm from any other grounded conducting surface. This includes the case or cases of one or more LISNs when performing an AC power-line conducted emissions test.

Radiated emission measurements of equipment that can be used in multiple orientations (e.g. portable or handheld devices) are performed with the EUT in each of three orthogonal axis positions.

5.1.2 Conversion to conducted test results

If test procedures described herein are based on the use of an antenna-port conducted test configuration, but the EUT cannot provide such a configuration (e.g., portable or handheld devices with integral antenna), radiated tests are performed for demonstrating compliance to the conducted requirements.

If a radiated test configuration has to be used, then the measured power or field strength levels are converted to equivalent conducted power levels for comparison to the applicable limit. For this purpose, at first the radiated field strength or power levels are converted to EIRP as described in annex G of ANSI C63.10 and KDB Publication 412172, document D01. The equivalent conducted power is then determined by subtracting the EUT transmit antenna gain from the EIRP (assuming logarithmic representation).

For devices utilizing multiple antenna technologies, KDB Publication 662911 applies.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

5.2 Antenna-port conducted measurements

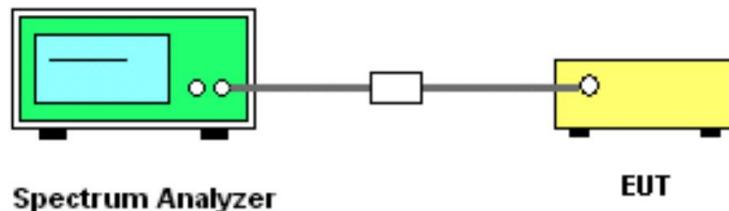


Figure 2: Setup for antenna-port conducted measurements

The RF signal of the EUT is measured conducted at the antenna port. In case of no permanent antenna connector available, a temporary antenna connector should be supplied by the manufacturer. The specific insertion loss of the signal path, which is matched to 50 Ohm, is determined. The test receiver is set to analyzer mode with pre-selector activated. The measurement readings on the test receiver are corrected by the signal path loss.

For frequency hopping systems (FHSS), the test equipment is configured according to Public Notice DA 00-705, for digital transmission systems (DTS) the settings as specified by KDB Publication 558074, document D01, are used.

If a radiated test configuration has to be used, conversion to conducted test results is performed according to clause 5.1.2.

5.3 Radiated emissions below 30 MHz

Radiated emissions below 30 MHz are measured according to clause 6.4 of ANSI C63.10 using an inductive shielded loop antenna. As this antenna measures the magnetic field only, its antenna factors are converted to electric field strength values assuming a free space impedance of 377 Ω as described in clause 4.3.1 of ANSI C63.10. This results in an additional correction of 51.53 dB.

According to clause 6.4.3 of ANSI C63.10, at frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements. In this case, the results are extrapolated to the specified distance by using a recalculation factor determined according to one of the methods described in clause 6.4.4 of ANSI C63.10, provided that the maximum dimension of the device is equal to or less than 0.625 times the wavelength at the frequency being measured. As the minimum wavelength is 10 meters corresponding to the maximum frequency of 30 MHz, this requirement is fulfilled if the maximum dimension of the device is equal to or less than 6.25 meters.

Unless otherwise stated, the recalculation factor is determined according to clause 6.4.4.2 "Extrapolation from the measurement of a single point" of ANSI C63.10:

$$\begin{aligned} d_{\text{near field}} &= 47.77 / f_{\text{MHz}}, \text{ or} \\ f_{\text{MHz}} &= 47.77 / d_{\text{near field}} \end{aligned}$$

The frequency f_{MHz} at which the near field distance is equal to the limit and/or test distance is important for selection of the right formula to determine the recalculation factor:

$$\begin{aligned}
 f_{MHz}(300 \text{ m}) &\approx 0.159 \text{ MHz} \\
 f_{MHz}(30 \text{ m}) &\approx 1.592 \text{ MHz} \\
 f_{MHz}(3 \text{ m}) &\approx 15.923 \text{ MHz}
 \end{aligned}$$

Based on the test distances for the general radiated emission limits as specified in §15.209 of 47 CFR Part 15, the following formulas are used to determine the recalculation factor:

Frequency (f)	d_{limit}	$d_{measure}$	Formula for recalculation factor
$9 \text{ kHz} \leq f \leq 159 \text{ kHz}$ $490 \text{ kHz} < f \leq 1.592 \text{ MHz}$	300 m 30 m	3 m	$-40 \log(d_{limit} / d_{measure})$
$159 \text{ kHz} < f \leq 490 \text{ kHz}$ $1.592 \text{ MHz} < f \leq 15.923 \text{ MHz}$	300 m 30 m	3 m	$-40 \log(d_{near \text{ field}} / d_{measure}) - 20 \log(d_{limit} / d_{near \text{ field}})$
$f > 15.923 \text{ MHz}$	30 m	3 m	$-20 \log(d_{limit} / d_{measure})$

Table 4: Recalculation factors for extrapolation

Prescans for radiated measurements below 30 MHz are performed in a fully anechoic room (called "CDC"). The measurement distance is 3 meters. The emissions of the EUT are recorded with an EMI test receiver configured as described in table 5.

Frequency (f)	Measurement receiver bandwidth	Step size	Detector type		
			Prescan	Prescan with FFT	Final scan
$9 \text{ kHz} \leq f < 150 \text{ kHz}$	200 Hz	$\leq 100 \text{ Hz}$	Peak, Average	Peak Quasi-peak, Average	Peak Quasi-peak, Average
$150 \text{ kHz} \leq f < 30 \text{ MHz}$	9 kHz	$\leq 4.5 \text{ kHz}$	Peak, Average	Peak Quasi-peak, Average	Peak Quasi-peak, Average

Table 5: Bandwidth and detector type for radiated emissions test below 30 MHz

Prescans are performed with all detectors activated at the same time. If the test receiver is capable of FFT analysis, it is used for prescans, but not for final scans. If no limit is specified for certain detectors, final scan measurement with these detectors may be omitted.

The radiated emissions test below 30 MHz is performed in the following steps:

- The loop antenna is positioned with its plane perpendicular to the ground with the lowest height of the antenna 1 m above the ground.
- The EUT is placed in its standard position on a turntable capable of rotation through 360° in the horizontal plane and arranged as tabletop or floor-standing equipment, as applicable. The EUT is switched on.
- The measurement equipment is connected to the loop antenna and set-up according to the specifications of the test (see table 5).

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

- d) The EUT is turned to a position likely to get the maximum and the test antenna is rotated to detect the maximum of the fundamental in this EUT position.
- e) Then the EUT is rotated in a horizontal plane through 360° in steps of 45°. Starting at 0°, at each table position the spectrum for the full frequency range is recorded. If the emission at a certain frequency is higher than the levels already recorded, the current table position is noted as the maximum position.
- f) After the last prescan, the significant maximum emissions and their table positions are determined and collected in a list.
- g) With the test receiver set to the first frequency of the list, the EUT is rotated by $\pm 45^\circ$ around the table position found during prescans while measuring the emission level continuously. For final scan, the worst-case table position is set and the maximum emission level is recorded.
- h) Step g) is repeated for all other frequencies in the list.
- i) Finally, for frequencies with critical emissions the loop antenna is rotated again to find the maximum of emission. At least, frequency and level of the six highest emissions relative to the limit have to be recorded. However, emissions more than 20 dB below the limit do not need to be reported.

If the EUT may be used in various positions, steps a) to i) are repeated in two other orthogonal positions. If the EUT may be used in one position only, steps a) to i) are repeated in one orthogonal position.

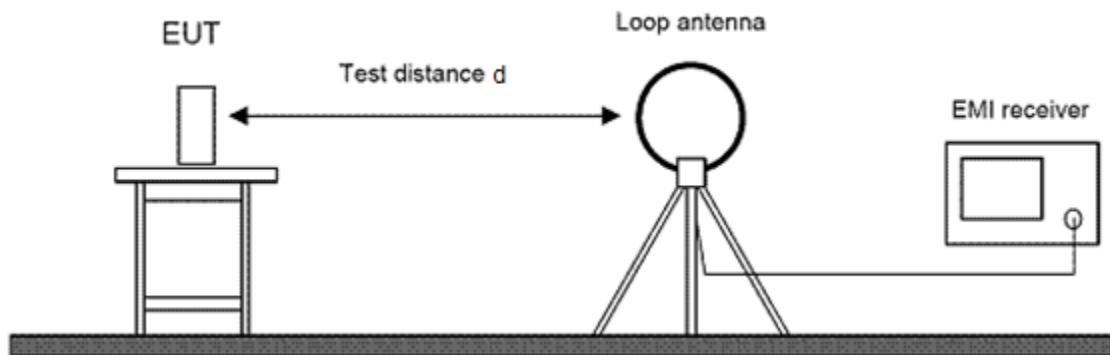


Figure 3: Setup for radiated emissions test below 30 MHz

5.4 Radiated emissions from 30 MHz to 1 GHz

Radiated emissions in the frequency range 30 MHz to 1 GHz are measured according to clause 6.5 of ANSI C63.10 using a semi-anechoic chamber (SAC) with a ground plane on the floor. The measurement distance is 3 meters. The emissions of the EUT are recorded with an EMI test receiver configured as described in table 6.

Frequency (f)	Measurement receiver bandwidth	Step size	Detector type		
			Prescan	Prescan with FFT	Final scan
30 MHz ≤ f ≤ 1 GHz	120 kHz	≤ 60 kHz	Peak	Quasi-peak	Quasi-peak

Table 6: Bandwidth and detector type for radiated emissions test from 30 MHz to 1 GHz

The measurement antenna is a combination of a biconical antenna and a logarithmic-periodic dipole array antenna. It is mounted on a support capable of allowing the antenna to be used in either horizontal or vertical polarization and in a height between 1 m and 4 m above the ground plane.

If the test receiver is capable of FFT analysis, it is used for prescans, but not for final scans.

The radiated emissions test from 30 MHz to 1 GHz is performed in the following steps:

- a) The measurement antenna is oriented initially for vertical polarization.
- b) The EUT is placed in its standard position on a turntable capable of rotation through 360° in the horizontal plane and arranged as tabletop or floor-standing equipment, as applicable. The EUT is switched on.
- c) The measurement equipment is connected to the measurement antenna and set-up according to the specifications of the test (see table 6).
- d) The table position is set to 0°.
- e) The antenna height is set to 1 m.
- f) The spectrum for the full frequency range is recorded. If the emission at a certain frequency is higher than the levels already recorded, the polarization and height of the measurement antenna as well as the current table position are noted as the maximum position.
- g) The antenna height is increased to 4 m in steps of 50 cm. At each height, step f) is repeated.
- h) The polarization of the measurement antenna is changed to horizontal.
- i) The antenna height is decreased from 4 m to 1 m in steps of 50 cm. At each height, step f) is repeated.
- j) The EUT is rotated in a horizontal plane through 360° in steps of 60°. At each table position, steps e) to i) are repeated.
- k) After the last prescan, the significant maximum emissions with their polarizations and heights of the measurement antenna as well as their table positions are determined and collected in a list.
- l) With the test receiver set to the first frequency of the list, the measurement antenna is set to the polarization and height and the table is moved to the position as determined during prescans.
- m) The antenna is moved by ±50 cm around this height and the EUT is rotated by ±60° around this table position while measuring the emission level continuously.
- n) For final scan, the worst-case positions of antenna and table are set and the maximum emission level is recorded.
- o) Steps l) to n) are repeated for all other frequencies in the list. At least, frequency and level of the six highest emissions relative to the limit have to be recorded. However, emissions more than 20 dB below the limit do not need to be reported.

If the EUT may be used in various positions, steps a) to o) are repeated in two other orthogonal positions.

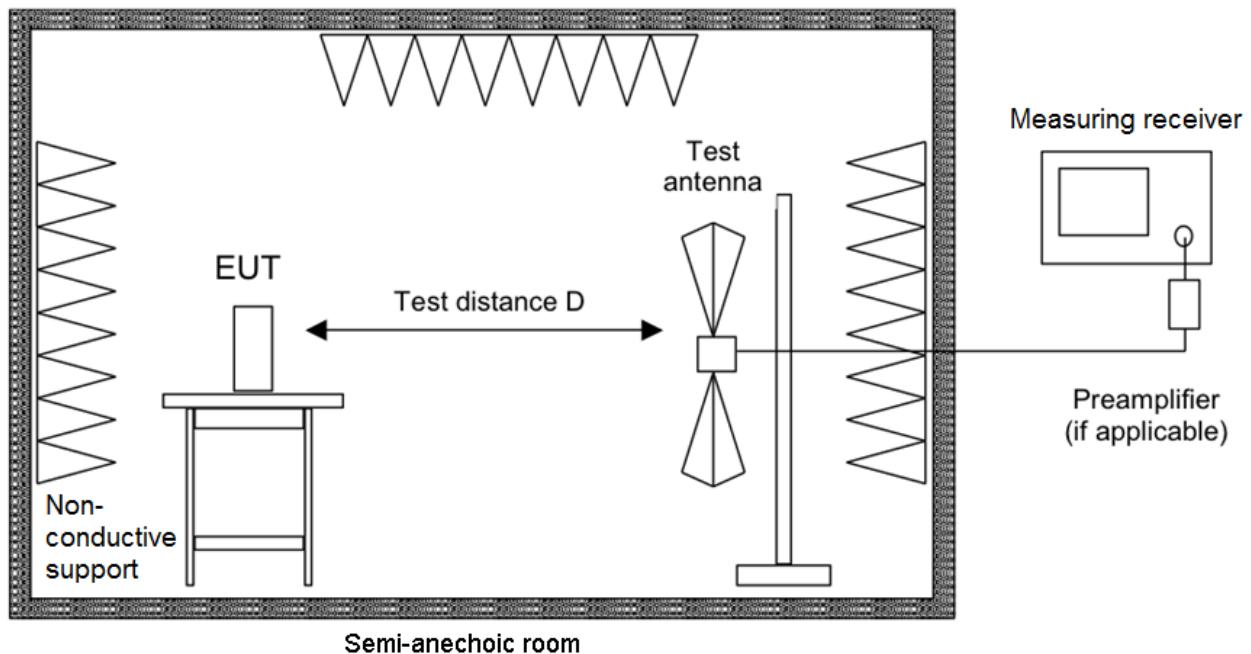


Figure 4: Setup for radiated emissions test from 30 MHz to 1 GHz

5.5 Radiated emissions above 1 GHz

Radiated emissions above 1 GHz are measured according to clause 6.6 of ANSI C63.10 by conducting exploratory and final radiated emission tests. According to clause 6.6.4.1 of ANSI C63.10, measurements may be performed at a distance closer than that specified in the requirements. However, an attempt shall be made to avoid making final measurements in the near field of both the measurement antenna and the EUT.

For measurement of radiated emissions above 1 GHz, horn antennas are used.

5.5.1 Exploratory radiated emissions measurements

Exploratory radiated emissions above 1 GHz are measured in a semi-anechoic chamber with RF absorbing material on the floor or a fully anechoic room. They are performed by moving the receiving antenna over all sides of the EUT at a closer distance (e.g. 0.5 or 1 m) while observing the display of the test receiver to find the emissions to be re-tested during final radiated emission measurements.

According to clause 5.3.3 of ANSI C63.10, when performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an

extrapolation factor of 20 dB/decade of distance (inverse of linear distance for field-strength measurements). To simplify testing and documentation, the limits are increased accordingly instead of decreasing the results.

The emissions of the EUT are displayed and recorded with an EMI test receiver operating in the spectrum analyzer mode using the settings as described in table 7.

Frequency (f)	Resolution bandwidth	Video bandwidth	Sweep time	Trace detector(s)	Trace mode(s)	Test
$f \geq 1 \text{ GHz}$	1 MHz	3 MHz	AUTO	Max Peak, Average	Clear Write	Searching
					Max Hold	Recording

Table 7: Bandwidth and trace settings for exploratory radiated emissions test above 1 GHz

If during exploratory radiated emissions measurements no levels to be re-tested are found, the final radiated emissions measurement may be omitted. In this case, the chart of the exploratory radiated emissions measurements has to be reported.

5.5.2 Final radiated emissions measurements

Final radiated emissions above 1 GHz are measured in a semi-anechoic chamber (SAC) with RF absorbing material on the floor between measurement antenna and EUT. The measurement distance is 3 meters. The emissions of the EUT are recorded with an EMI test receiver configured as described in table 8.

Frequency (f)	Measurement receiver bandwidth	Step size	Detector type	
			Prescan	Final scan
$f \geq 1 \text{ GHz}$	1 MHz	$\leq 500 \text{ kHz}$	Peak, Average	Peak, Average

Table 8: Bandwidth and detector type for final radiated emissions test above 1 GHz

Prescans are performed with both detectors activated at the same time. If the test receiver is capable of FFT analysis, it is used for prescans, but not for final scans.

The horn antenna is mounted on a support capable of allowing the antenna to be used in either horizontal or vertical polarization and to be moved in a scan height range between 1 m and the scan height upper range defined in clause 6.6.3.3 of ANSI C63.10. When the EUT is manipulated through three different orientations, the scan height upper range for the measurement antenna is limited to 2.5 m above the ground plane or 0.5 m above the top of the EUT, whichever is higher. Otherwise, the scan height upper range is 4 m above the ground plane.

To keep the emission signal within the illumination area of the 3 dB beamwidth of the measurement antenna, the automatic tilt function of the antenna support device is used to point the antenna at an angle toward the source of the emission.

The final radiated emissions test above 1 GHz is performed in the following steps:

- a) The measurement antenna is oriented initially for vertical polarization.
- b) The EUT is placed in its standard position on a turntable capable of rotation through 360° in the horizontal plane and arranged as tabletop or floor-standing equipment, as applicable. The EUT is switched on.
- c) The measurement equipment is connected to the measurement antenna and set-up according to the specifications of the test (see table 8).
- d) The table position is set to 0°.
- e) The antenna height is set to 1 m.
- f) The spectrum for the full frequency range is recorded. If the emission at a certain frequency is higher than the levels already recorded, the polarization and height of the measurement antenna as well as the current table position are noted as the maximum position.
 - g) The antenna height is increased to the scan height upper range in steps of 50 cm. At each height, step f) is repeated.
- h) The polarization of the measurement antenna is changed to horizontal.
- i) The antenna height is decreased from the scan height upper range to 1 m in steps of 50 cm. At each height, step f) is repeated.
- j) The EUT is rotated in a horizontal plane through 360° in steps of 30°. At each table position, steps e) to i) are repeated.
- k) After the last prescan, the significant maximum emissions with their polarizations and heights of the measurement antenna as well as their table positions are determined and collected in a list.
- l) With the test receiver set to the first frequency of the list, the measurement antenna is set to the polarization and height and the table is moved to the position as determined during prescans.
- m) The antenna is moved by ± 50 cm around this height and the EUT is rotated by ± 30 ° around this table position while measuring the emission level continuously.
- n) For final scan, the worst-case positions of antenna and table are set and the maximum emission level is recorded.
- o) Steps l) to n) are repeated for all other frequencies in the list. At least, frequency and level of the six highest emissions relative to the limit have to be recorded. However, emissions more than 20 dB below the limit do not need to be reported.

If the EUT may be used in various positions, steps a) to o) are repeated in two other orthogonal positions.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

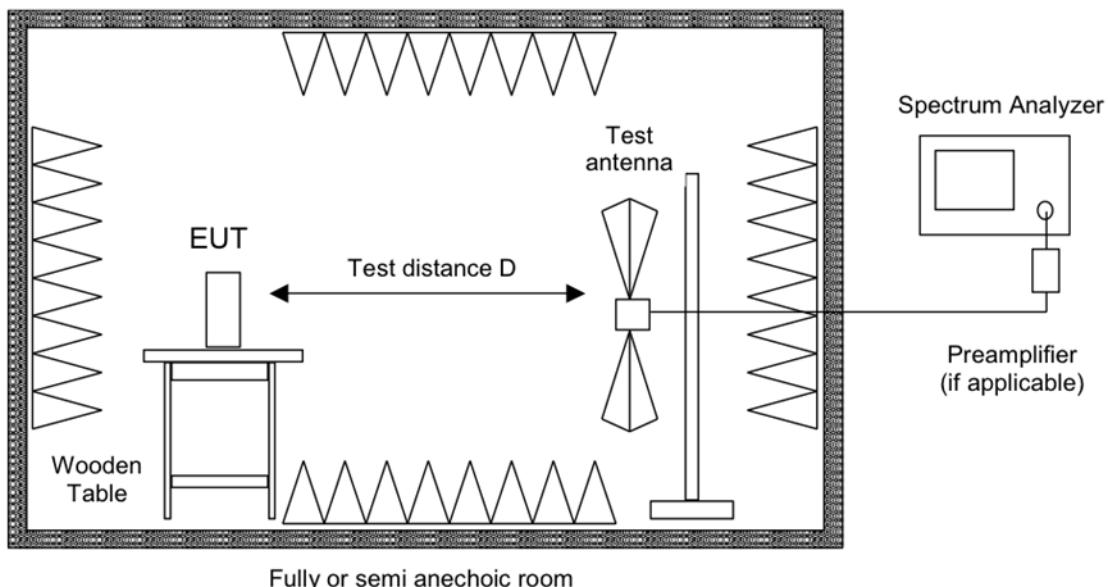


Figure 5: Setup for radiated emissions test above 1 GHz

5.6 Bandwidth measurements

In case of antenna-port conducted tests as described in clause 5.2 cannot be performed, according to section 3.0 of KDB 558074 D01, results of radiated tests are used for demonstrating compliance to the conducted emission requirements. For details about conversion see clause 5.1.2

5.6.1 20 dB bandwidth of the emission

The 20 dB bandwidth of the emission is measured according to clause 6.9.2 of ANSI C63.10 as the width of the spectral envelope of the modulated signal, at an amplitude level reduced by a ratio of 20 dB down from the reference value.

The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer is between two times and five times the 20 dB bandwidth. The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 % to 5 % of the 20 dB bandwidth and the video bandwidth (VBW) shall be approximately three times RBW.

The reference level of the instrument is set as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than $[10 \log (20 \text{ dB bandwidth}/\text{RBW})]$ below the reference level.

The 20 dB bandwidth of the emission is not required for digital transmission systems (DTS). For these systems, the 6 dB bandwidth applies.

5.6.2 6 dB bandwidth (DTS bandwidth)

The 6 dB bandwidth or DTS bandwidth is measured according to clause 8.0 of KDB Publication 558074, document D01, using the following settings:

- a) Resolution bandwidth RBW = 100 kHz
- b) Video bandwidth (VBW) $\geq 3 \times$ RBW
- c) Detector = Peak
- d) Trace mode = max hold
- e) Sweep = auto couple

After the trace is stabilized, the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

If using the automatic bandwidth measurement capability of the test instrument (6 dB down function), care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB. In addition, it has to be checked that this function delivers the two outermost amplitude points.

The 6 dB bandwidth is not required for frequency hopping systems (FHSS). For these systems the 20 dB bandwidth applies.

5.6.3 99 % occupied bandwidth

According to section 6.7 of RSS-Gen, the occupied bandwidth (OBW) is defined as the 99 % emission bandwidth.

The span of the spectrum analyzer is set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

The resolution bandwidth is in the range of 1 % to 5 % of the occupied bandwidth and the video bandwidth is not smaller than three times the resolution bandwidth. Video averaging is not permitted.

If possible, the detector of the spectrum analyzer is set to "Sample". However, if the device is not transmitting continuously, a peak, or peak hold is used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement).

To measure the 99 % emission bandwidth, the OBW function of the test receiver is used with the power bandwidth set to 99 %. This function indicates the lowest frequency (starting from the left side of the span) and the highest frequency (starting from the right side of the span) where 0.5% of

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

the total sum is reached. The difference between the two frequencies is the 99 % occupied bandwidth.

5.7 Maximum peak conducted output power

In case of antenna-port conducted tests as described in clause 5.2 cannot be performed, according to section 3.0 of KDB 558074 D01, results of radiated tests are used for demonstrating compliance to the conducted emission requirements. For details about conversion see clause 5.1.2

5.7.1 Digital transmission systems (DTS)

The maximum conducted output power test method for digital transmission systems (DTS) refers to section 9.1.1 of KDB Publication 558074, document D01.

The spectrum analyzer settings are as follows:

- a) Span $\geq 3 \times$ RBW, centered on a channel
- b) RBW \geq DTS bandwidth
- c) VBW $\geq 3 \times$ RBW
- d) Sweep time = auto coupled
- e) Detector function = peak
- f) Trace mode = max hold
- g) Reference level = more than $10 \cdot \log(\text{OBW}/\text{RBW})$ dB above peak of spectral envelope

After the trace is stabilized, the marker-to-peak function is used to set the marker to the peak of the emission. The indicated level is the maximum peak conducted output power.

5.8 Power spectral density

The power spectral density test method for DTS systems refers to section 10.2 of KDB Publication 558074, document D01.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

The spectrum analyzer settings are as follows:

- a) Span = 1.5 times the DTS bandwidth, centered on a channel
- b) RBW: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$
- c) VBW $\geq 3 \times \text{RBW}$
- d) Sweep time = auto coupled or $\geq \text{span}/\text{RBW}$ in seconds, whichever is greater
- e) Detector function = peak
- f) Trace mode = max hold
- g) Reference level = more than $10 \cdot \log(\text{OBW}/\text{RBW}) \text{ dB}$ above peak of spectral envelope

After the trace is stabilized, the marker-to-peak function is used to set the marker to the peak of the emission. The indicated level is the power spectral density.

In case of antenna-port conducted tests as described in clause 5.2 cannot be performed, according to section 3.0 of KDB 558074 D01, results of radiated tests are used for demonstrating compliance to the conducted emission requirements. For details about conversion see clause 5.1.2

The power spectral density is required for digital transmission systems (DTS), only. It does not apply to frequency hopping systems (FHSS).

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6 Testresults

This clause gives details about the test results as collected in the summary of test results on page 6.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.1 20 dB bandwidth

Section(s) in 47 CFR Part 15: Requirement(s): 15.215(c)

Performed by:	Jennifer Ebner	Date(s) of test:	April 20, 2018
Climatic conditions:	Ambient temperature 21.1 °C	Relative humidity 34.8%	Barometric pressure 974.5 hPa
Result ³ :	<input checked="" type="checkbox"/> Test passed	<input type="checkbox"/> Test not passed	

6.1.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input type="checkbox"/> Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
<input type="checkbox"/> Free space semi-anechoic chamber (FS-SAC)	FS-SAC	EMV TESTHAUS	E00100
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
<input type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input checked="" type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input type="checkbox"/> Preamplifier (1 GHz - 18 GHz)	ALS05749	Aldetec	W01007
<input type="checkbox"/> TRILOG broadband antenna (CDC)	VULB 9160	Schwarzbeck	E00011
<input type="checkbox"/> TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
<input type="checkbox"/> TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input type="checkbox"/> Horn antenna	BBHA 9120D	Schwarzbeck	W00052
<input type="checkbox"/> Horn antenna	BBHA 9170	Schwarzbeck	W00054
<input type="checkbox"/> Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
<input type="checkbox"/> Cable set FS-SAC	RF cable(s)	Teledyne Reynolds Huber + Suhner Teledyne Reynolds	E00435 E00307 E00433
<input type="checkbox"/> Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

³ For information about measurement uncertainties see page 76.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.1.1 Limits

According to §15.215(c), intentional radiators operating under the alternative provisions to the general emission limits must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

The specific rule section under which the equipment operates is §15.247. According to §15.247(a)(2), for systems using digital modulation techniques (DTS), the 6 dB bandwidth (DTS bandwidth) is specified as the bandwidth of the emission. In this case, measuring the 20 dB bandwidth is not required.

6.1.2 Test procedure

The 20 dB bandwidth is measured using the test procedure as described in clause 5.6.1 and referring to the

- test method for conducted measurements as described in clause 5.2.
- test method for radiated measurements as described in clause 5.5.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.1.3 Testresults

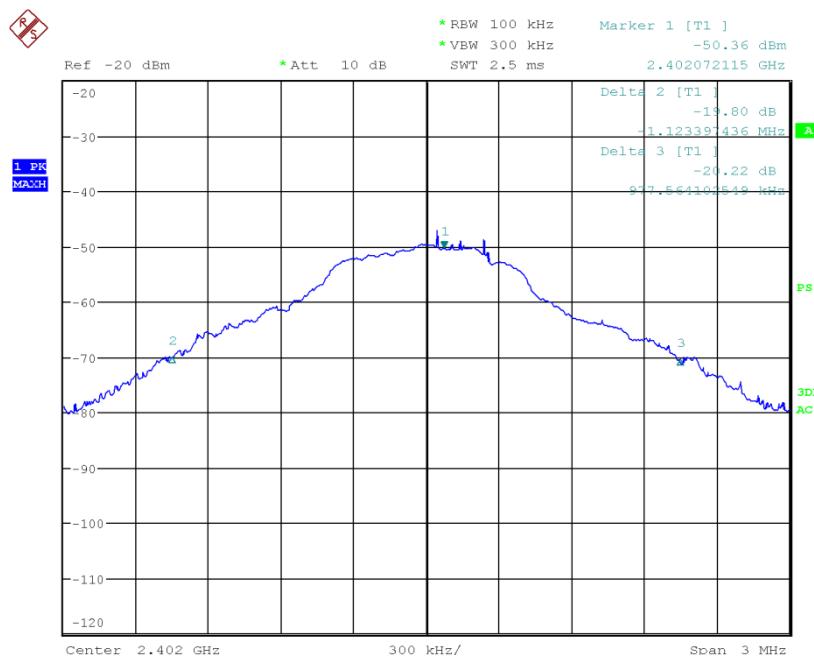


Figure 6: Chart of 20 dB bandwidth on channel 37

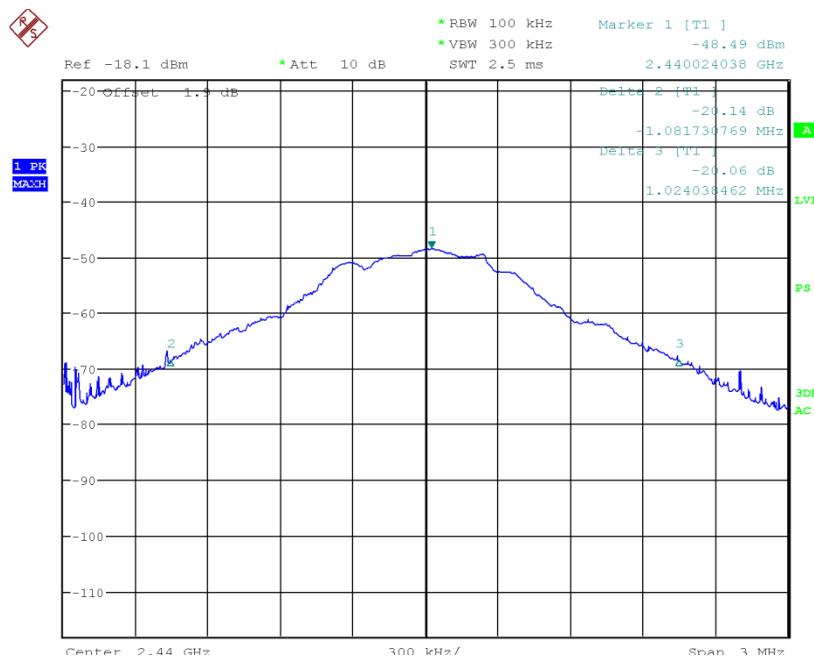


Figure 7: Chart of 20 dB bandwidth on channel 17

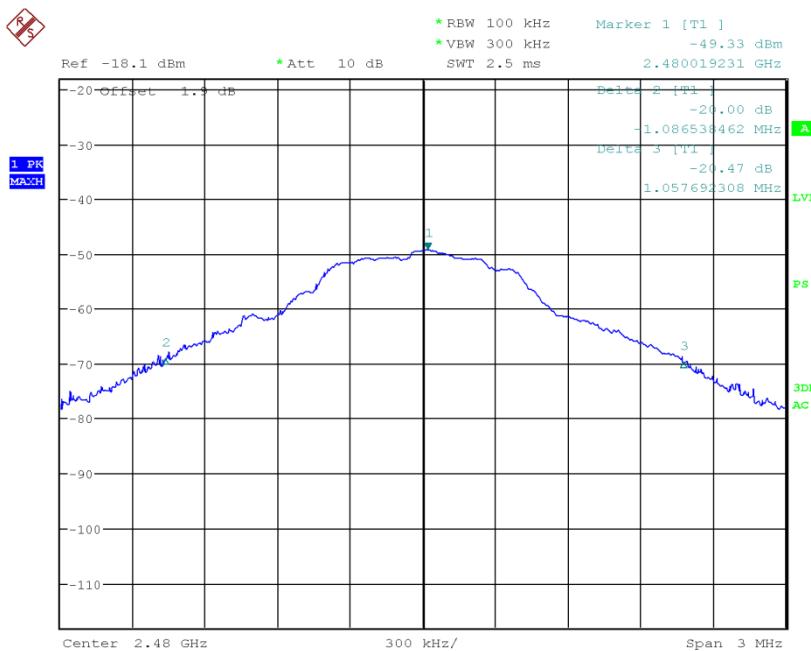


Figure 8: Chart of 20 dB bandwidth test on channel 39

Channel	20 dB bandwidth [kHz]	Band edge left Frequency [MHz]	Limit [MHz]	Band edge right Frequency [MHz]	Limit [MHz]	Result ⁴
37	2100.961	2400.94872	2400.0	2403.04968	2483.5	Recorded
17	2105.769	2439.15865	2400.0	2441.26442	2483.5	Recorded
39	2144.231	2478.93269	2400.0	2481.07692	2483.5	Recorded

Table 9: Results of 20 dB bandwidth tests

⁴ For systems using digital modulation techniques (DTS), the 20 dB bandwidth is recorded for information only.

6.2 6 dB bandwidth

Section(s) in 47 CFR Part 15:	Requirement(s): Reference(s):	15.215(c), 15.247(a)(2) KDB 558074 D01, section 8
Section(s) in RSS:	Requirement(s): Reference(s):	RSS-247, section 5.2(a) ANSI C63.10, clause 11.8

Performed by:	Jennifer Ebner	Date(s) of test:	April 20, 2018
Climatic conditions:	Ambient temperature 21.1 °C	Relative humidity 34.8%	Barometric pressure 974.5 hPa
Result ⁵ :	<input checked="" type="checkbox"/> Test passed <input type="checkbox"/> Test not passed		

6.2.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input type="checkbox"/> Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
<input type="checkbox"/> Free space semi-anechoic chamber (FS-SAC)	FS-SAC	EMV TESTHAUS	E00100
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
<input type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input checked="" type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input type="checkbox"/> Preamplifier (1 GHz - 18 GHz)	ALS05749	Aldetec	W01007
<input type="checkbox"/> TRILOG broadband antenna (CDC)	VULB 9160	Schwarzbeck	E00011
<input type="checkbox"/> TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
<input type="checkbox"/> TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input type="checkbox"/> Horn antenna	BBHA 9120D	Schwarzbeck	W00052
<input type="checkbox"/> Horn antenna	BBHA 9170	Schwarzbeck	W00054
<input type="checkbox"/> Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
<input type="checkbox"/> Cable set FS-SAC	RF cable(s)	Teledyne Reynolds Huber + Suhner Teledyne Reynolds	E00435 E00307 E00433
<input type="checkbox"/> Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

⁵ For information about measurement uncertainties see page 76.

6.2.2 Limits

According to §15.215(c), intentional radiators operating under the alternative provisions to the general emission limits must be designed to ensure that the bandwidth of the emission is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

According to §15.247(a)(2), for systems using digital modulation techniques (DTS), the 6 dB bandwidth (DTS bandwidth) is specified as the bandwidth of the emission. The minimum 6 dB bandwidth shall be at least 500 kHz.

Measuring the 6 dB bandwidth is not required for frequency hopping systems (FHSS). For these systems the 20 dB bandwidth applies.

6.2.3 Test procedure

The 20 dB bandwidth is measured using the test procedure as described in clause 5.6.2 and referring to the

- test method for conducted measurements as described in clause 5.2.
- test method for radiated measurements as described in clause 5.5.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.2.4 Testresults

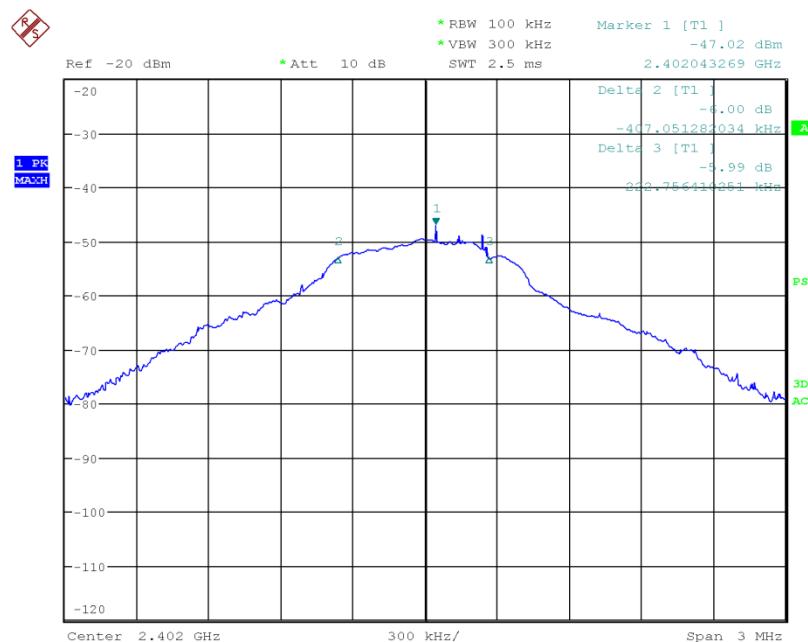


Figure 9: Chart of 6 dB bandwidth test on channel 37

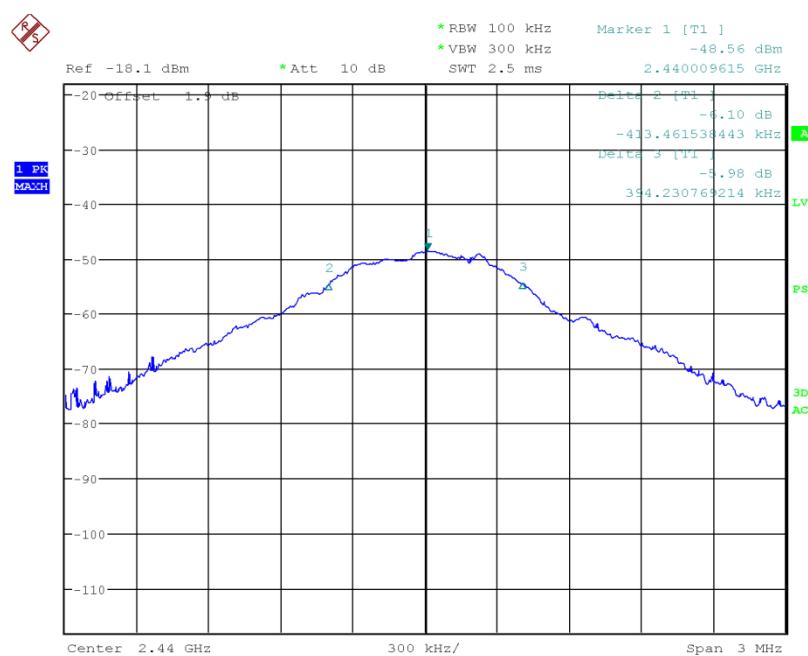


Figure 10: Chart of 6 dB bandwidth test on channel 17

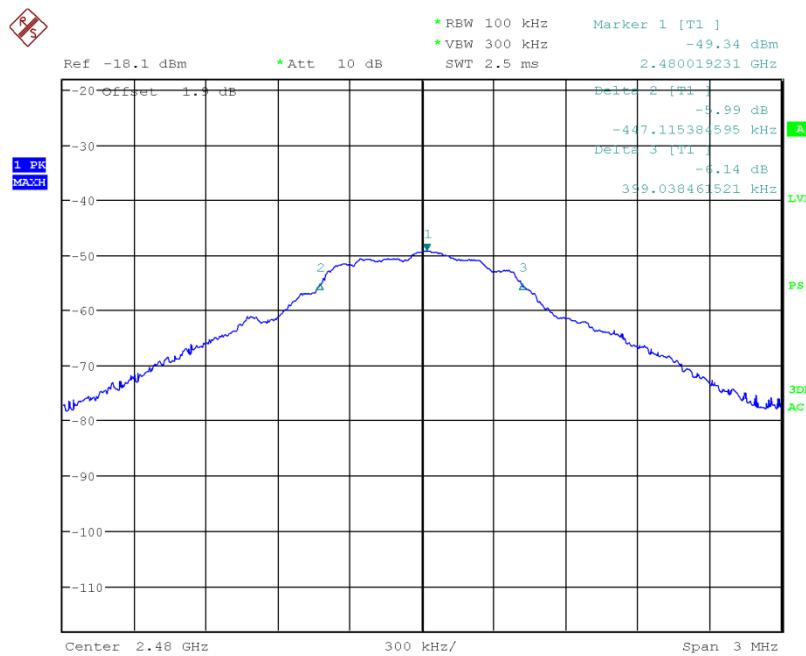


Figure 11: Chart of 6 dB bandwidth test on channel 39

Channel	6 dB bandwidth Value [kHz]	6 dB bandwidth Limit [kHz]	Band edge left Frequency [MHz]	Band edge left Limit [MHz]	Band edge right Frequency [MHz]	Band edge right Limit [MHz]	Result
37	629.808	≥ 500	2401.63622	2400.0	2402.26603	2483.5	Passed
17	807.692	≥ 500	2440.04808	2400.0	2440.40385	2483.5	Passed
39	846.154	≥ 500	2479.57212	2400.0	2480.41827	2483.5	Passed

Table 10: Results of 6 dB channel bandwidth test

6.3 Occupied bandwidth

Section(s) in 47 CFR Part 15:	Requirement(s): Reference(s):	2.202(a), KDB 558074 D01, section 5.2 ANSI C63.10, clause 6.9
Section(s) in RSS:	Requirement(s): Reference(s):	RSS-Gen, section 6.7 ANSI C63.10, clause 6.9

Performed by:	Jennifer Ebner	Date(s) of test:	April 20, 2018
Climatic conditions:	Ambient temperature 21.1 °C	Relative humidity 34.8%	Barometric pressure 974.5 hPa
Result ⁶ :	<input checked="" type="checkbox"/> Test passed	<input type="checkbox"/> Test not passed	

6.3.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input type="checkbox"/> Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
<input type="checkbox"/> Free space semi-anechoic chamber (FS-SAC)	FS-SAC	EMV TESTHAUS	E00100
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
<input type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input checked="" type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input type="checkbox"/> Preamplifier (1 GHz - 18 GHz)	ALS05749	Aldetec	W01007
<input type="checkbox"/> TRILOG broadband antenna (CDC)	VULB 9160	Schwarzbeck	E00011
<input type="checkbox"/> TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
<input type="checkbox"/> TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input type="checkbox"/> Horn antenna	BBHA 9120D	Schwarzbeck	W00052
<input type="checkbox"/> Horn antenna	BBHA 9170	Schwarzbeck	W00054
<input type="checkbox"/> Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
<input type="checkbox"/> Cable set FS-SAC	RF cable(s)	Teledyne Reynolds Huber + Suhner Teledyne Reynolds	E00435 E00307 E00433
<input type="checkbox"/> Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

⁶ For information about measurement uncertainties see page 76.

6.3.2 Limits

According to section 5.2 of KDB Publication 558074, document D01, the 99 % occupied bandwidth is necessary for setting the proper reference level and input attenuation.

According to RSS-Gen, section 6.7, the occupied bandwidth or the “99% emission bandwidth” has to be reported for all equipment in addition to the specified bandwidth required in RSS-247.

Although there is no limit specified, the occupied bandwidth has to be recorded and reported.

6.3.3 Test procedure

The occupied bandwidth is measured using the test procedure as described in clause 5.6.3 and referring to the

- test method for conducted measurements as described in clause 5.2.
- test method for radiated measurements as described in clause 5.5.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.3.4 Testresults

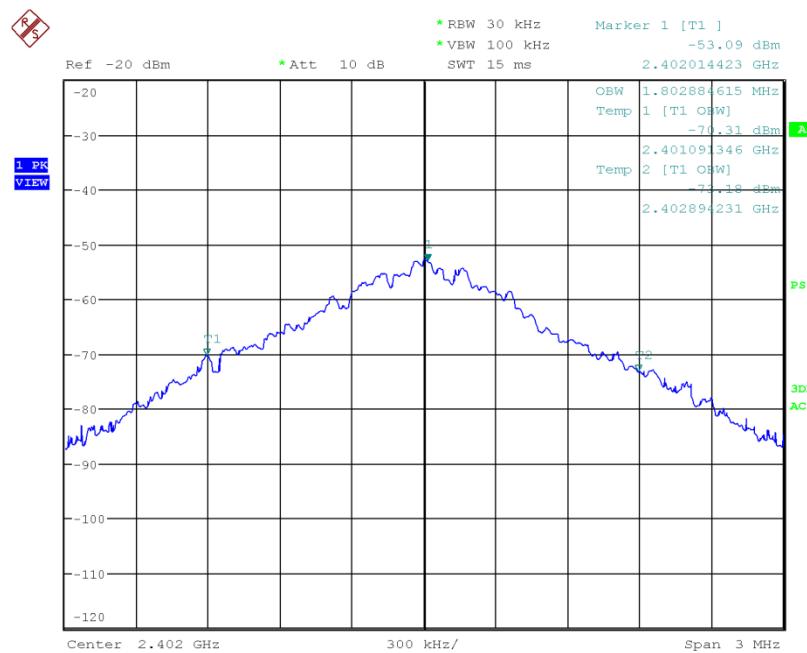


Figure 12: Chart of occupied bandwidth test on channel 37

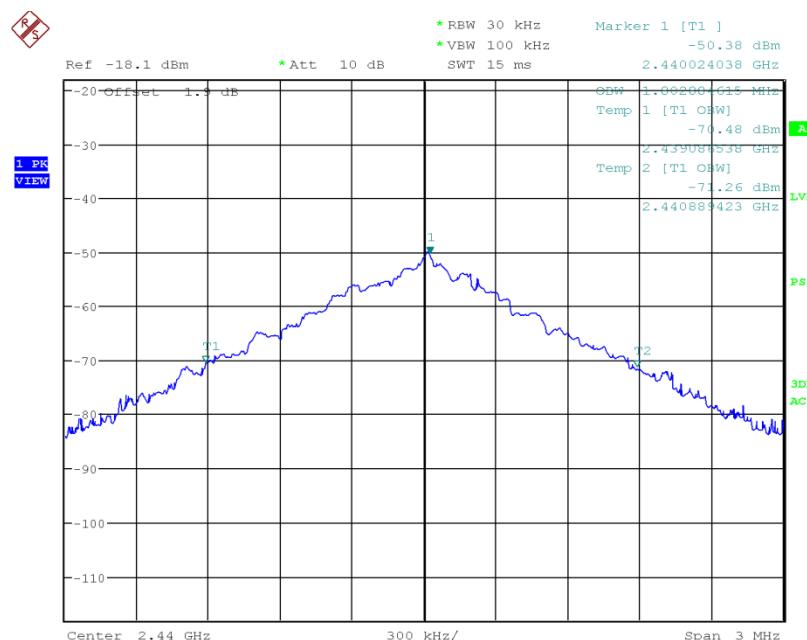


Figure 13: Chart of occupied bandwidth test on channel 17

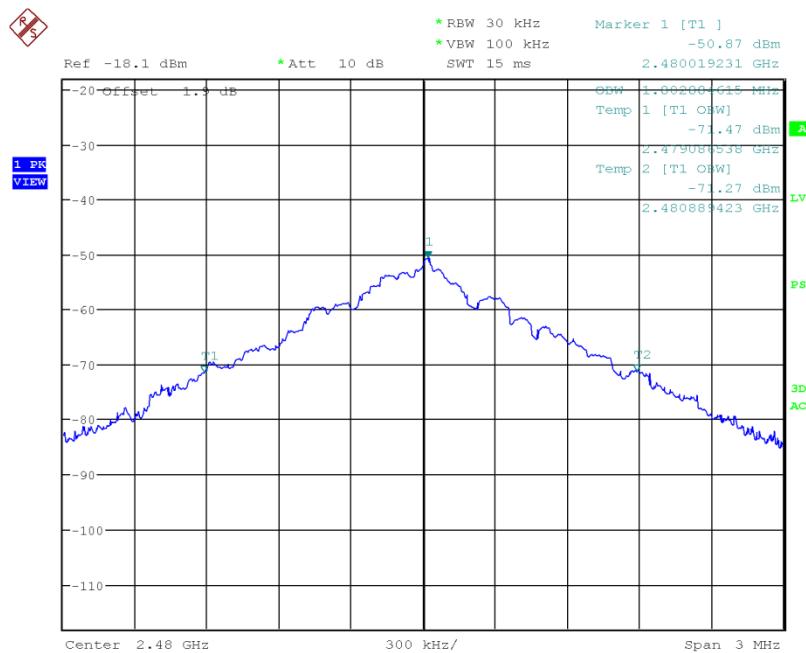


Figure 14: Chart of occupied bandwidth test on channel 39

Channel	99 % occupied bandwidth [kHz]	Result
37	1802.885	Recorded
17	1802.885	Recorded
39	1802.885	Recorded

Table 11: Results of occupied bandwidth test

6.4 Calculated conducted output power

Section(s) in 47 CFR Part 15:	Requirement(s): Reference(s):	15.247(b) KDB 558074 D01, section 9
Section(s) in RSS:	Requirement(s): Reference(s):	RSS-247, section 5.4(d) ANSI C63.10, clause 11.9

Performed by:	Jennifer Ebner	Date(s) of test:	May 3, 2018
Climatic conditions:	Ambient temperature 21.0 °C	Relative humidity 35.4%	Barometric pressure 975.2 hPa
Result ⁷ :	<input checked="" type="checkbox"/> Test passed	<input type="checkbox"/> Test not passed	

6.4.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
<input type="checkbox"/> Free space semi-anechoic chamber (FS-SAC)	FS-SAC	EMV TESTHAUS	E00100
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
<input type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input checked="" type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input type="checkbox"/> Preamplifier (1 GHz - 18 GHz)	ALS05749	Aldetec	W01007
<input type="checkbox"/> TRILOG broadband antenna (CDC)	VULB 9160	Schwarzbeck	E00011
<input type="checkbox"/> TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
<input type="checkbox"/> TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input checked="" type="checkbox"/> Horn antenna	BBHA 9120D	Schwarzbeck	W00052
<input type="checkbox"/> Horn antenna	BBHA 9170	Schwarzbeck	W00054
<input checked="" type="checkbox"/> Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
<input type="checkbox"/> Cable set FS-SAC	RF cable(s)	Teledyne Reynolds Huber + Suhner Teledyne Reynolds	E00435 E00307 E00433
<input type="checkbox"/> Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

⁷ For information about measurement uncertainties see page 76.

6.4.2 Limits

As specified in section 15.247(b)(3) of 47 CFR Part 15, for systems using digital modulation (DTS), the maximum peak conducted output power of the intentional radiator shall not exceed 1 Watt (30 dBm).

This limit is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

6.4.3 Test procedure

The maximum peak conducted output power is measured using the test procedure as described in clause 5.7.1 and referring to the

- test method for conducted measurements as described in clause 5.2.
- test method for radiated measurements as described in clause 5.5.

Note: The output power was measured radiated, so the traces in the subsequent graphics are raw data traces. To evaluate the maximum conducted output power, see clause 6.4.4.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.4.4 Test results

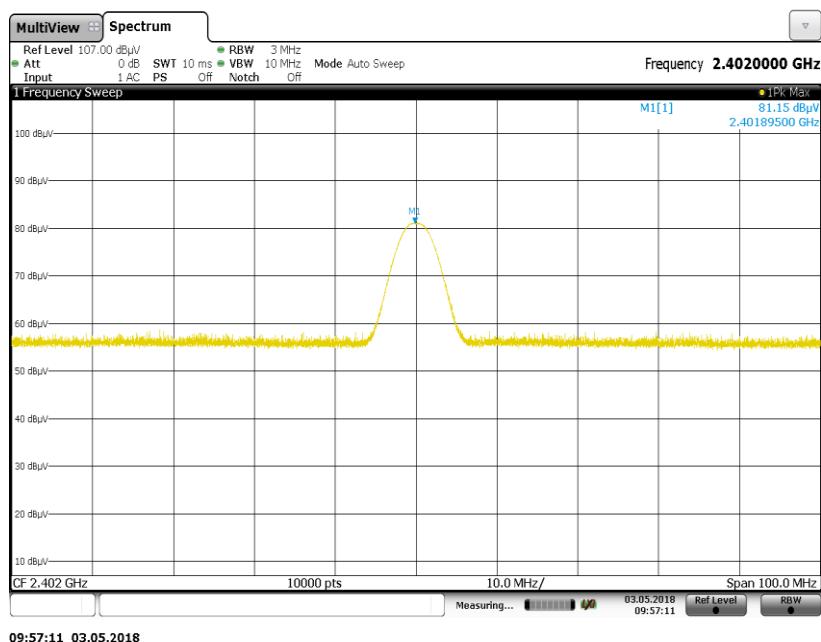


Figure 15: Chart of measured raw data on channel 37 in position 2

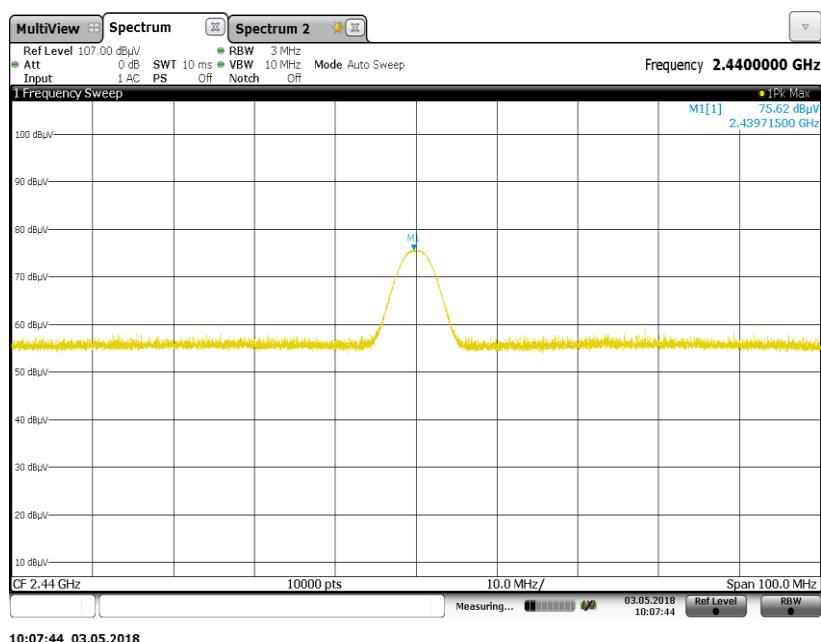


Figure 16: Chart of measured raw data on channel 17 in position 2

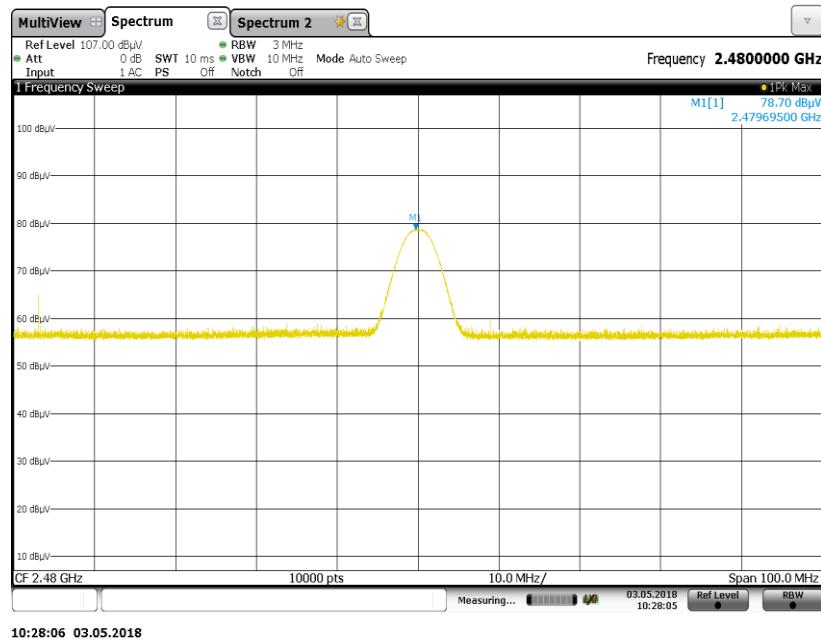


Figure 17: Chart of measured raw data on channel 39 on position 2

Channel	Frequency [MHz]	Raw data [dBμV]
37	2401.895	81.15
17	2439.715	75.62
39	2479.695	78.70

Table 12: Results of measurement (raw data)

The raw data are corrected by the antenna gain and the loss of the RF cables used in the semi-anechoic chamber. These results are converted into output power with this formular:

$$\text{output power [dBm]} = \text{value} \left[\frac{\text{dB}\mu\text{V}}{\text{m}} \right] - 95.2$$

Channel	Frequency [MHz]	Output power [dBm]
37	2401.895	-29.825
17	2439.715	-35.46
39	2479.695	-32.276

Table 13: Corrected output power

As declared by the customer, the maximum gain of the EUT antenna on the module is 5 dBi. So the calculated conducted output power is listed in Table 14.

Channel	Frequency [MHz]	Calculated conducted output power [dBm]	Limit ⁸		Margin [dB]	Results
			[dBm]	[W]		
37	2401.895	-34.825	30	1	64.825	Passed
17	2439.715	-40.46	30	1	70.46	Passed
39	2479.695	-37.276	30	1	67.276	Passed

Table 14: Results of calculated conducted output power

⁸ If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For information about the EUT see clause 3.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.5 Calculated power spectral density

Section(s) in 47 CFR Part 15:	Requirement(s): Reference(s):	15.247(e) KDB 558074 D01, section 10
Section(s) in RSS:	Requirement(s): Reference(s):	RSS-247, section 5.2(b) ANSI C63.10, clause 11.10

Performed by:	Jennifer Ebner	Date(s) of test:	May 3, 2018
Climatic conditions:	Ambient temperature 21.0 °C	Relative humidity 35.4%	Barometric pressure 975.2 hPa
Result ⁹ :	<input checked="" type="checkbox"/> Test passed	<input type="checkbox"/> Test not passed	

6.5.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
<input type="checkbox"/> Free space semi-anechoic chamber (FS-SAC)	FS-SAC	EMV TESTHAUS	E00100
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
<input type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input checked="" type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input checked="" type="checkbox"/> Preamplifier (1 GHz - 18 GHz)	ALS05749	Aldetec	W01007
<input type="checkbox"/> TRILOG broadband antenna (CDC)	VULB 9160	Schwarzbeck	E00011
<input type="checkbox"/> TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
<input type="checkbox"/> TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input type="checkbox"/> Horn antenna	BBHA 9120D	Schwarzbeck	W00052
<input checked="" type="checkbox"/> Horn antenna	BBHA 9170	Schwarzbeck	W00054
<input type="checkbox"/> Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
<input type="checkbox"/> Cable set FS-SAC	RF cable(s)	Teledyne Reynolds Huber + Suhner Teledyne Reynolds	E00435 E00307 E00433
<input type="checkbox"/> Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

⁹ For information about measurement uncertainties see page 76.

6.5.2 Limits

As specified in section 15.247(e) of 47 CFR Part 15, for digitally modulated systems (DTS), the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

The same method of determining the conducted output power shall be used to determine the power spectral density.

For frequency hopping systems (FHSS), measuring the power spectral density is not applicable.

6.5.3 Test procedure

The power spectral density is measured using the test procedure as described in clause 5.8 and referring to the

- test method for conducted measurements as described in clause 5.2.
- test method for radiated measurements as described in clause 5.5.

Note: The power spectral density was measured radiated, so the traces in the subsequent graphics are raw data traces. To evaluate the conducted power spectral density, see clause 6.5.4.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.5.4 Testresults

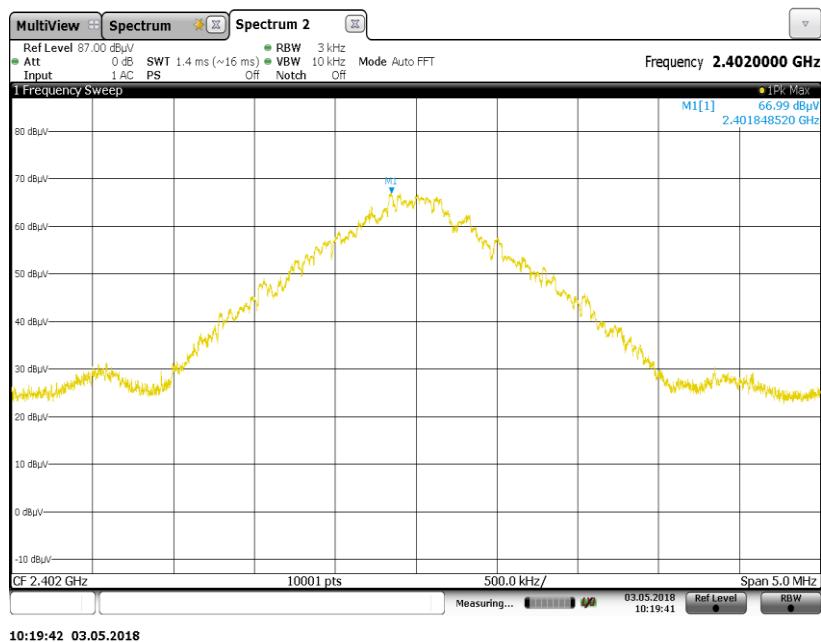


Figure 18: Chart of measured raw data on channel 37 in position 2

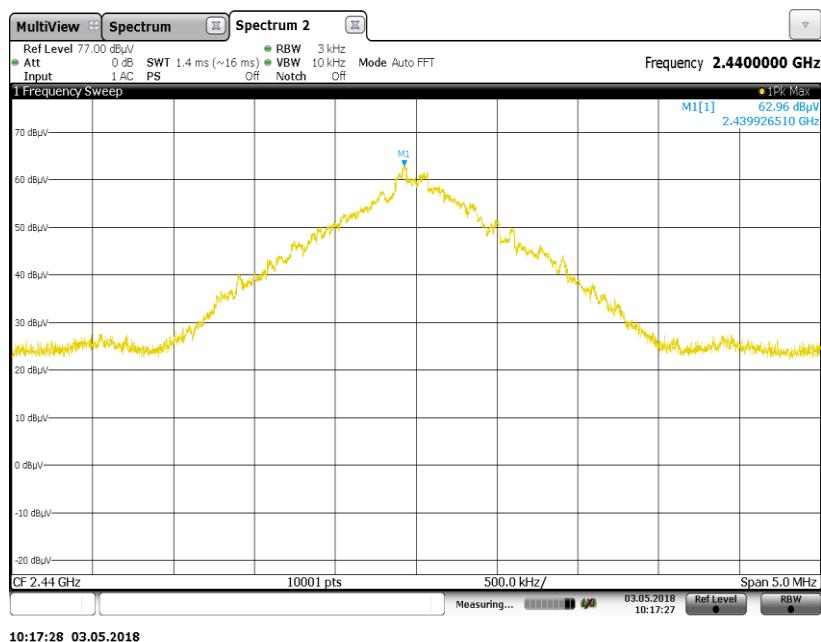


Figure 19: Chart of measured raw data on channel 17 in position 2

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

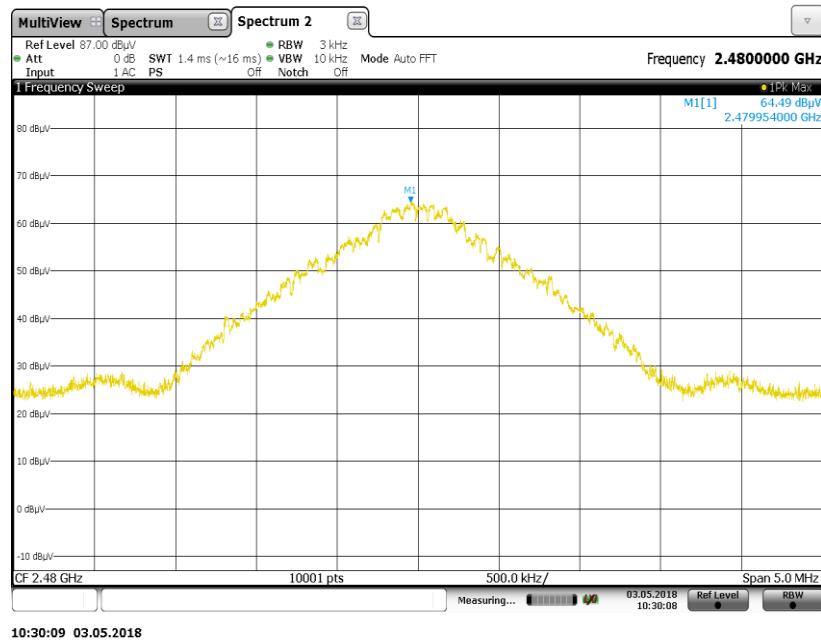


Figure 20: Chart of raw data on channel 39 in position 2

Channel	Frequency [MHz]	Raw data [dBμV]
37	2401.849	66.99
17	2439.927	62.96
39	2479.954	64.49

Table 15: Results of measurement (raw data)

The raw data are corrected by the antenna gain and the loss of the RF cables used in the semi-anechoic chamber. These results are converted into power spectral density with this formula:

$$\text{power spectral density [dBm]} = \text{value} \left[\frac{\text{dB}\mu\text{V}}{\text{m}} \right] - 95.2$$

Channel	Frequency [MHz]	Power spectral density [dBm]
37	2401.849	-43.985
17	2439.927	-48.12
39	2479.954	-46.486

Table 16: Corrected power spectral density

As declared by the customer, the maximum gain of the EUT antenna on the module is 5 dBi. So the calculated conducted power spectral density is listed in Table 17.

Channel	Frequency [MHz]	Calculated conducted power spectral density[dBm]	Limit ¹⁰ [dBm]	Margin [dB]	Results
37	2401.849	-48.985	8	56.985	Passed
17	2439.927	-53.12	8	61.12	Passed
39	2479.954	-51.486	8	59.486	Passed

Table 17: Results of calculated conducted power spectral density

¹⁰ If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For information about the EUT see clause 3.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.6 Band-edge measurements

Section(s) in 47 CFR Part 15:	Requirement(s): Reference(s):	15.247(d) KDB 558074 D01, section 13
Section(s) in RSS:	Requirement(s): Reference(s):	RSS-247, section 5.5 ANSI C63.10, clause 6.10

Result¹¹:

Test passed

Test not passed

6.6.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
<input type="checkbox"/> Free space semi-anechoic chamber (FS-SAC)	FS-SAC	EMV TESTHAUS	E00100
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
<input checked="" type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input type="checkbox"/> Preamplifier (1 GHz - 18 GHz)	ALS05749	Aldetec	W01007
<input type="checkbox"/> TRILOG broadband antenna (CDC)	VULB 9160	Schwarzbeck	E00011
<input type="checkbox"/> TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
<input type="checkbox"/> TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input checked="" type="checkbox"/> Horn antenna	BBHA 9120D	Schwarzbeck	W00052
<input type="checkbox"/> Horn antenna	BBHA 9170	Schwarzbeck	W00054
<input checked="" type="checkbox"/> Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
<input type="checkbox"/> Cable set FS-SAC	RF cable(s)	Teledyne Reynolds Huber + Suhner Teledyne Reynolds	E00435 E00307 E00433
<input checked="" type="checkbox"/> Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

¹¹ For information about measurement uncertainties see page 76.

6.6.2 Limits

Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	above 38.6
13.36-13.41			

Table 18: Restricted bands of operation according to §15.205

According to §15.247(d), in any 100 kHz bandwidth outside of the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands (see table 18) must also comply with the radiated emission limits specified in §15.209(a)

6.6.3 Test procedure

The band-edge measurements are performed using the

- test procedure for conducted measurements as described in clause 5.2.
- test procedure for radiated measurements as described in clause 5.5.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.6.4 Testresults

Performed by:	Jennifer Ebner	Date(s) of test:	May 30, 2018
Climatic conditions:	Ambient temperature 23.8 °C	Relative humidity 33.5 %	Barometric pressure 974.6 hPa
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
EUT position:	<input checked="" type="checkbox"/> Position 1	<input checked="" type="checkbox"/> Position 2	<input checked="" type="checkbox"/> Position 3

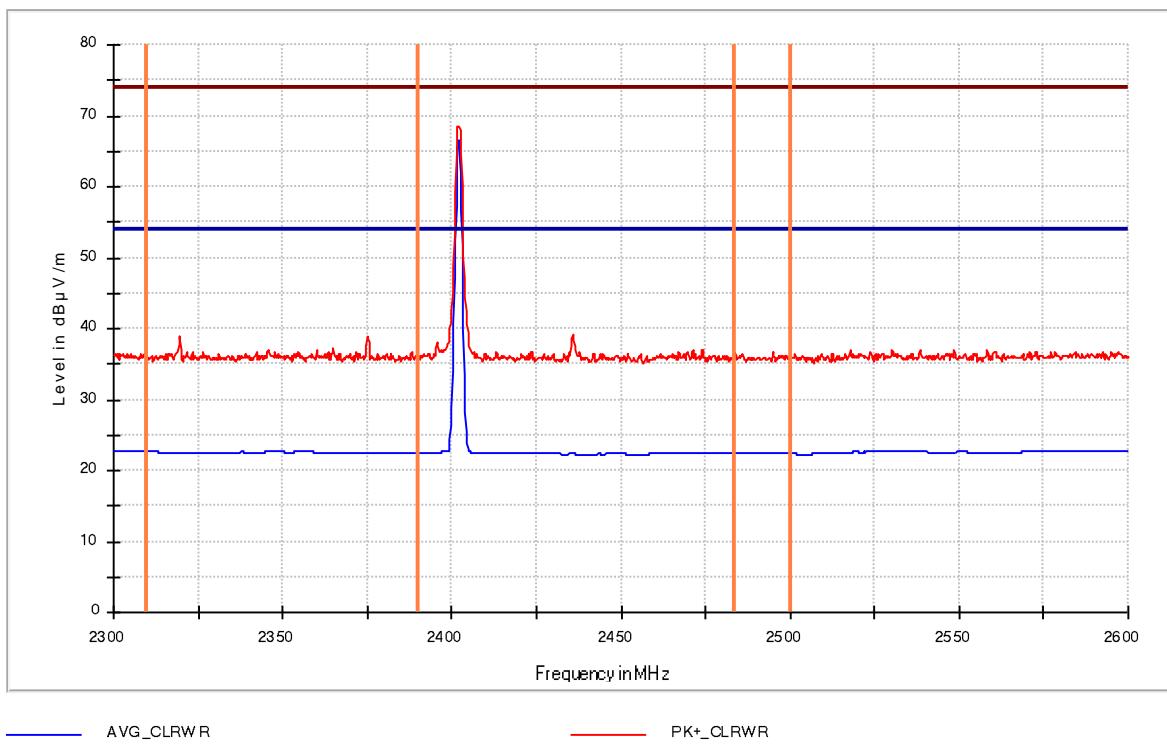


Figure 21: Chart of band-edge measurement on channel 37 in horizontal polarization

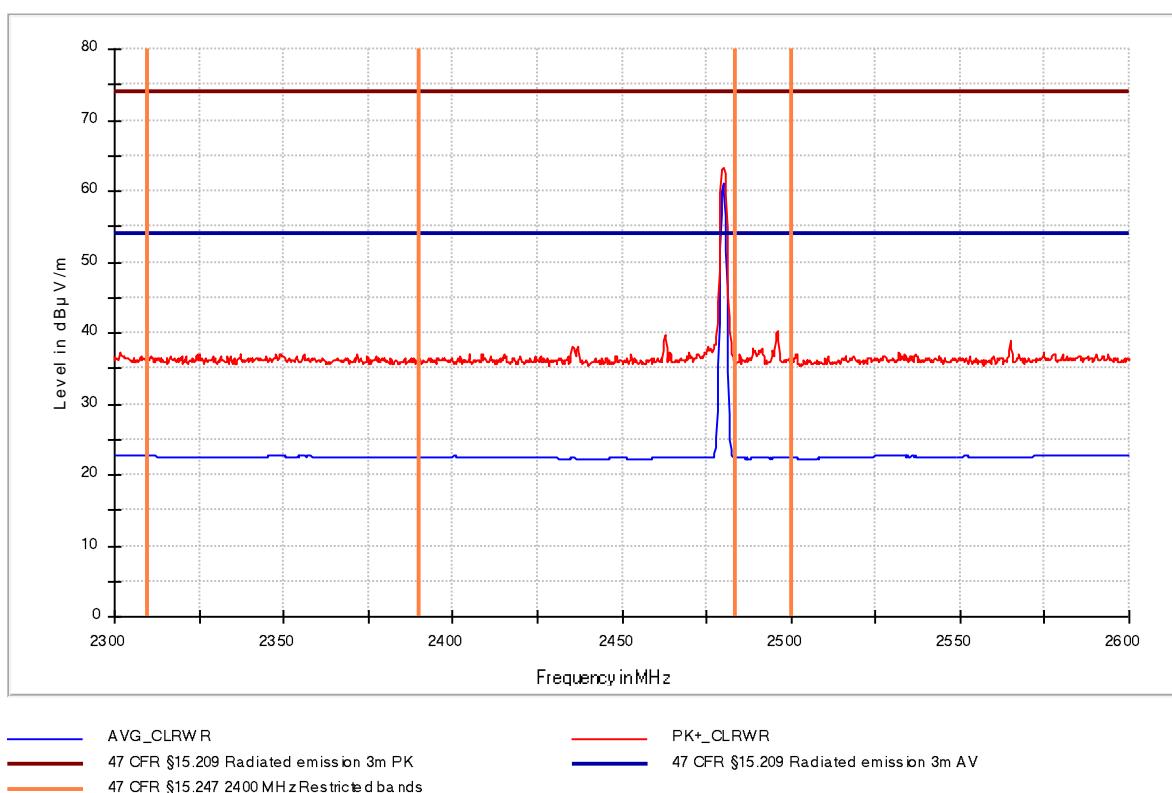


Figure 22: Chart of band-edge measurement on channel 39 in horizontal polarization

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.7 Emissions outside the operating frequency band(s) specified

6.7.1 Emissions below 30 MHz

Section(s) in 47 CFR Part 15:	Requirement(s):	15.247(d)
	Reference(s):	KDB 558074 D01, sections 11 and 12
Section(s) in RSS:	Requirement(s):	RSS-247, section 5.5
	Reference(s):	RSS-Gen, section 6.13
		ANSI C63.10, clause 6.4

Result¹²:

Test passed

Test not passed

6.7.1.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
<input type="checkbox"/> Open area test site (OATS)	---	EMV TESTHAUS	E00354
<input type="checkbox"/> Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
<input checked="" type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input type="checkbox"/> Field probe	RF-R 400-1	Langer EMV-Technik	E00270
<input checked="" type="checkbox"/> Loop antenna	HFH2-Z2	Rohde & Schwarz	E00060
<input type="checkbox"/> Cable set CDC	RF cable(s)	Huber + Suhner AME HF-Technik AME HF-Technik Stabo	E00446 E00920 E00921 E01215
<input type="checkbox"/> Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
<input checked="" type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

¹² For information about measurement uncertainties see page 76.

EMV TESTHAUS GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.7.1.2 Limits

According to §15.247(d), in any 100 kHz bandwidth outside of the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands (see table 18) must also comply with the radiated emission limits specified in §15.209(a). For the frequency range 9 kHz to 30 MHz, these limits are shown in table 19.

Frequency [MHz]	Field strength [μ V/m]	Field strength [dB μ V/m]	Measurement distance [m]
0.009 – 0.490	2400/F(kHz) (266.67 – 4.90)	48.52 – 13.80	300
0.490 – 1.705	24000/F(kHz) (48.98 – 14.08)	33.80 – 22.97	30
1.705 – 30	30	29.54	30

Table 19: General radiated emission limits up to 30 MHz according to §15.209

In case of measurements are performed at other distances than that specified in the requirements, the limits in the charts and tables reported with the test results are derived from the general radiated emission limits as listed in table 19 using the recalculation factor as described in clause 5.3.

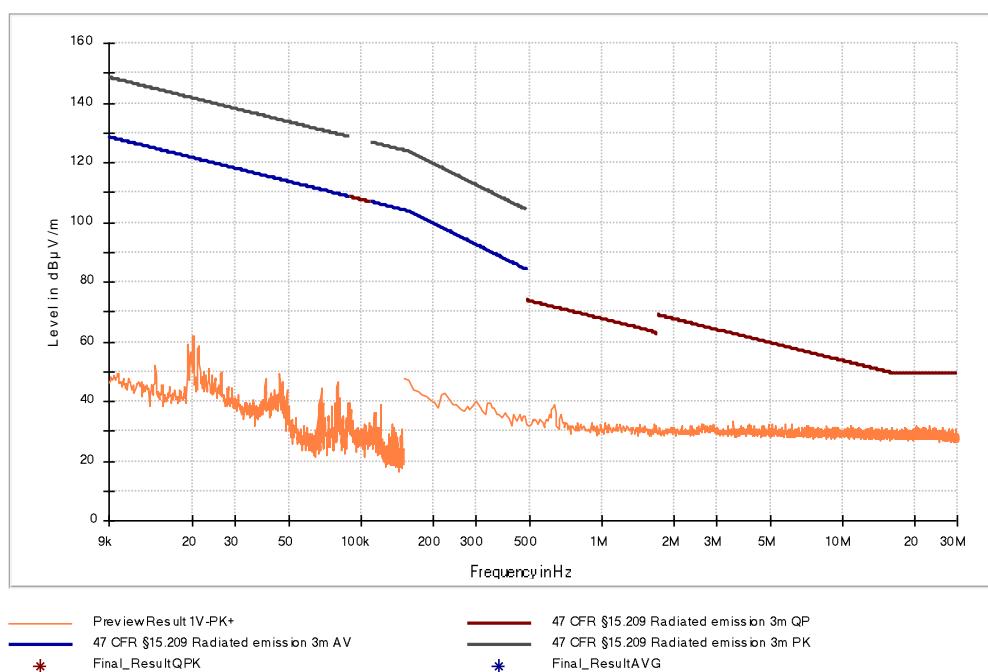
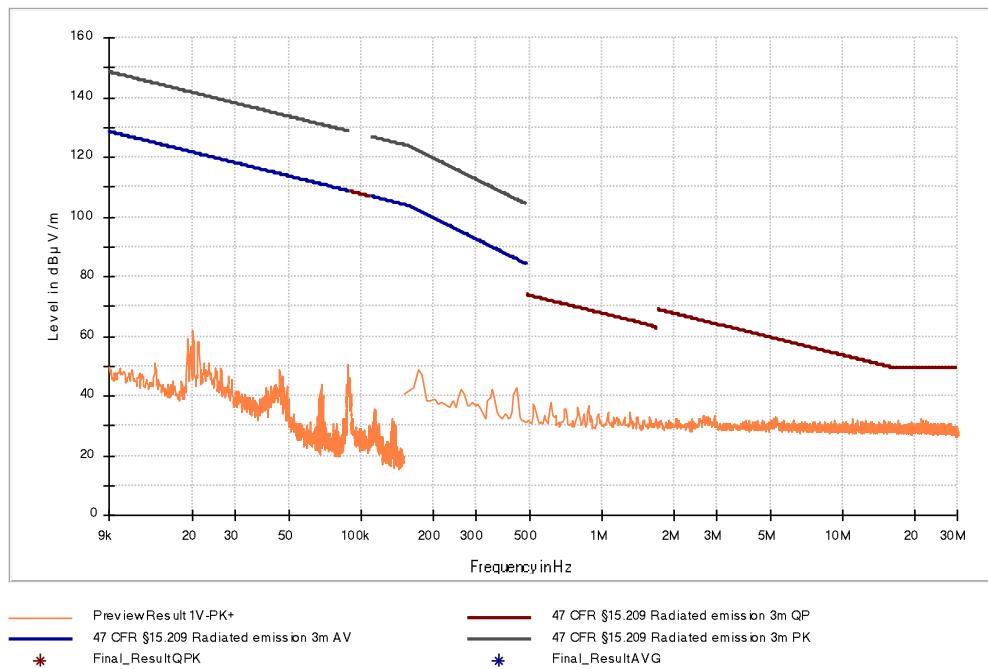
6.7.1.3 Test procedure

The emissions below 30 MHz are measured using the

- test procedure for conducted measurements as described in clause 5.2.
- test procedure for radiated measurements as described in clause 5.3.

6.7.1.4 Test results

Performed by:	Jennifer Ebner	Date(s) of test:	May 24, 2018
Climatic conditions:	Ambient temperature 24.9 °C	Relative humidity 25.0 %	Barometric pressure 975.3 hPa
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position ¹³ :	<input checked="" type="checkbox"/> Position 1	<input checked="" type="checkbox"/> Position 2	<input checked="" type="checkbox"/> Position 3



Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	70.5 Hz	200 Hz	PK	PK,	2 s	1 s	Off
150 kHz – 30 MHz	7.462 kHz	9 kHz	PK	PK	2 s	1 s	Off

Note: Premeasurements with only peak detector have shown that there are no emissions in the frequency range which are near the limit.

Figure 23: Chart of emissions test below 30 MHz on channel 37 in position 2

¹³ Exploratory measurements are performed in all positions as indicated. However, the figures and result tables within this test report show the worst case position, only.

6.7.2 Emissions from 30 MHz to 1 GHz

Section(s) in 47 CFR Part 15:	Requirement(s):	15.247(d)
	Reference(s):	KDB 558074 D01, sections 11 and 12
Section(s) in RSS:	Requirement(s):	RSS-247, section 5.5
	Reference(s):	RSS-Gen, section 6.13
		ANSI C63.10, clause 6.5

Result¹⁴:

Test passed

Test not passed

6.7.2.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
<input type="checkbox"/> Free space semi-anechoic chamber (FS-SAC)	FS-SAC	EMV TESTHAUS	E00100
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
<input checked="" type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input type="checkbox"/> Preamplifier (1 GHz - 18 GHz)	ALS05749	Aldetec	W01007
<input type="checkbox"/> TRILOG broadband antenna (CDC)	VULB 9160	Schwarzbeck	E00011
<input type="checkbox"/> TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
<input checked="" type="checkbox"/> TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input type="checkbox"/> Horn antenna	BBHA 9120D	Schwarzbeck	W00052
<input type="checkbox"/> Horn antenna	BBHA 9170	Schwarzbeck	W00054
<input checked="" type="checkbox"/> Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
<input type="checkbox"/> Cable set FS-SAC	RF cable(s)	Teledyne Reynolds Huber + Suhner Teledyne Reynolds	E00435 E00307 E00433
<input checked="" type="checkbox"/> Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

¹⁴ For information about measurement uncertainties see page 76.

6.7.2.2 Limits

According to §15.247(d), in any 100 kHz bandwidth outside of the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands (see table 18) must also comply with the radiated emission limits specified in §15.209(a). For frequencies equal to and above 30 MHz, these limits are shown in table 20.

Frequency [MHz]	Field strength [μ V/m]	Field strength [dB μ V/m]	Measurement distance [m]
30 – 88	100	40.00	3
88 – 216	150	43.52	3
216 - 960	200	46.02	3
Above 960	500	53.98	3

Table 20: General radiated emission limits ≥ 30 MHz according to §15.209

6.7.2.3 Test procedure

The emissions from 30 MHz to 1 GHz are measured using the

- test procedure for conducted measurements as described in clause 5.2.
- test procedure for radiated measurements as described in clause 5.4.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.7.2.4 Test results

Performed by:	Jennifer Ebner	Date(s) of test:	May 2, 2018
Climatic conditions:	Ambient temperature 24.4 °C	Relative humidity 25.8 %	Barometric pressure 974.8 hPa
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
EUT position ¹⁵ :	<input checked="" type="checkbox"/> Position 1	<input checked="" type="checkbox"/> Position 2	<input checked="" type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
30 MHz – 1 GHz	30 kHz	120 kHz	QP	QP	1 s	1 s	20 dB

Note: Premeasurements have shown there are no differences between the channels 37, 17 and 39 in the range of 30 MHz to 1 GHz, so the final measurement was only performed on channel 37.

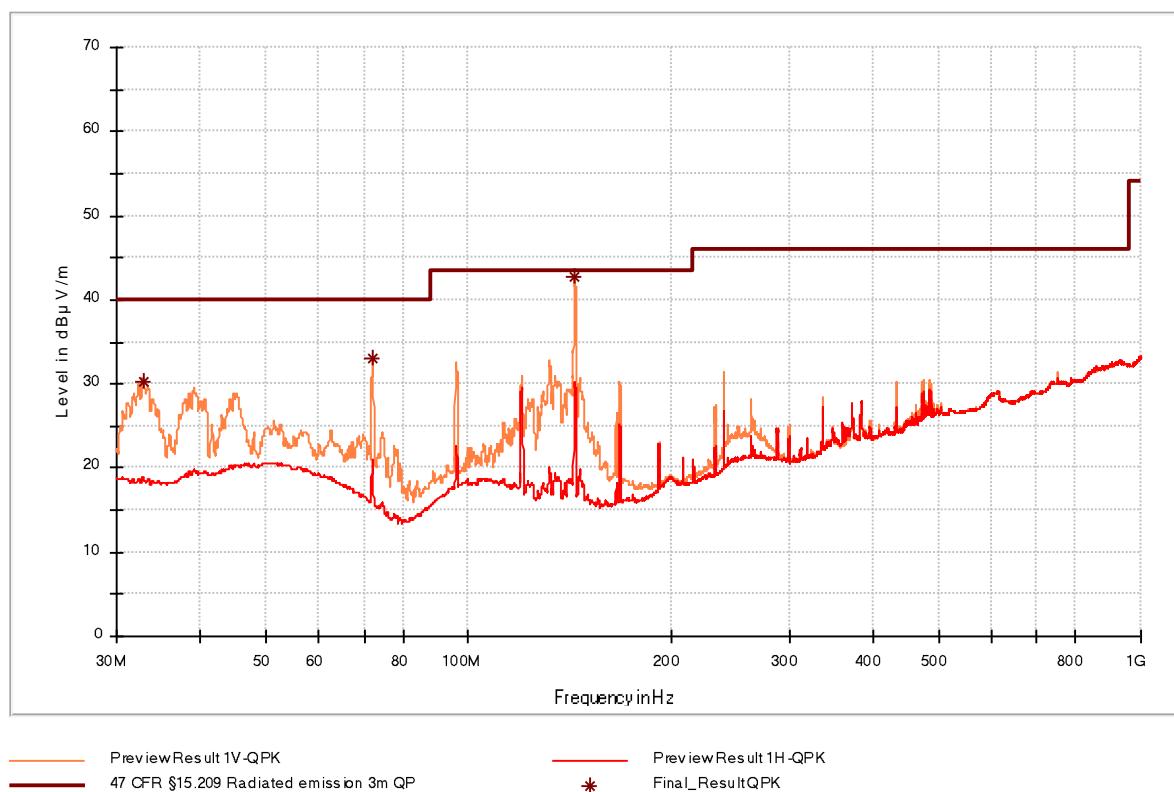


Figure 26: Chart of emissions test from 30 MHz to 1 GHz on channel 37 in position 1

¹⁵ Exploratory measurements are performed in all positions as indicated. However, the figures and result tables within this test report show the worst case position, only.

Frequency (MHz)	EUT Pos.	Level (dB μ V/m)	Detector	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB/m)
32.820	1	30.33	QP	40.00	9.67	100.0	120.000	100.0	V	206.0	10.7
72.000	1	32.99	QP	40.00	7.01	100.0	120.000	100.0	V	183.0	9.9
144.000	1	42.81	QP	43.50	0.69	100.0	120.000	100.0	V	191.0	9.2

Table 21: Results of emissions test from 30 MHz to 1 GHz on channel 02

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.7.3 Emissions from 1 GHz to 25 GHz (10th harmonic)

Section(s) in 47 CFR Part 15:	Requirement(s):	15.247(d)
	Reference(s):	KDB 558074 D01, sections 11 and 12
Section(s) in RSS:	Requirement(s):	RSS-247, section 5.5
	Reference(s):	RSS-Gen, section 6.13
		ANSI C63.10, clause 6.6

Result¹⁶:

Test passed

Test not passed

6.7.3.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
<input type="checkbox"/> Free space semi-anechoic chamber (FS-SAC)	FS-SAC	EMV TESTHAUS	E00100
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
<input type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input checked="" type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input checked="" type="checkbox"/> Preamplifier (1 GHz - 18 GHz)	ALS05749	Aldetec	W01007
<input type="checkbox"/> TRILOG broadband antenna (CDC)	VULB 9160	Schwarzbeck	E00011
<input type="checkbox"/> TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
<input type="checkbox"/> TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input checked="" type="checkbox"/> Horn antenna	BBHA 9120D	Schwarzbeck	W00052
<input checked="" type="checkbox"/> Horn antenna	BBHA 9170	Schwarzbeck	W00054
<input checked="" type="checkbox"/> Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
<input type="checkbox"/> Cable set FS-SAC	RF cable(s)	Teledyne Reynolds Huber + Suhner Teledyne Reynolds	E00435 E00307 E00433
<input checked="" type="checkbox"/> Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

¹⁶ For information about measurement uncertainties see page 76.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.7.3.2 Limits

According to §15.247(d), in any 100 kHz bandwidth outside of the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands (see table 18) must also comply with the radiated emission limits specified in §15.209(a). For frequencies above 960 MHz, these limits are shown in table 22.

Frequency [MHz]	Field strength [μ V/m]	Field strength [dB μ V/m]	Measurement distance [m]
Above 960	500	53.98	3

Table 22: General radiated emission limits above 960 MHz according to §15.209

6.7.3.3 Test procedure

The emissions from 30 MHz to 1 GHz are measured using the

- test procedure for conducted measurements as described in clause 5.2.
- test procedure for radiated measurements as described in clause 5.5.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.7.3.4 Test results

Performed by:	Jennifer Ebner		Date(s) of test:	May 15, 2018; May 30, 2018	
Climatic conditions:	Ambient temperature 22.1 °C to 23.8 °C		Relative humidity 31.2 % to 33.5 %	Barometric pressure 973.5 hPa to 974.6 hPa	
Test distance:	Exploratory tests:	<input type="checkbox"/> 1 m	<input checked="" type="checkbox"/> 0.5 m	Final tests:	<input checked="" type="checkbox"/> 3 m <input type="checkbox"/> 1 m
EUT position ¹⁷ :	<input checked="" type="checkbox"/> Position 1	<input checked="" type="checkbox"/> Position 2	<input checked="" type="checkbox"/> Position 3		

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Pre-amplifier	Distance
			Prescan	Final scan	Prescan	Final scan		
1 GHz – 10 GHz	250 kHz	1 MHz	PK + AV	PK + AV	1.5 s	0.1 s	External	3 m

Frequency range	Resolution bandwidth	Video bandwidth	Sweep time	Trace detector(s)	Trace mode(s)	Test	Pre-amplifier	Dis-distance
10 GHz – 25 GHz	1 MHz	3 MHz	AUTO	Max Peak	Clear Write Max Hold	Searching Recording	20 dB	0.5 m

Note: The exploratory measurements from 10 GHz to 25 GHz are made at a measurement distance of 0.5 m. The limit lines for these tests are converted and calculated from the limit lines at a measurement distance of 3 m.

¹⁷ Exploratory measurements are performed in all positions as indicated. However, the figures and result tables within this test report show the worst case position, only.

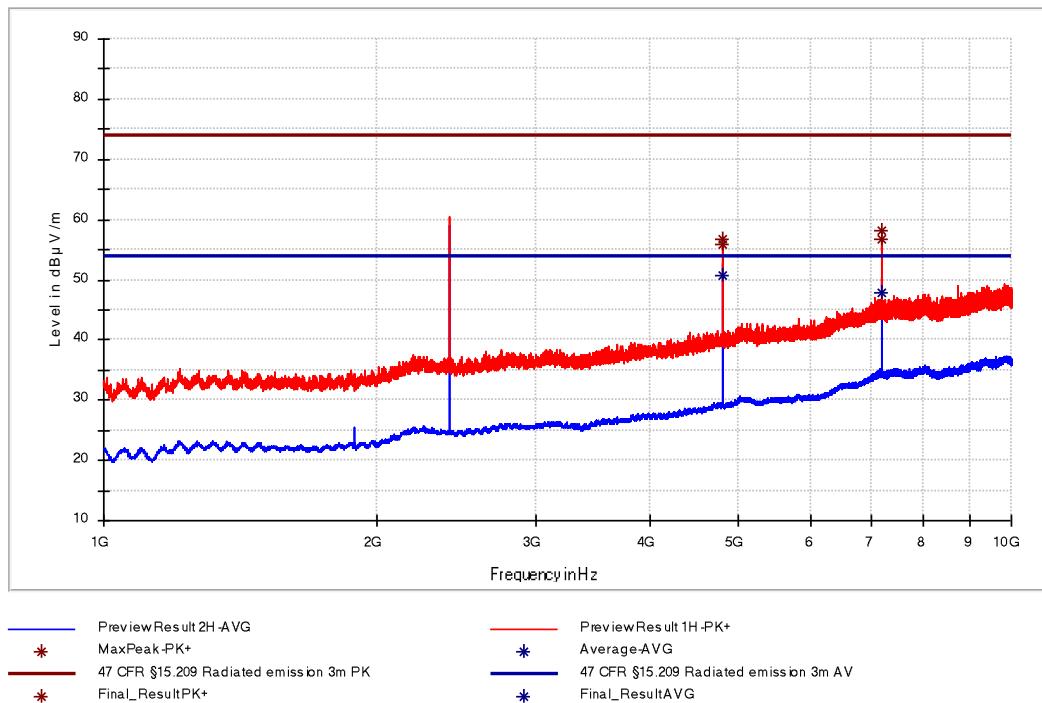


Figure 27: Chart of emissions test from 1 GHz to 10 GHz on channel 37 in position 3 at 3 m

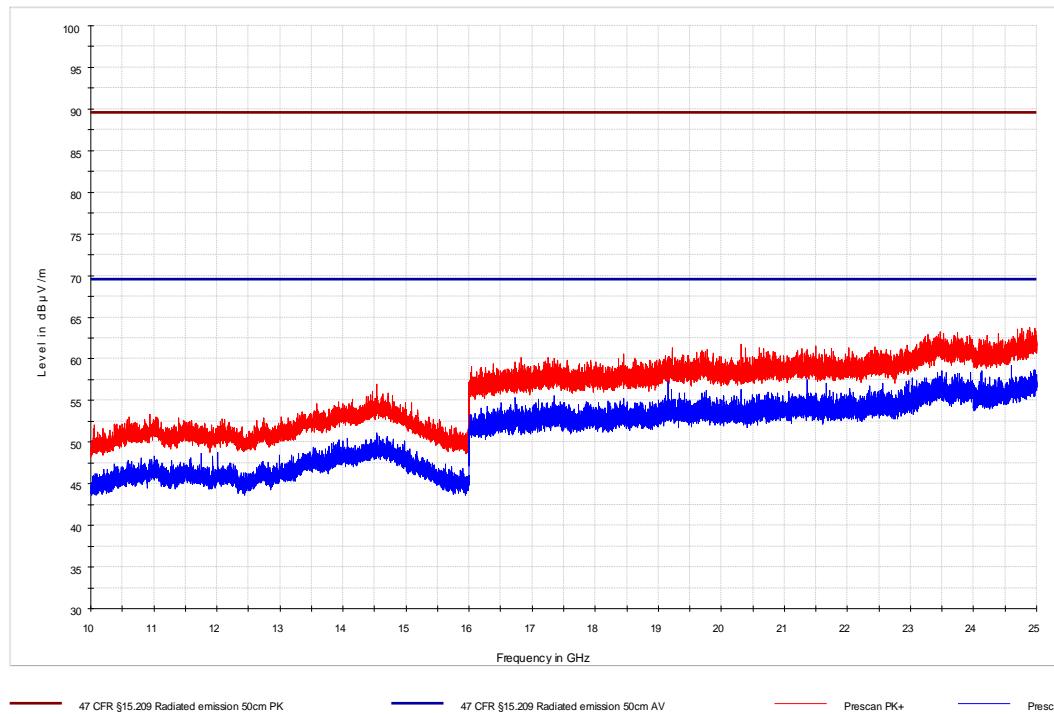


Figure 28: Chart of exploratory emission test from 10 GHz to 25 GHz on channel 37 at 0.5 m

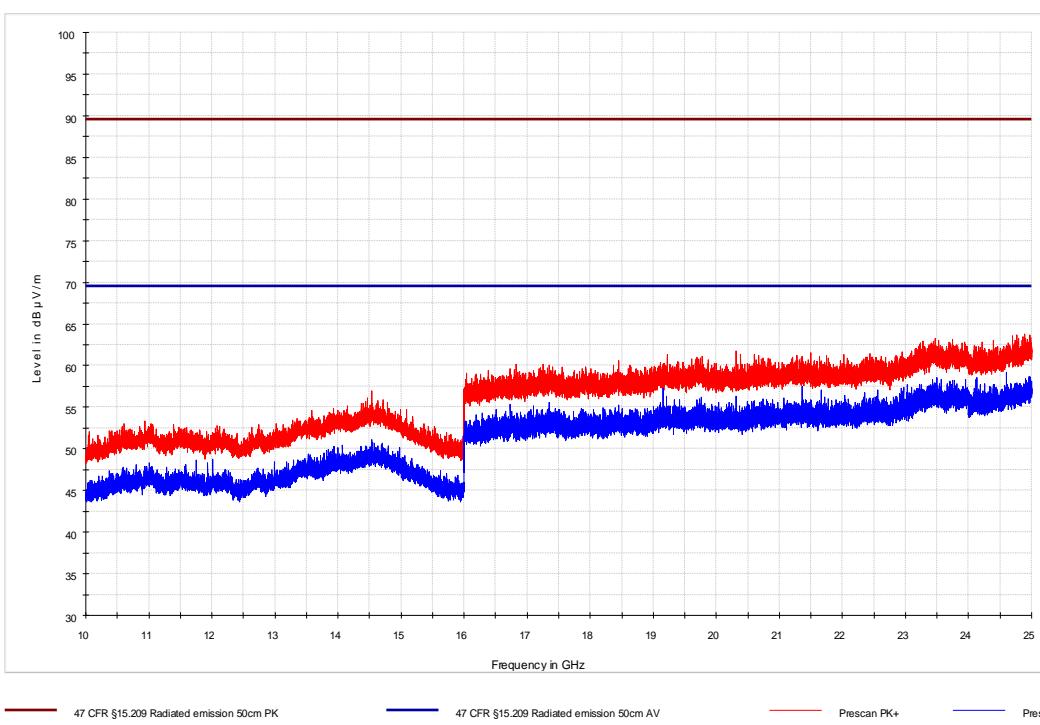
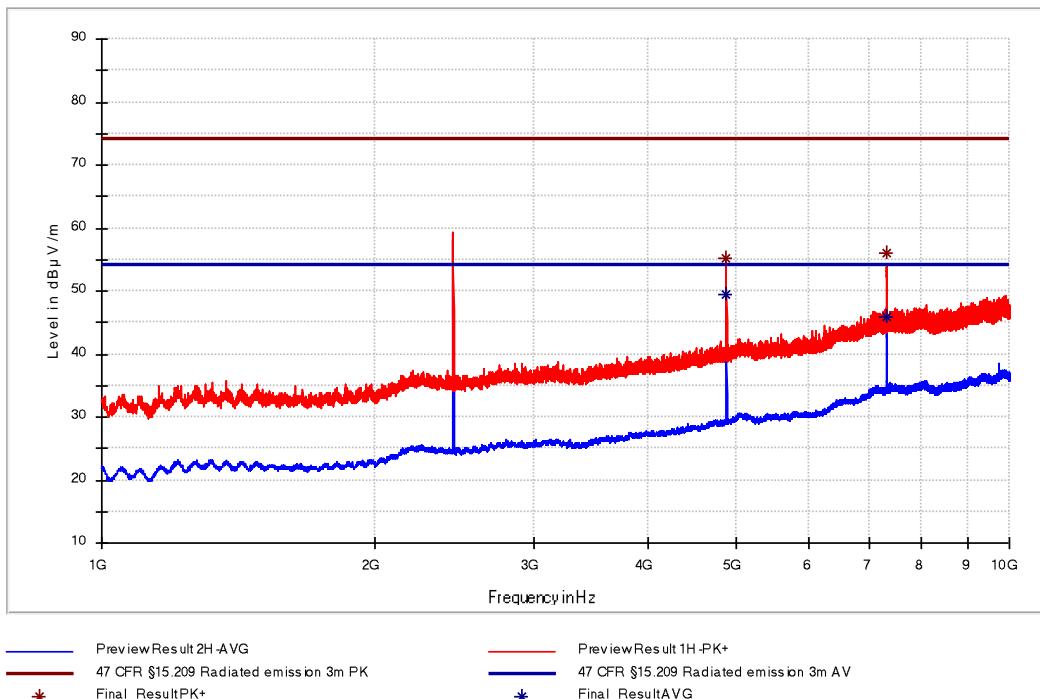


Frequency (MHz)	EUT Pos.	Level (dB μ V/m)	Detector	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB/m)
4804.013	3	56.64	PK	74.00	17.36	100.0	1000.000	151.0	H	354.0	-7.9
4804.013	3	50.59	AV	54.00	3.41	100.0	1000.000	151.0	H	354.0	-7.9
7204.818	3	58.04	PK	74.00	15.96	100.0	1000.000	280.0	H	158.0	-2.1
7204.818	3	47.86	AV	54.00	6.14	100.0	1000.000	280.0	H	158.0	-2.1

Table 23: Results of emissions test from 1 GHz to 25 GHz on channel 37

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

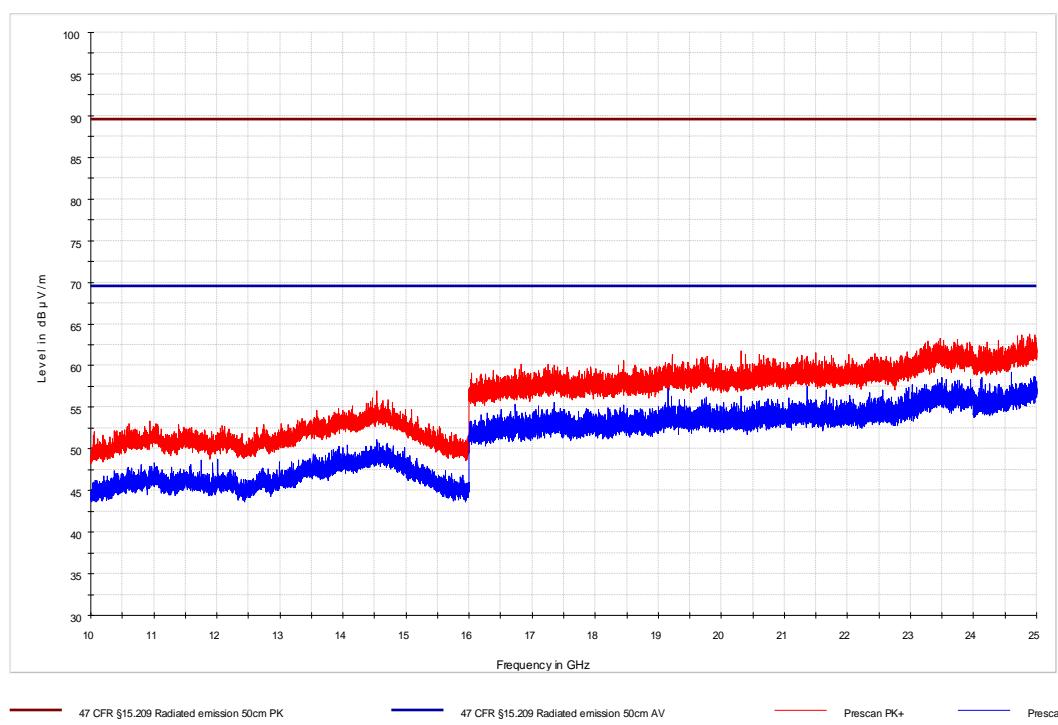
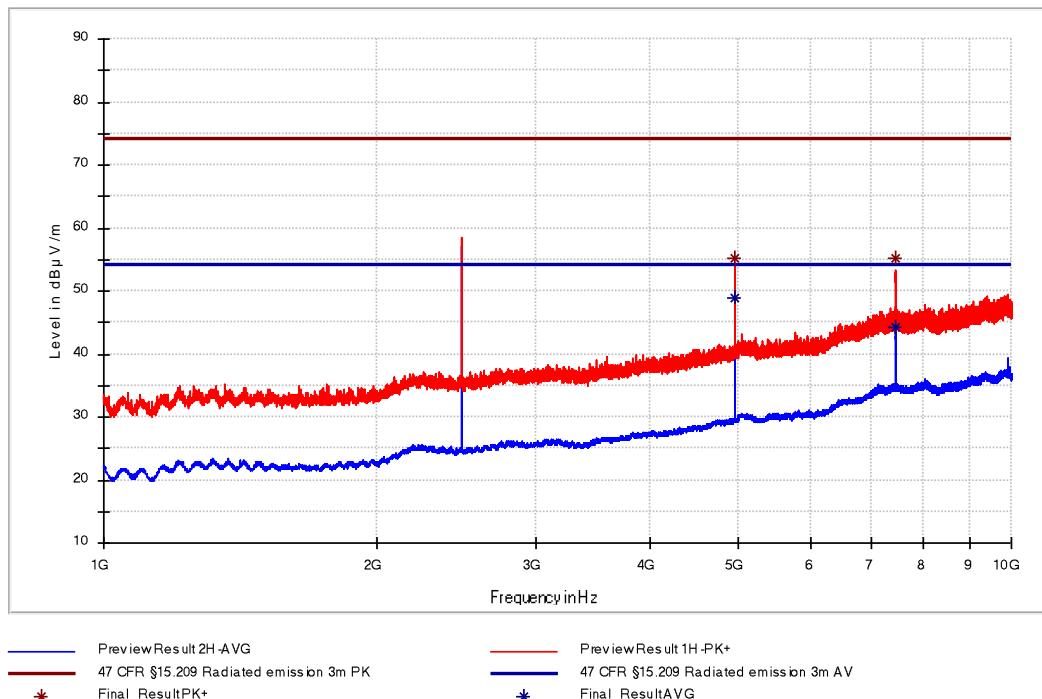


Frequency (MHz)	EUT Pos.	Level (dB μ V/m)	Detector	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB/m)
4880.013	3	55.27	PK	74.00	18.73	100.0	1000.000	119.0	H	353.0	-7.9
4880.013	3	49.32	AV	54.00	4.68	100.0	1000.000	119.0	H	353.0	-7.9
7320.078	3	56.03	PK	74.00	17.97	100.0	1000.000	270.0	H	161.0	-2.1
7320.078	3	45.84	AV	54.00	8.16	100.0	1000.000	270.0	H	161.0	-2.1

Table 24: Results of emissions test from 1 GHz to 25 GHz on channel 17

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

Frequency (MHz)	EUT Pos.	Level (dB μ V/m)	Detector	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB/m)
4960.071	3	55.29	PK	74.00	18.71	100.0	1000.000	168.0	H	352.0	-7.6
4960.071	3	48.99	AV	54.00	5.01	100.0	1000.000	168.0	H	352.0	-7.6
7440.044	3	55.13	PK	74.00	18.87	100.0	1000.000	277.0	H	163.0	-1.6
7440.044	3	44.31	AV	54.00	9.69	100.0	1000.000	277.0	H	163.0	-1.6

Table 25: Results of emissions test from 1 GHz to 25 GHz on channel 39

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.8 Radio frequency radiation exposure evaluation for portable devices

Section(s) in 47 CFR Chapter I: Requirement(s): 1.1310, 2.1093, 15.247(i)
Reference(s): KDB 447498 D01, section 7

Section(s) in RSS: Requirement(s): RSS-Gen, section 3.4
Reference(s): RSS-102, section 2.5.2

Result: Test passed Test not passed

6.8.1 Data of equipment under test (EUT)

Antenna connector (see clause 3): permanent temporary none
Antenna detachable: yes no
Tune-up function: yes no

Maximum antenna gain (see clause 3): logarithmic 5 dBi numeric 3.16

Maximum conducted output power (see clause 6.4.4): logarithmic -34.8 dBm numeric 0.0003 mW

Maximum equivalent isotropically radiated power: logarithmic -29.8 dBm numeric 0.001 mW

Maximum operation frequency (see clause 3): 2402.000 MHz

Separation distance: 15 mm

Note: The distance between the antenna und the surface of the sex toy is 15 mm. and therefore this distance is the nearest between the antenna and the human body.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.8.2 Requirements

FCC

This estimation follows the general guidelines for RF Exposure according to KDB 447498.

As noted in §2.103(b) For purposes of this section, a portable device is defined as a transmitting device designed to be used so that the radiating structure(s) of the device is/are within 20 centimeters of the body of the user.

IC

As noted in clause 2.5.1 of RSS102: SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

6.8.3 Limits

FCC

According §2.1093 (d)(i)(2): The SAR limits for general population/uncontrolled exposure are 0.08 W/kg, as averaged over the whole body, and a peak spatial-average SAR of 1.6 W/kg, averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the parts of the human body treated as extremities, such as hands, wrists, feet, ankles, and pinnae, where the peak spatial-average SAR limit is 4 W/kg, averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). Exposure may be averaged over a time period not to exceed 30 minutes to determine compliance with general population/uncontrolled SAR limits.

IC

According table 1 of RSS102: at a separation distance of 15 mm the routine evaluation limit is 15 mW at 2450 MHz

6.8.4 Results

FCC

Separation distance (mm)	Channel frequency (MHz)	rated power + tolerance (dBm)	rated power + tolerance (mW)	1-g SAR	Limit 1-g SAR	Percentage %
15	2402	-34.8	0.0003	0.00003	3.0	0.001

IC

Separation distance (mm)	Channel frequency (MHz)	rated power + tolerance + gain (dBm)	rated power + tolerance + gain (mW)	Limit 1-g SAR (mW)	Percentage %
15	2402	-29.8	0.001	15.0	0.007

Note: As worst case the power value was not averaged over time. According to the client there is no tune-up tolerance.

6.8.5 Requirements for simultaneous transmission

There is only one integrated radio technology, therefore considerations about simultaneous transmissions are not applicable.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

7 Equipment calibration status

Description	Modell number	Serial number	Inventory number(s)	Last calibration	Next calibration
EMI test receiver	ESW44	101538	E00895	2018-04	2019-04
EMI test receiver	ESR7	101059	E00739	2018-05	2019-05
Preamplifier (1 GHz - 18 GHz)	ALS05749	001	W01007	2018-01	2019-01
Loop antenna	HFH2-Z2	871398/0050	E00060	2016-09	2018-09
TRILOG broadband antenna (SAC3)	VULB 9162	9162-041	E00643	2018-03	2021-03
Horn antenna	BBHA 9120D	9120D-592	W00052	2017-04	2020-04
Horn antenna	BBHA 9170	9170-332	W00054	2017-04	2020-04
Shielded room	P92007	B 83117 C 1109 T 211	E00107	N/A	
Compact diagnostic chamber (CDC)	VK041.0174	D62128-A502- A69-2-0006	E00026	N/A	
Semi-anechoic chamber (SAC) with floor absorbers	FS-SAC	---	E00100	2018-03	2021-03
Semi-anechoic chamber (SAC)	SAC3	C62128-A520- A643-x-0006	E00716	2018-03	2021-03
Cable set CDC	RG214/U	---	E00446	2018-04	2019-04
	LCF12-50J	---	E01215	2018-04	2019-04
	LMR400	1718020006	E00920	2018-01	2019-01
	RG214 Hiflex	171802007	E00921	2018-01	2019-01
Cable set anechoic chamber	262-0942-1500	005	E00435	2017-10	2018-10
	SF104EA/2x11PC 35-42/5m	11144/4EA	E00307	2017-12	2018-12
	262-0942-1500	003	E00433	2017-10	2018-10
Cable set of semi-anechoic chamber SAC3	SF104EA/11PC35 /11PC35/10000MM	501347/4EA	E00755	2017-12	2018-12
	SF104E/11PC35/1 1PC35/2000MM	507410/4E	E01033	2017-12	2018-12
	SF104E/11PC35/1 1PC35/2000MM	507411/4E	E01034	2017-09	2018-09

Note 1: Industry Canada (test sites number 3472A-1 and 3472A-2): 2018-11

Note 2: Expiration date of test firm accreditation for SAC:

FCC test firm type "accredited": 2019-05

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

8 Measurement uncertainties

Description	Uncertainty	k=
AC power line conducted emission	± 4.1 dB	2
Carrier frequency separation Number of hopping frequencies Time of occupancy (dwell time)	± 5.0 %	2
Bandwidth tests	± 2.0 %	
Maximum conducted output power (conducted)	± 1.5 dB	
Power spectral density (conducted)	± 2.9 dB	
Conducted spurious emissions	± 2.9 dB	
Radiated emissions in semi-anechoic chamber		
9 kHz to 30 MHz	± 4.8 dB	2
30 MHz to 300 MHz	± 5.4 dB	2
300MHz to 1 GHz	± 4.7 dB	2
Radiated emissions in semi-anechoic chamber with RF absorbing material on the floor or fully anechoic room		
1 GHz to 25 GHz	± 4.5 dB	2

Comment: The uncertainty stated is the expanded uncertainty obtained by multiplying the standard uncertainty by the coverage factor k. For a confidence level of 95 % the coverage factor k is 2.

Test related measurement uncertainties have to be taken into consideration when evaluating the test results. All used test instrument as well as the test accessories are calibrated at regular intervals.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X

9 Revision history

Revision	Date	Issued by	Description of modifications
0	2018-06-08	Jennifer Ebner	First edition

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Sex toy
come-X